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ABSTRACT. We prove that a pair of heterodimensional cycles can be born at the
bifurcations of a pair of Shilnikov loops (homoclinic loops to a saddle-focus e-
quilibrium) having a one-dimensional unstable manifold in a volume-hyperbolic
flow with a Z2 symmetry. We also show that these heterodimensional cycles
can belong to a chain-transitive attractor of the system along with persistent
homoclinic tangency.

1. Introduction. There is a point of view that the main feature of the dynam-
ics of non-hyperbolic chaotic systems is the persistent coexistence of orbits with
different numbers of positive Lyapunov exponents. This can be caused by the ex-
istence of either a homoclinic tangency or a heterodimensional cycle, i.e. a cycle
which includes heteroclinic connections between saddle periodic orbits with different
indices (dimensions of their unstable manifolds). In our opinion, for multidimen-
sional systems (i.e. diffecomorphisms with dimension three or higher and flows with
dimension four or higher), the most basic mechanism of this phenomenon must be a
heterodimensional cycle. Heterodimensional cycles of co-index 1 were first studied
by Newhouse and Palis in [23]. Here co-index is the difference between the indices
of the corresponding periodic orbits of a heterodimensional cycle. The fact that
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the non-transverse heteroclinic intersections in such cycles can be persistent was
discovered by Diaz and collaborators (see [9, 10, 11, 6]); a comprehensive theo-
ry of C'-generic properties of diffeomorphisms having heterodimensional cycles of
co-index 1 was built mostly in the works of Bonatti and Diaz (see [6, 7]).

In this paper we consider heterodimensional cycles for C™ flows in R™ (r >
3,n > 4). We give an example of a simple codimension-one homoclinic bifurcation
which (among other things) results in the emergence of heterodimensional cycles
of co-index 1. This is a symmetric version of the Shilnikov bifurcation of two
homoclinic loops to a saddle-focus. The symmetry also links heterodimensional
cycles to Lorenz-like systems. We show in Section 1.2 an example of the system
which satisfies the assumptions in this paper by adding an extra direction to the
geometric Lorenz model. Namely, the system

= O—(yfx)a
x(r—2z) -y,
—bz 4+ xy + €u,
= —(b+ flu—ez,

Il

will, for some choice of parameter values and function f, undergo the bifurcation
which give rise to heterodimensional cycles (see Section 1.2 for more details ).

It has been shown in [24] that under certain (open) conditions on the eigenvalues
of the saddle-focus equilibrium the bifurcation of a homoclinic loop to the saddle-
focus in three-dimensional systems creates coexisting saddles periodic orbits with
different indices. We generalise this result for systems with dimension four or higher
(see Corollary 1 in Section 3.3) and show that a symmetric pair of such loops can
be split in such a way that some of these saddles acquire heteroclinic connections
and the heterodimensional cycles are formed (see Theorem 1 in Section 2.1). One
should note that it is impossible to create a heterodimensional cycle only using
saddles near one single homoclinic loop (under condition C1 in Section 1.1). The
interplay of two homoclinic loops is crucial and we will explain this in Section 1.1.

We remark here that, by imposing the symmetry requirement, the codimension
of the bifurcation under consideration is brought down to one. This is because that
the existence of one homoclinic loop now implies the existence of the second one;
moreover, the coincidence condition (which is an equality-type condition) needed
for the emergence of heterodimensional cycles will be fulfilled automatically (see
Section 1.1). In other words, the symmetry allows us to give a relatively simple cri-
terion for the heterodimensional cycle chaos. More specifically, under the symmetry
condition, the appearance of a single Shilnikov loop with the volume-hyperbolicity
near the equilibrium (condition C3 in Section 1.1) is sufficient to show the existence
of heterodimensional cycles in systems which can be arbitrarily close to the original
one. Therefore, we can obtain a complex structure from a simple one. The com-
putations we do here are quite involved. This is caused by the fact that we need
to consider the perturbations which keep the symmetry of the system. Creating
heterodimensional cycles for general systems without the symmetry is easier, but
the bifurcations become codimension three; this case is considered in [21].

We also show that if the Shilnikov loops are originally within an attractor, then
the heterodimensional cycles obtained in this paper can belong to this attractor (see
Theorem 2 in Section 2.2). The attractor considered here is the one proposed in
[36] which is chain-transitive volume-hyperbolic, and contains the equilibrium and
its two separatrices.
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1.1. Problem setting. In what follows we describe the system considered in this
paper, and give conditions required to create heterodimensional cycles via homo-
clinic bifurcations.

