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Abstract. We provide examples of two-dimensional diffeomorphisms which cannot be
topologically conjugate to any diffeomorphism of a higher smoothness.

In this paper we construct new examples of two-dimensional CX-diffeomorphisms (k > 1)
which are not topologically conjugate to any diffeomorphism of a higher smoothness
p > k. We note that examples of such ‘unsmoothable’ diffeomorphisms have been
known since the mid-1970s [S], for any dimension of the phase space larger than one
[4, 6]. Our constructions use the dimension-two condition explicitly at a certain point.
However, the idea is completely different from that of [4—6]. Moreover, we show that
the set of unsmoothable diffeomorphisms is sufficiently large—it is dense in an open
subset of the space of CK-diffeomorphisms. The construction combines results by de
Melo [12] on the rigidity of topological conjugacy for diffeomorphisms with a heteroclinic
tangency, Belitsky theory of functional moduli of smooth conjugacy for one-dimensional
diffeomorphisms [1] and Katok results [11] on the approximation of non-uniformly
hyperbolic invariant sets by uniformly hyperbolic ones. The paper was inspired by the
Downarowicz—Newhouse theorem [2] which claims that Ck-diffeomorphisms (1<k<
o0) that are not topologically conjugate to any C*°-diffeomorphism are locally generic;
that is, such diffeomorphisms form a residual set in the so-called Newhouse domain in the
space of C*-smooth diffeomorphisms. Similarly, although by a different method, we prove
here the following result.

THEOREM. Given any k > 1, in the Newhouse domain of the space of C*-diffeomorphisms
of a two-dimensional disk there is a dense subset such that none of the diffeomorphisms
that belong to this subset is topologically conjugate to any C?-diffeomorphism with p > k.

Before starting the proof, we clarify our notation. Throughout the paper we write C*
instead of C¥1-#} where [k] is the integer part of k and {k} = k — [k], i.e. we deal with C¥I-
functions whose [k]th derivatives are Holder continuous with exponent {k}. We also recall
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that the Newhouse domain is the open region in the space of C*-diffeomorphisms (k > 1)
where diffeomorphisms with homoclinic tangencies are dense. The (quite unexpected)
fact that this region is non-empty and ‘large’ (in the sense that its closure contains
all Ck-diffeomorphisms with homoclinic tangencies) is proved in [13]. A homoclinic
tangency is an orbit at the points of which the stable and unstable invariant manifolds
of a hyperbolic periodic point have a tangency. Obviously, any given homoclinic tangency
can be removed by an arbitrarily small (in C*-metric) perturbation of the diffeomorphism,
so every diffeomorphism in the Newhouse domain is structurally unstable—its dynamics
may change by an arbitrarily small perturbation. In fact, it was shown in [7] that
diffeomorphisms with homoclinic tangencies of arbitrarily high orders form a dense subset
of the Newhouse domain. This theorem shows an extreme sensitivity of the dynamics to
perturbations of the diffeomorphism. As our result here and the above-mentioned result
from [2] show, the dynamics of the diffeomorphisms that belong to the Newhouse domain
is sensitive even to an increase in smoothness (both theorems use the theorem from [7] as
an ingredient).

Proof of the theorem. We need a stronger version of the result of [7] (see [10]): in the
Newhouse domain of the space of C¥-diffeomorphisms of a two-dimensional disk there is
a dense subset such that each diffeomorphism that belongs to this subset has a non-trivial
basic set A, each periodic orbit in which has an orbit of a flat homoclinic tangency.

We call the tangency between two C*-curves flat if the distance between the curves
decays faster than the kth power of the distance to the point of tangency. Obviously,
if a C*-diffeomorphism has a homoclinic point M at which the stable and unstable
manifolds W* and W* of some periodic point O have a flat tangency, then by adding to f a
perturbation which is arbitrarily small in the CX-metric and localized in an arbitrarily small
neighborhood of M we can make the manifolds W* and W* coincide locally along a small
interval passing through M (and along each image of this interval by the iterations of f).
The orbit of every point in this interval is homoclinic to the same periodic point O (it tends
to the orbit of O both at forward and backward iterations of f, as it belongs both to the
stable and unstable manifold of O). Therefore, we say that these points form a homoclinic
band.

