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CORRECTIONS TO THE NEWTON AND COULOMB POTENTIALS
CAUSED BY EFFECTS OF SPACETIME FOAM
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We use the modified field theory (MOFT), previously suggested by one of the authors [1], to explore possible
observational effects of the spacetime foam. It is shown that, as was expected, the spacetime foam can provide
quantum Bose fields with a cutoff at very small scales if the energy of zero-point field fluctuations is taken into
account. It is also shown that MOFT changes the behaviour of massless fields at very large scales (in the classical
region). In particular, we show that at r � r0 the Coulomb and Newton forces acquire the behaviour ∼ 1/r instead
of 1/r2 .
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It is commonly believed that quantum gravity effects
(spacetime foam) should provide a cutoff for quantum
field theory. A Modified field theory (MOFT), which
suggests a way to account for the spacetime foam ef-
fects, was put forward by one of us in Ref. [1]. MOFT
extends standard quantum fields theory to the case
when the number of Bose fields becomes variable and
introduces a new operator N(k) which is the density
of number of fields in the momentum space. Stan-
dard QFT represents a particular sector of MOFT in
which N(k) = 1. In this letter, we show that this
operator causes a modification of the Green functions
D̃(k) = D(k)N(k) in all internal lines of the diagram
technique. At very small scales k � k∗ it indeed can
provide a cutoff if we take into account the energy of
zero-point field fluctuations. On the other hand, for
massless fields this operator causes essential modifica-
tion at large scales k � µ (µ is the Fermi energy, see,
e.g., Ref. [1]).

We first note that, from a phenomenological view-
point, the operator N(k) reflects the topology of phys-
ical space. In the modern Universe, topology changes
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are strongly suppressed. There exist severe experimen-
tal restrictions which come from oscillation experiments
(see, e.g., Ref. [2] and references therein). This means
that now a superselection rule acts, and the operator
N(k) represents a constant of motion and may be con-
sidered as an ordinary function. However, in the early
Universe, during the quantum stage, topology changes
took place, and the properties of the function N(k)
were formed then.

Consider, as an example, the modification of quan-
tum electromagnetic field. The electromagnetic interac-
tion operator is described by the term V = e

∫
jµAµd

3x
(where e is the electron charge and jµ is the current
density of sources). In MOFT the number of fields is
variable, we have Aa

µ (a = 0, 1, ...), and one can say
that there exist photons of different “sorts”. However,
these sorts are indistinguishable (fields are supposed to
obey the identity principle, see, e.g., Ref. [1]), and there-
fore the interaction term should include additional sum-
ming over the sorts of photons V = e

∑
a

∫
jµAa

µdx .
We note that the same summing appears in the total
Hamiltonian describing free photons.

The Green function for photons in the coordinate
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representation has the form (see, e.g., Ref. [3])

Dµν(x− x′) = i
〈
T

(
Aµ (x)Aν(x′)

)〉
, (1)

where averaging is taken over the vacuum state and the
symbol T denotes chronological ordering. A Fourier
transform of this function in the Feynman gauge is ex-
pressed in terms of the scalar function D(k):

Dµν(k) = gµνD(k). (2)

In standard quantum theory, in the case of free fields,
D(k) = 4π/k2 = 4π/(ω2 − k2) (here kµ = (ω,k)).
While considering photons of a particular “sort”, the
same is also valid in MOFT: Da(k) = 4π/k2 . However,
it is obvious that in perturbation theory all diagrams
will include additional summing over the sorts of pho-
tons. Such a summing can be carried out explicitly, and
therefore it is sufficient to consider a modified Green
function:

D̃(k) =
∑

a

Da(k) =
4πN(k)
k2

. (3)

A nontrivial fact is here that MOFT admits a nontriv-
ial ground state in which the number of fields N(k)
contains a dependence on the wave vector k [1].

From a formal point of view, the expression (3)
breaks the Lorentz symmetry. This, however, does not
mean that the extended theory is not Lorentz-invariant.
The symmetry breaks due to a particular choice of the
field ground state Φ0 , which was shown to possess fi-
nite energy and particle number densities [1]. Such par-
ticles are dark and cannot be directly observable, but
should contribute to the dark matter. Therefore, the
state Φ0 distinguishes a particular preferred reference
frame. The ground state Φ0 represents an eigenstate
of the total momentum operator P̂µΦ0 = pµΦ0 . In
the preferred reference frame, the eigenvalue pµ has the
components pµ = (E0, 0, 0, 0). Thus in an arbitrary ref-
erence frame the function N(k) can be presented in the
form N(k) = N(s) where s = kµp

µ/E0 .
Since in all internal lines of the diagram technique

the function D̃(k) is multiplied by e2 , we can interpret
the modification (3) as if all point charged particles ac-
quire the dispersion e2(k) = e2N(k), i.e., in MOFT
point sources turn out to be distributed in space.

As was shown in Ref. [1], the field ground state Φ0

can be characterized by occupation numbers of the type

Nk,n = θ
(
µ− [nω +∆(k)]

)
, (4)

where Nk,n is the number of field modes in the quantum
state (k, n) (n is the number of photons in a given
mode), θ(x) is the Heaviside step function, µ is the
chemical potential, and we have added the term ∆(k)
which is the minimal energy of field modes (vacuum
spectral energy density). We note that the current state
of field theory does not allow one to fix the form of

∆(k), and in what follows we shall not specify it. The
standard definition ∆(k) = 1

2ω results in an infinite
energy density in QFT and requires renormalization,
while in our extended quantum field theory (EQFT)
this choice produces a too small value for the cutoff (see
below). However, we may expect that ∆(k) ∼ ω > 0
is an increasing function. Thus, for the mode spectral
density we get