Let us consider a C" flow X in R™ (where 7 > 3,n > 4) having an equilibrium O
with a one-dimensional unstable manifold and a homoclinic loop associated to O.
We assume that system X satisfies the conditions below.

(C1) (Non-degeneracy condition) The extended unstable manifold W*E(0) is
transverse to the strong-stable foliation Fy of the stable manifold W*(O) at the
points of the homoclinic loop.

An extended unstable manifold W*¥(0) is a C™ smooth three-dimensional in-
variant manifold which is tangent at the points of W}  to the eigenspace corre-
sponding to the unstable and weak stable characteristic exponents (those closest
to the imaginary axis from right). Here r; depends on the gap between the weak
stable exponents and the next exponent to the left of it (see Chapter 2 of [32] for
details). The extended unstable manifold contains the stable manifold W*(O) and
is transverse to the strong-stable manifold W2 (0) at O. The foliation Fy is the
uniquely defined, smooth, invariant foliation of the stable manifold, which includes
W#2(O) as one of its leaves. We will discuss more on this foliation later.

Note that condition (C1) is open and dense in C” topology, i.e., if it is not fulfilled
initially, then it can be achieved by an arbitrarily small perturbation of the system;
once this condition is satisfied, it holds for every C"-close system. We proceed to
listing other conditions.

(C2) The equilibrium O is a saddle-focus, and the eigenvalues of the linearised
matrix of X at O are v, —A + wi, =\ — wi, a; such that

w#0 and Re (o) <-A<0<7vy(j=1,2...n—-3).

It follows from the result in Appendix A of [32] that if (C2) is satisfied, then
system X near O can be brought to the form

T = z,

Y1 = —py1 —wy2 + fuu(w,y,2)y + fi2(z, 9, 2)2, (1)
Yo = wyr—py2+ fa(x,y,2)y + falz,y,2)z,

2 = Bz+ fa1(z,y,2)y + fae(z,y,2)z,

by some C"~!-transformation of coordinates and time (with assuming v = 1). Here
x = (x1,22), and the eigenvalues of matrix B are o ...a,_3. Functions f;; are
C"! smooth and satisfy

fl](07070) = 07 fl](ovyaz) = Oa f2j(07yvz) = 07 fil(x7070) =0 (Z = 172737] = 1a2)

(2)
In such coordinate system, the coordinates of O are (0,0,0) and the local invariant
manifolds are straightened, i.e. we have

Wige(0) ={y = 0,2 =0}, Wi.(0) ={z =0}, Wi (0)={zr=0,y=0}

The one-dimensional unstable manifold of O consists of two separatrices; the up-
per one, I't corresponds, locally, to x > 0 and the lower separatrix I'~ corresponds
to x < 0. Let the upper separatrix return to O as t — 400 and form a homoclinic
loop. Thus, the homoclinic loop, when it tends to O as t = —o0o, coincides with a
piece of the x-axis, and when the loop tends to O as ¢ — +oo it lies in {z = 0}.
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In this coordinate system the extended unstable manifold W4¥(0) is tangent to
{z =0} at points of I'".

We also impose a condition which ensures that the three-dimensional volumes
near O are expanding:

(C3) The ratio p = = <

2>
DN | =

Under condition (C1), conditions (C2) and (C3) are necessary for obtaining het-
erodimensional cycles via bifurcations of homoclinic loops. Indeed, if O is a saddle
or O is a saddle-focus with p > 1, then at most one periodic orbit can be born
from the bifurcation of one homoclinic loop (see [33, 19]); in the case where O is
a saddle-focus with 1/2 < p < 1, there can be infinitely many coexisting periodic
orbits with indices 1 and 2 near one homoclinic loop (see [24]), but index-1 or-
bits are attractors, i.e. not saddles, and therefore they cannot be used to create
heterodimensional cycles.

When O is a saddle-focus with 0 < p < 1/2, one can obtain infinitely many
coexisting saddle periodic orbits of indices 2 and 3 near one homoclinic loop (see
Lemma 6 and Corollary 1 which generalize the same result obtained for three-
dimensional systems in [24]). However, it is known (see [35]) that, under some
genericity assumption on the homoclinic loop I't (i.e. condition C1 of this paper),
the original system, and every system close to it, has a three-dimensional invariant
manifold M such that every orbit which lies entirely in a small neighbourhood of
O NTT must lie in M. This gives a robust three-dimensional reduction of the
dynamics near I'", which prevents the birth of heterodimensional cycles at any
bifurcations of I'". Therefore, the interplay of two homoclinic loops is required,
and we assume that the separatrix I'” also forms a homoclinic loop. Indeed, the
existence of essentially four-dimensional dynamics can be guaranteed if system X
satisfies the coincidence condition: the loops I't and '™ intersect the same set of
leaves of the strong-stable foliation Fo on W#(O) (see [35, 5]). This means that,
for any point M+ € I't lying in a leaf [, there exists a point M~ € I'" lying in the
same leaf [ (see figure 1).