We will need a certain refinement of the above-mentioned result from [10], so we repeat
the construction which led to it. According to [13], every diffeomorphism that belongs
to the Newhouse domain possesses a non-trivial basic set (i.e. a compact, invariant, locally
maximal, uniformly hyperbolic, transitive set with positive topological entropy) A’ such
that one of its unstable leaves has a tangency with one of its stable leaves. Every stable leaf
is approximated by the stable manifold of any periodic point from A’ and every unstable
leaf is approximated by the unstable manifold of any periodic point from A’, therefore we
can choose a pair of periodic points P € A’ and Q € A’ (we need them to be different) and
create, by an arbitrarily small perturbation of the diffeomorphism, a tangency between the
unstable manifold W ( Q) and the stable manifold W*(P). As P and Q belong to the same
basic set, we also have a transverse intersection between W4 (P) and W*(Q). The four
orbits (periodic orbits of the points P and Q and the heteroclinic orbits which correspond
to the tangency between W*(Q) and W*(P) and to the transverse intersection of W*(P)
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and W*(Q)) comprise a heteroclinic cycle. Any further small perturbations will not destroy
this cycle.

Choose a non-trivial basic subset A C A’ which does not include the points P and Q
(by compactness, A lies at a finite distance from the heteroclinic cycle). Given any periodic
point S € A, its stable and unstable manifolds intersect transversely with W*(P) and
WS (Q) respectively, hence W*(S) accumulates on W*(Q) and W*(S) accumulates on
W*(P) (by the lambda lemma). Hence, as W*(Q) has a tangency to W*(P), it is easy to
create a tangency between W*(S) and W*(S) by an arbitrarily small perturbation of the
diffeomorphism. In fact, it is shown in [10] (based on a similar result in [8]) that such
tangency can indeed be created by adding to the diffeomorphism under consideration an
arbitrarily small (in C¥) perturbation localized in an arbitrarily small neighborhood of the
point P; moreover, the perturbation is such that the tangency between W*(Q) and W*(P)
does not disappear.

We now enumerate all the periodic orbits in A: Sy, S7,.... We will add to the
diffeomorphism a countable sequence of perturbations of exponentially decreasing
magnitude (so that their sum will converge). After the mth step we will have certain orbits
of homoclinic tangency to the periodic orbits Sy, . . ., S;;; each of the further perturbations
will be localized at a non-zero distance from these orbits of the homoclinic tangency, so the
orbits created at the first m steps will not be affected at the further steps of the perturbation
algorithm. The single step (number m + 1) is described as follows: once the homoclinic
tangencies between W' (S;) and W*(S;) are created for each j =1, ..., m, we take the
periodic orbit S,,; 1 and create k new orbits of homoclinic tangency between W¥(S,,+1)
and W*(S,,41) in the way described above. Since the perturbations can all be localized in
an arbitrarily small neighborhood of the periodic point P, we can create the new tangencies
without affecting the ones previously obtained (the heteroclinic tangency between W (Q)
and W?*(P) persists too, as mentioned). Next, as shown in [9, 10], one can perturb
the k newly obtained homoclinic tangencies in such a way that a homoclinic tangency
of order k (i.e. a flat tangency) between W*(S,,+1) and W*(S,,+1) will appear. Such
perturbations can be taken arbitrarily small in C* for any k and localized in an arbitrarily
small neighborhood of S,,+1, i.e. neither the previously obtained tangencies between
WH(S;) and W*(S;) (j =1, ..., m) nor the tangency between W*(Q) and W*(P) are
affected. After the flat tangency is obtained, we make an additional small and localized
perturbation to create a homoclinic band. Next, we make irrational the ratio 6 of the
logarithms of the absolute values of the multipliers of the periodic point S, 1—this is also
made by an arbitrarily small and localized (in a small neighborhood of S,,+1) perturbation
which does not destroy the homoclinic band (see [9, 10]). Then, by a Ck_small perturbation
localized in a small neighborhood of a point in the homoclinic band, we make the Belitsky
invariant related to the band C*-generic (the Belitsky invariant, which we will discuss
in more detail below, is a certain C¥-smooth function on a straight line; we will call it
Ck-generic if it is not C? for any p > k). Thus, at the end of the (m + 1)th step we will
have a homoclinic band for each of the periodic orbits Sy, . . ., S;,+1, the Belitsky invariant
for each of these bands will be C*-generic, and the values of 6(S DG=1...,m+1)
will be irrational. By continuing this to infinity, we obtain, that arbitrarily C*-close
to any given CK-diffeomorphism that belongs to the Newhouse domain there exists a
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diffeomorphism which has a non-trivial basic set A, each periodic point in which has a
homoclinic band with a CX-generic Belitsky invariant, and the ratio 6 of the logarithms of
the absolute values of the multipliers is irrational for each of the periodic orbits.

