
ENOC 2014, 6-11 July 2014, Vienna, Austria

Exponential Fermi acceleration in adiabatically perturbed Hamiltonian systems
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Summary. We show that a slow periodic change in parameters of a homogeneous Hamiltonian system should universally lead to an
exponential growth of energy, provided the system shows a chaotic behaviour which is not ergodic for a certain range of parameter
values.
Historically, the Fermi acceleration was proposed to explain the anomalously high energies of cosmic rays’ particles: by
[1], a charged particle can accelerate by hitting inhomogeneities of a magnetic field that move with random velocities. In
a more abstract setting, the Fermi acceleration can be defined as a process of energy transfer from heavy objects to light
ones (e.g., in the cosmic ray problem, from magnetic field inhomogeneities to charged particles). In other words, we have
a Hamiltonian system where the inertia of certain degrees of freedom is high, i.e. the effect on them of the other degrees
of freedom can be neglected. This means we can regard the action of these “heavy” degrees of freedom as an external
forcing applied to the rest of the system, i.e. the motion of the rest of the degrees of freedom is described by a Hamiltonian
system whose parameters are time-dependent.
We will further assume the dependence of the Hamiltonian H(q, p, τ) on time τ is periodic. Thus, we depart from the
original Fermi’s setting where the external forcing is random; instead, the randomness necessary for the acceleration will
be generated by chaotic motion of the internal degrees of freedom (cf. [2]). We are interested in the question of how
these periodic changes of the parameters of the Hamiltonian system can lead to a sustained growth of energy. As we
must operate in the high energy limit, it is natural to assume that such limit exists, i.e. that at large energies the system
becomes, to the main order, energy independent in properly chosen coordinates. For example, the high-energy limit of a
particle motion in a potential which is infinite outside a certain region D is a billiard in D, see [3]. For the particle in a
polynomial potential, the highest order monomials give the greatest contribution at high energies, so the high-energy limit
corresponds to the motion in a homogeneous polynomial potential. We will further neglect the contribution of lower order
terms and will assume from the very beginning that our Hamiltonian H(q, p, τ) is homogeneous at every frozen value
of τ . This means that if we consider the frozen system, i.e. the autonomous system defined by the Hamiltonian H at τ
fixed, then for every τ and every E > 0 there exists a coordinate transformation that keeps the system the same, sends
the energy level H = 1 to H = E, and has a constant Jacobian J(E) = Eα, α > 0. We will assume that the positive
energy levels are compact, so J(E) = V (E)/V (1) where V (E) is the volume of the (q, p)-space between the energy
levels H = E and H = 0. Thus, we can label the points in the phase space (q, p) by the coordinates (x,E) where E is
the energy and x is a projection to the energy level H = 1, so that the evolution of the coordinates x in the frozen system
will be E-independent. The examples are given by a billiard in a τ -dependent region Dτ , a particle in a homogeneous
polynomial potential with τ -dependent coefficients, a geodesic flow on a space with a τ -dependent metric.

When τ changes with time the energy E = H(p, q, τ) will be no longer preserved by the system:
dE

dt
=

∂H

∂τ
τ̇ . We

assume that at large energies the motion in the frozen system is fast (e.g. in the above mentioned examples the velocity q̇
grows as a square root of the kinetic energy). Therefore, in the system with τ varying with time the variables x change, at
large energies, much faster than τ does. We also assume that ∂H/∂τ has the same order as H , so the speed of change of
lnE will be comparable with τ̇ . Thus, we have a slow-fast system, with fast variables x and slow variables τ and lnE.
Then, a fundamental theorem by Anosov [4] is applied. Namely, if the frozen system is ergodic on every energy level
with respect to the Liouville measure µ = δ(E − H(p, q, τ))dpdq, we are guaranteed that averaging over this measure
gives a good approximation of the slow evolution of the energy for a large set of initial conditions (see [5]):

Ė =

∫
∂H

∂τ
(p, q, τ)δ(E −H(p, q, τ))dpdq∫
δ(E −H(p, q, τ))dpdq

τ̇ . (1)

We note that no mixing is required, i.e. one should not think of a fast relaxation to the Liouville measure at every moment
of the slow time. Just the measure of the set of initial conditions for which the evolution of energy deviates noticeably
from that given by this averaged equation is small.
By analogy, in the general case when the frozen system is not ergodic we may assume that the slow evolution of the
energy is given by an averaged equation