We now achieve this coincidence condition by imposing the symmetry:

(C4) System X is invariant with respect to the transformation R : (x,y,z) —
(—z,y,8z) where S is a non-trivial involution which changes signs of some of the
z-coordinates.

With this condition satisfied, the existence of the loop I'"™ implies the existence
of the second homoclinic loop I'", and moreover the y-component will be the same
for both of these homoclinic solutions. Besides, the above-mentioned coincidence
is fulfilled automatically. In the rest of this paper we show that bifurcations of
this pair of homoclinic loops can lead to the birth of heterodimensional cycles of
co-index 1.

1.2. An example. A concrete example of a system satisfying conditions (C1) -
(C4) can be found by a modification of the well-known Lorenz model given by

T = O'(y—l‘),
y = x(r—z) -y,
z = —bz+uzy.

Here the unstable and strong-stable directions are given by linear combinations of
x and y, and the weak-stable direction corresponds to coordinate z. This system
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F1GURE 1. The dashed curves represent the two homoclinic loops
and the solid vertical lines represent leaves of the foliation Fy. The
coincidence condition for system X is that, for any point of I't
lying in a leaf [, there exists one point of I'~ that also lies in [.

is symmetric with respect to the transformation (z,y, z) — (—z, —y,2). We add a
new variable u, and consider the system of the form

&z = oly—ux),

y = z(r—z)—vy,

z = —bz+ay+eu, (3)
U = f(bJrf(:z:,y,z,u))ufsz,

where f can be any non-linear function such that

(1) the new system satisfies the symmetry with respect to the transformation
(x,y,2z,u) = (—x,—y, z,u) (which is the same as the R symmetry introduced be-
fore); and

(2) we have £(0,0,0,0) = 9f(0,0,0,0)/0(z,y, z,u) = 0, and the sum (b+ f) is
close to zero outside a small neighbourhood of the equilibrium (0,0, 0, 0).

It is known ([34, 1, 2]) that there is an open set in the parameter space around
(c = 10,b = 8/3,r = 28) such that, for parameter values inside this set, the
Lorenz system has a strong-stable foliation and the two-dimensional areas trans-
verse to the foliation are expanding near the equilibrium. The above property (2)
ensures that the strong-stable foliation is inherited by the new system (3), and
three-dimensional volumes transverse to the strong-stable foliation are expanded
which implies condition (C3). Besides, property (2) also leads to the existence of
an absorbing domain containing the equilibrium which implies the existence of a
volume-hyperbolic attractor inside the domain (see Section 2.2 for more details).
We note that the characteristic exponents corresponding to coordinates z and u are
conjugate complex numbers, and therefore the original equilibrium in the Lorenz
model now becomes a saddle-focus. There is numerical evidence (e.g. [4]) that, for a
dense subset of parameter values inside the open set near (¢ = 10,b = 8/3,r = 28),
the Lorenz system has a symmetric pair of homoclinic loops. The loops will persist
after we add the extra coordinate u. Thus, at least for certain parameter values,
this new system falls into the class of systems considered in this paper.
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By Theorem 1 of this paper, we can have heterodimensional cycles by perturbing
this system. More specifically, there exist certain parameter values of o,b and r,
and function f such that, for any § > 0, one can find C” functions ¢, g2, g3 and g4
with ||g;||cr < & such that the system

T = o(y—x)+g,

y = a(r—=z)—y+ge,

z = —bz+ay+eu+gs,

« = —(b+ f(z,y,z,u))u — ez + ga,

has a symmetric pair of heterodimensional cycles. Moreover, these cycles belong to
the above-mentioned attractor (see Theorem 2).

2. Results.

2.1. Birth of heterodimensional cycles. The main result of this paper is the
following:

Theorem 1. If system X satisfies conditions (C2) - (C4), then in any arbitrarily
small C™ neighbourhood (r = 1) of X in the space of the R-symmetric systems, there
exists a system which has a symmetric pair of homoclinic loops to O, and a sym-
metric pair of heterodimensional cycles near these loops. Fach heterodimensional
cycle is associated to two periodic orbits of indices 2 and 3.