We denote the set of such diffeomorphisms by N'*. As we have just shown, this set is
dense in the Newhouse domain. As mentioned, the same construction was performed in
[10]; our enhancement here is that in addition to the existence of homoclinic bands for all
periodic orbits we ensure the C*-genericity of the corresponding Belitsky invariants and
the irrationality of the 0s.

Let us now define the Belitsky invariant for a homoclinic band. This is similar to the
functional invariants of the smooth conjugacy introduced in [1] for one-dimensional maps.
Let O be a saddle periodic point of a C*-diffeomorphism f of a plane. Let n be the period
of O (so that f*(O) = O), and let ¥ (O) and A(O) be its multipliers (the eigenvalues of
the derivative of f" at O). We assume that |y| > 1 and |A| < 1. Two CK-smooth curves,
W4(0) and W*(0), pass through O, they are both invariant with respect to the map f”,
and the restriction of f” onto W*(0) is given by

X yx 4+ o(x),
while the restriction of f” onto W*(0O) is given by
X Ax 4+ o(x)

(the point O is zero in both these formulas). The point O divides W*(0O) into two
halves, and we denote one of the halves by w" (we include in w" the point O as well).
Analogously, we denote by w® one half of W*(0O). Denote by T, the restriction onto w"
of the map f" if y > 0, and of the map f2" if ¥ < 0. Analogously, T, will denote the
restriction onto w* of the map f if A > 0, and of the map /2" if & < 0. As we can see,
T,w" = w" and Tyw® = w’. As the zero fixed point of the one-dimensional map 7y is
hyperbolic (i.e. 7] (0) # 1), there exists a uniquely defined Ck-linearization of T (this is
well known to be true for any k > 1). This means that there exists a uniquely defined
C*-smooth function &, : R, — w* such that

Ty (hs(x)) = hs (A 4X) (1)

for all x > 0 (here A, = A if A >0, and A, =A% if A <0). Analogously, there exists a
uniquely defined C*-smooth function /4, : Ry — w" such that

Ty (hy(x)) = hy(y4x) (2)

for all x >0 (where y. =y if y >0, and y, =y? if y <0). Let the point O have
a homoclinic band in the intersection of w*® and w", i.e. w® and w* have a common
closed segment. Let it be a segment between the points hg(a;) and hg(az) for some
0 < a; < ap (we will assume that a; is sufficiently close to aj, i.e. the homoclinic band
is small—if it happens to be large, we will just take a small part of it). Then the function
b:lay, ax] — R, defined as

b=h;"ohy

will be called the Belitsky invariant of the homoclinic band. By construction, b € C*.
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Note that the linearizing functions /g and 4, are uniquely defined near zero by the maps
T, and T, in a small neighborhood of O, then they are continued onto the whole of R by
iteration of formulas (1) and (2). Therefore, if we take any a € (a1, a2) and let M = hy(a),
then by adding to the map f a small perturbation localized near M we can make arbitrary
(sufficiently small) changes in & near a, while keeping /2, unchanged near h;l (M). Thus,
by C*-small perturbations of f which are localized in an arbitrarily small neighborhood of
a single point in the homoclinic band, we can add arbitrary C*-small local perturbations to
the Belitsky function b, i.e. we can indeed make it C*-generic, as claimed above.

Let us now prove that no CK-diffeomorphism that belongs to A* is topologically
conjugate to a diffeomorphism of higher smoothness. Indeed, let f € N* and let a CP-
diffeomorphism g be topologically conjugate to f, i.e. g=&o f o0&, where & is a
homeomorphism. We assume that p > k, and, in order to prove the theorem, we must
show that p = k.