Ė =

∫
∂H

∂τ
δ(E −H)µτ (dx) τ̇ (2)

where µτ is a certain ergodic measure on the space of fast variables. This measure can depend on τ and be different for
different initial conditions. Choose some family µτ of these measures and let M be a set of initial x values for which the
evolution of the energy over the period of τ is given by the averaged equation (2) with this particular measure for all τ .
Let E0 and E1 be two sufficiently large values of energy. If the points with initial conditions E = E0, x ∈ M move to
the energy level E = Ē0 = eλE0 after the period of τ , then the points with initial conditions E = E1, x ∈ M move
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to the level E = Ē1 = eλE1, by the homogeneity of (2). Since the original, non-averaged system preserves volume in
the (q, p)-space, it follows that the volume occupied by the points with x ∈ M between the levels E = E0 and E = E1

equals to the volume occupied by the points with x ∈ M̄ between the levels E = Ē0 and E = Ē1, where M̄ denotes the
image of the set M by the flow of the full system after the period of τ . This gives us

αλ = ln(v(M)/v(M̄)) (3)

where v is the volume in the x-space (i.e. in the energy level H = 1).
Let at least at some value of τ the frozen system be chaotic in a sufficiently strong sense. Namely, we assume that the
system relaxes to the Liouville measure on each energy level. This does not fix distribution of energies, which can be
arbitrary. We can, at this value of τ , define the entropy of the system as an averaged value of the ln(V (E)/V (1)) =
ln J(E), i.e.

S = α

∫
< lnE >x dx, (4)

where the integral is taken over the x-space (we assume its volume is scaled to 1), and < lnE >x in this integral is the
value of lnE averaged over initial conditions that get to the volume dx around the point x at the time τ . Let us label all
possible sets M (each corresponding to each own family of measures µτ ) by some index k. By (3), the change of the
entropy over the period of τ is

∆S =
∑

ln

[
v(Mk)

v(M̄k)

]
v(Mk). (5)

As
∑

v(Mk) =
∑

v(M̄k) = 1 = the total volume of the x − space, it follows that ∆S ≥ 0 (to see this, denote
v(Mk) = vk, v(M̄k) = ρkvk; we have

∑
ρkvk =

∑
vk = 1 =⇒ ∆S = − ln(

∏
ρvkk ) ≥ − ln(

∑
ρkvk) = 0). Thus,

the entropy (evaluated at the beginning of each period) is a non-decreasing function of time. Note that in the case the
frozen system is ergodic for each τ , formula (1) gives ∆S = 0 (to see this, write V (E, τ) =

∫
H(p,q,τ)≤E

dpdq =∫
θ(E − H(p, q, τ))dpdq where θ is the Heaviside function; since θ′ = δ, it follows that ∂V

∂τ = −
∫

∂H
∂τ (p, q, τ)δ(E −

H(p, q, τ))dpdq, hence ∂V
∂τ =

∫
δ(E −H(p, q, τ))dpdq, so d

dtV (E, τ) = 0 by (1)).
It is rare that a chaotic Hamiltonian system is ergodic. Therefore, in the general case one should not assume the ergodicity
for all τ , so there is no restrictions on the growth of entropy, and we should expect

∆S > 0

in (5). As there is no dependence on energy in the right-hand side of (5), we will get the same increment in entropy over
each period of τ , so S will grow linearly in time. By (4), this corresponds to an exponential growth of energy, with the
rate ∆S/α for a typical initial condition.
We can view our system as a gas of non-interacting particles (different particles correspond to different initial conditions).
As there is no interaction, there is no equilibrium distribution in energies. However, in the ergodic case we still recover the
entropy conservation at the adiabatic (i.e. slow) change of parameters. In the non-ergodic case we can think of particles as
being, at each value of the parameter τ , in different states which correspond to different ergodic measures µτ over which
the averaging is performed. Thus, our gas can be considered as a mixture of different phases or fractions; the adiabatic
change of parameter can lead to particles changing their states, so the relative densities of each fraction in the gas can
vary, and this naturally leads to the entropy growth.
Note that these conclusions are true only when the system indeed follows the models (2) or (1). These models are
approximate, and do not need to be followed for all initial conditions. When the initial energy is taken higher, we expect
the accuracy to increase and the measure of the set of initial conditions, for which this approximation is not valid, to
decrease. Still, the (approximate) conservation of entropy and energy in the ergodic case can be valid only for a finite
number of periods. On the other hand, the steady growth of entropy and energy in the non-ergodic case has to be a much
more robust phenomenon. These conclusions were numerically confirmed for various types of chaotic billiards with
periodically moving boundaries [6, 7] and for a particle in a polynomial potential of degree 4 with periodically changing
coefficients at the terms of the highest order [8].
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