Condition (C1) is not mentioned here since it can also be obtained by an arbi-
trarily small perturbation (without destroying the loops). We remark here that we
need r > 3 in our computations. If system X is originally C” with » =1 or 2, then
we can first make it C'°° by an arbitrarily small perturbation in C” topology, and
recover the homoclinic loops (if destroyed) by an additional arbitrarily C"-small
perturbation. After this, we can perturb the system again to create heterodimen-
sional cycles. We shall mention that, in the proof of the non-empty quasi-transverse
intersection in Section 3.4, we need to use the smooth dependence of the invariant
manifolds of periodic orbits on the right-hand side of system 1, and this is allowed
after we make our system C°.

Before we sketch the proof, let us discuss more on the strong-stable foliation Fj.
In the coordinates of (1), the leaves of Fy on W .(O) are given by (x = 0,y = const).
The non-degeneracy condition (C1) implies that the closed invariant set OUTTUT~
is partially hyperbolic: at the points of this set the contraction along the strong-
stable leaves is stronger than a possible contraction in the directions tangent to
WuE_ The partial hyperbolicity implies that the strong-stable foliation Fy extends
(see [18, 35, 36]), as a locally invariant, absolutely continuous foliation with smooth
leaves, to a neighbourhood U of O UT'T UT'~, and the foliation persists for all
C"-close systems. See [3, 18] for more details on the properties of such foliation.

We take a small cross-section II transverse to the local stable manifold W} _(O)
such that both loops I'" and I'~ intersect II. The flow induces a Poincaré map
T on II. The intersections of the orbits of the leaves of Fy by the flow with the
cross-section II form a strong-stable invariant foliation F; for the Poincaré map T,
which has leaves of the form (x,y) = h(z) where the derivative h'(2) is uniformly
bounded. The detailed sufficient condition for the existence of such strong-stable
foliation is proposed in [36] and our system X satisfies this condition. Note that the
coincidence condition (given by the symmetry) implies that the projections of T't
and I'” onto any transversal along leaves of Fy coincide. Therefore, the intersection
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points M T and M~ of I'* and I'™ with II lie on the same leaf of 77, and have the
same y-coordinate since II is near O and the foliations on W} _(O) are straightened
(see figure 2).

Mj/

i,

7

W3 (0) NI

FIGURE 2. For a four-dimensional system, the intersection points
M™* and M~ on a small three-dimensional cross-section II belong
to the same leaf of the foliation Fj.

The foliation J; is invariant such that 771 (1N (T(I1))) is a leaf of the foliation if
the intersection is non-empty. The foliation is also contracting in the sense that, for
any two points in the same leaf, the distance between their iterates under the map
T tends to zero exponentially. Besides, by the absolute continuity of the foliation,
the projection along the leaves from one transversal to another one changes areas
by a finite multiple bounded away from zero. Note that the condition p < 1/2
implies that the flow near O expands three-dimensional volume in the (z,y)-space;
the partial hyperbolicity of the flow near OUI'Y UI'™ and the fact that the orbits in
U spend only a finite time between successive returns to the small neighbourhood
of O imply that the flow in U uniformly expands the three-dimensional volume
transverse to the strong-stable foliation (see [35, 36]). Consequently, the Poincaré
map T expands two-dimensional areas transverse to the strong-stable foliation on
1.

In what follows, we describe the steps for creating a heterodimensional cycle in
a small neighbourhood of ' NI'" N O. At the birth of this cycle, a second one will
be obtained automatically by the symmetry.

First, we note that, according to Shilnikov theorem (see [30, 31]), each of the
homoclinic loops I't and I'~ is accumulated by a countable set of single-round
index-2 saddle periodic orbits of the flow (we call the orbit of the flow n-round if it
intersects II exactly n times). Consequently, there exist two sets {P} and {P, }
of index-1 saddle fixed points of T" in II such that P,j — M* and P, — M~ as
k — +o00. Any finite number of these points survive sufficiently small perturbations
of the system. We embed X into a two-parameter family X, , of R-symmetric
systems such that homoclinic loops split with a non-zero velocity as pu changes. We
take p as the z-coordinate of the point M+ where the upper separatrix I'* first
intersects I (so —u is the x-coordinate of the point M~ of the first intersection
of T'~ with IT). The second parameter is the ratio p = A/v. It is well-known that
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arbitrarily close to u = 0 there are values of u for which both Tt and '~ form
a double-round homoclinic loop (see [12, 13, 14, 17]). Crucially, we show that by
an arbitrarily small perturbation of p (in addition to that of u), at the moment of
existence of two double-round homoclinic loops, the unstable manifold of a point
P from the set {P;"} that survives the splitting of the original loop intersects the
strong-stable manifold of the point M~ (see Lemma 3).