Nk =
∞∑

n=0

θ(µk − nω) =
[
1 +

µk

ω

]
, (5)

where [x] denotes the integer part of the number x and
µk = µ−∆(k). Eq. (5) shows, in particular, that Nk =
0 when µk < 0, and therefore there appears a cutoff k∗

whose value is a solution of the equation µ−∆(k∗) = 0.
The standard picture of the electromagnetic field is only
valid in the wavenumber range (ω = ωk =

√
k2 )

ωk > µk > 0 (6)

where we have Nk = 1. In what follows, for the sake
of simplicity, we set µk = µ (thereby neglecting the
existence of the field energy of zero-point fluctuations
and of the respective cutoff). Then, (5) reads Nk =
1 + [µ/ω] , and in the range ω < µ we find a correction
to the standard Green function:

D̃(k)−D(k) = 4π
k2

[µ
ω

]
. (7)

We note that the above consideration also remains
valid in the case of the linearized gravitational field
hµν (gravitons) with the replacement of Eq. (2) with
Dµν,αβ(k) = 1

2 (gµαgνβ + gµβgνα)D(k) and the same
function D(k) as in (2).

Consider now corrections to the Coulomb and New-
ton laws. Since the number of fields is variable, the
interaction energy between two particles V must con-
tain a sum over all sorts of photons or gravitons: V =∑

a V
a . Consider two pointlike particles at rest. Then

the Fourier transform of the correction δV (k) to the
standard Coulomb potential energy

V (k) = 4πe2Z1Z2/|k|2

takes the form

δV (k) =
4πe2Z1Z2

|k|2
[
µ

|k|
]
, (8)

where Z1,2 are the particle electric charge values (in the
case of gravity one should use the obvious replacement
e2Z1Z2 → −Gm1m2 ). In the coordinate representa-
tion, this potential is given by the integral

δV (r) =
1
2π2

∫ ∞

0

(
δV (ω)ω3

) sin(ωr)
ωr

dω

ω
. (9)

Since δV (ω) vanishes for ω > µ , the upper limit of this
integral is ω = µ . At the low limit ω = 0 this integral
is divergent. However, we note that the interaction be-
tween particles can exist only on scales smaller than the
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horizon size "h . Thus we must take as the lowest limit
ω ∼ 1/"h ∼ H where H is the Hubble constant. This
integral can be presented in the form

δV (r) = σ
N∗∑
n=1

∫ µ/n

H

sin(ωr)
ωr

dω, (10)

where σ = 2e2Z1Z2/π and N∗ = µ/H . In the range
µr � 1 this correction produces a constant shift (which
gives a finite contribution to the electronagnetic rest
mass of the particle δm = δV )

δV ∼ σµ
N∗∑
n=1

1
n
∼ σµ ln

( µ
H

)
. (11)

At the opposite asymptotic µr 	 1 (but Hr � 1) we
find the estimate

δV ∼ −σµ ln(Hr). (12)

The expression (12) shows essential deviations from
the Newton and Coulomb laws at scales r > r0 ∼ 1/µ .
In particular, at these scales the Newton and Coulomb
forces acquire the behaviour 1/r (instead of 1/r2 ). We
note that the value r0 can be very large, and it is there-
fore impossible to carry out a direct observation of the
correction to the Coulomb potential (at macroscopic
scales the number of positive and negative charges is
equal, and the potential vanishes long before reaching
the scale r0 ). However, for gravity the situation is dif-
ferent since the gravitational potential is accumulated,
and the correction (12) must leave an imprint in astro-
nomical observations.

And indeed, there exists an indication that such a
behaviour really takes place. As is well known, the ob-
servations show that a leading contribution to the dis-
tribution of matter is given by the so-called dark matter
which should have an exotic non-baryonic form and is
not directly observable (see, e.g., [4]). There are sev-
eral observations which provide evidence for dark mat-
ter. One is connected with measurements of the rota-
tional velocity of galaxies as a function of the radial
distance from the centre, the so-called rotation curve
(see, e.g., [4, 5]). According to the standard Newton
dynamics, the rotation curve of a disk with an inter-
nal mass distribution that follows from the observed
brightness law must show a Keplerian r−1/2 behaviour
at large radii. However, measurements [5] show that
v(r) = vm remains constant, which implies that the
total mass contained within a radius r , M(r), varies
with r . Indeed, according to the standard Newton
law, the acceleration of a body in a circular orbit of
radius r is a = GM(r)/r2 = v2(r)/r , which gives
M(r) = v2mG

−1r . This can be interpreted as if the
mass per unit luminosity M/L increased with radius,
and therefore a large fraction of the total mass of a
galaxy is in the form of a non-luminous, dark compo-
nent located at large radii. However, if we take into

account the correction (12), we find that, for r > r0 ,
v2(r) = v2m ∼ 2µGM/π is consistent with the light dis-
tribution (M/L ∼ const). It is not yet clear which
fraction of the dark matter can be explained by the
correction (12) to the Newton potential (we recall that
the ground state Φ0 itself unavoidably predicts the ex-
istence of dark matter [1]). However, this allows one
to give a tentative rough estimate of the characteris-
tic scale r0 > 1 kpc, and so the parameter µ is really
small. Obtaining a more precise estimate requires a
further and more thorough confrontation with observa-
tions.

We note that the idea of modifying gravity at large
scales is not new, see, e.g., the criticism of different
approaches and a list of references in Ref. [6]. Some
approaches use potentials close to (12) as an empirical
requirement to the modification of the Newton law (or,
equivalently, introduction of an additional force) — see,
e.g., [7] — and have no fundamental theoretical back-
ground. On the contrary, in the extended quantum field
theory the correction (12) is an inevitable consequence
of the massless nature of the gravitational field.
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