Since the set A is a basic set for f, it follows that the set £(A) is a closed, locally
maximal, invariant set of g (these properties, as opposed to uniform hyperbolicity, are
preserved by the topological conjugacy). The topological entropy of glga) is positive
(since it is equal to the entropy of f|a). Therefore, according to a theorem by Katok
[11], the map g has a hyperbolic periodic point in £(A). Denote this point by G. By
construction, G = £(0) where O € A is a periodic point of the map f. Since all periodic
points in A are hyperbolic, the point O is hyperbolic. The homeomorphism & takes the
unstable manifold of O to the unstable manifold of G, and the stable manifold of O to the
stable manifold of G. Thus, the point G has a homoclinic band, like O does.

Choose a half w®(0O) of W¥(0) and a half w*(0O) of W*(0O) such that the intersection
of w¥(0) and w"(0) contains a segment I of the homoclinic band. Write w*(G) =
Ew*(0) and w"(G) =&w"(0); the segment &1 corresponds to the homoclinic band
for the map G. Denote by vo, Lo and yG, Ag the multipliers of O and G such that
ly| > 1, |A] < 1. It has been known since [12, 14, 15] that if two diffeomorphisms, each
having a hyperbolic periodic orbit and an orbit of a homoclinic tangency, are topologically
conjugate, then the conjugating homeomorphism possesses certain ‘smooth’ properties.
Thus, according to a theorem by de Melo [12], the following three facts imply that the
restriction of the homeomorphism & on w*(0O) and w"(0O) is defined uniquely, up to
multiplication to a constant.

(1) Both the point O and its image G by the conjugating homeomorphism & are

hyperbolic.
(2) O has a homoclinic band.
(3) The value 6(0O) = —In |yo|/In |Ao]| is irrational (recall that 6 is irrational for every

periodic point in A, by construction).
The precise statement is that if the coordinates on w" (0O) and w"(G) are chosen such that
the corresponding maps 7, are linear, then

&lyr(0)(x) = Cyx”

where v =1n |yg|/In |yo| and C, > 0 is a constant; analogously, if the coordinates on
w?*(0) and w®(G) are chosen such that the corresponding maps 7 are linear, then

Elys0)(x) = Cyx”
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where Cg > 0 is a constant and v is the same (note that conditions (1) and (2) imply,
according to [14], that 6(G) =6(0), hence In |yg|/In|yo| =In|Ag|/In|Lo]|). The
general form of a continuous conjugacy between two one-dimensional linear maps is
x +— xn(In x) with a certain periodic function n. The de Melo theorem thus shows
that when the conjugacy is induced by a conjugacy of two-dimensional diffeomorphisms
satisfying the global condition (2) (along with the local condition (3)), the function n must
be constant, both for the restriction onto the unstable manifold and for the restriction onto
the stable manifold.

Note also that condition (1) is crucial in the de Melo theorem (if G is not hyperbolic
and, say, both its multipliers are equal to 1, then neither the mere smoothness of w*(G)
and w"(G) nor the existence of smooth linearizing coordinates on w*(G) and w"(G) is
obvious). We avoid this problem by using the Katok theory which ensures the hyperbolicity
of G (the price we pay is that we have to restrict ourselves here to the two-dimensional case
only, as the Katok theorem in the way we use it—"*positive entropy implies a hyperbolic
periodic point’—is essentially two-dimensional).

If we denote by & o and h, o the linearizing transformations for the maps 7 and T,
on, respectively, w*(0) and w"(0) and by &, ¢ and £, ¢ the linearizing transformations
for the maps Ty and T, on, respectively, w®(G) and w"(G), then the above formulas for
&|wu (o) and &5 (o) can be rewritten as

‘S(hs,O(x)) = hs,G(Csxv)v g(hu,O(x)) = hu,G(Cuxv)-

Thus, the Belitsky invariant b, = 11;10 o hg, o for the homoclinic band segment / and the
Belitsky invariant by = h;lG o hg g for the homoclinic band segment &£/ are related:

v 1/\)
by(x)= (—bg(gsx )) .

As mentioned, the Belitsky invariant inherits the smoothness of the original map, so by
must be at least C?. Therefore, by must be C? as well. On the other hand, since f € N*,
by is C*-generic by construction, i.e. p = k. a

It is shown in [3, 16] that the groups of ck -diffeomorphisms of R" and C?”-
diffeomorphisms of R" are not isomorphic for p # k. According to [3, 16], our theorem
opens up one more way to prove this result—for the two-dimensional case.
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