Next, we use a generalization of Theorem 3 of [24] that if a system has a homo-
clinic loop to a saddle-focus with p < 1/2, then, by an arbitrarily small perturbation
which changes the value of p without splitting the loop, one can create an infinite
sequence of double-round saddle periodic orbits with three-dimensional unstable
manifold which converges to the loop (see Lemma 6). In our situation, we can
consider a family of perturbations localized in a sufficiently small neighbourhood of
O such that neither the symmetry of the system is broken, nor the double-round
loops are split, nor the heteroclinic intersection between W*(P;") and W*(M~)
is destroyed, while the value of p changes with a non-zero velocity. Then, at an
appropriately chosen value of p the double-round loop I'™ becomes a limit of a se-
quence of 4-round saddle periodic orbits with three-dimensional unstable manifold
(see Figure 3 (a)). On the cross-section II, we thus have an infinite sequence of
index-2 saddle points @, of period 4 which converges to M ~; the stable manifolds
of these points are given by the leaves of the strong-stable foliation F; through these
points, so we have W*(Q; ) = W?* (M ™) as n — 4o00. Obviously, by an additional
small perturbation we can break the intersection between W*(P) and W*(M ™)
and create the heteroclinic intersection of W*(P) with W*(Q,, ), where @, is some
point from {Q} } (see figure 3 (b)).

The last step is to show the existence of a transverse intersection of W#(P) and
W*(Qy,)- Denote by Pt the point closest to IIN W*(O) of those points P, that
survive the change of . We will prove that W*(Q,, ) intersects the stable manifold
of Pkt using the expansion of two-dimensional areas by the Poincaré map. The non-
empty intersection W*(P)NW"(Qy, ) follows from the homoclinic relation between
P and P,:E. This completes the proof of the theorem.

2.2. Heterodimensional cycles in a strange attractor. Let us now consider
the case where the above bifurcation happens within the strange attractor proposed
in [36]. In this paper, we show that heterodimensional cycles obtained by Theorem
1 can belong to such attractor and coexist there with a Newhouse wild set. Here
a Newhouse wild set is a compact, invariant, and transitive hyperbolic set whose
stable manifold intersects non-transversely its unstable manifold in a C? persistent
fashion (see [22, 26, 15]).

In order to have an attractor, we need the existence of a certain absorbing domain.
We fix a neighbourhood of O where formula (1) is valid; by a linear scaling of
the variables, we can make the size of the neighbourhood equal to 1. Let S =
{(x,y1,92,2) | || < 1,||(y1,92)|| = 1,|]z|| < 1} be a cross-section to Wj_(O).
Suppose that all orbits starting at S return to S. Then, the region D filled with
all orbits of the flow starting from S, plus the equilibrium O and its two unstable
separatrices I'T and '™, is forward invariant.

As we mentioned before, the non-degeneracy condition (C1) imposed on the ho-
moclinic loops I'" and I'~ along with the condition p < 1/2 implies the volume
hyperbolicity of the system near the set O UT'" UT'~. We now assume that this
property extends to the whole of the forward invariant region D:
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(a) (b)

FIGURE 3. As shown in figure (a), we can create an infinite se-
quence of index-2 point @, accumulating on M~ while keeping
the intersection W*(P)NW?**(M ~) by changing u, p and v togeth-
er. In figure (b), the intersection W*(P) N W?*(Q,, ) is created by
changing v).

(C5) (Volume-hyperbolicity condition): The tangent bundle of D admits a con-
tinuous dominated splitting at any point of D: Tp = N% & N€, where N*®° is the
strong-stable subspace (corresponding to coordinates z near O) and N€ is the center
subspace (corresponding to coordinates  and y near O). The flow restricted to N*°
is exponentially contracting, and volumes are expanding in N€.

Note that this condition implies the existence of an absolutely-continuous invari-
ant foliation tangent to N*° at each point of D (see [36]).

Before we introduce the attractor, let us recall some definitions. Let X;P be the
time shift of point P by the flow X for the time t. Take £ > 0 and 7 > 0; an (e, 7)-
orbit is a sequence of points Py, Ps, ..., P such that the distance between P, and
X P; is smaller than ¢ for some ¢ > 7. A point @ is said to be (e, 7)-accessible
from P if there exists an (g, 7)-orbit connecting P and @, and accessible from P if
for some fixed 7 and all € > 0, the point @ is (g, 7)-accessible from P. A set B is
said to be accessible from a point P if it contains a point that is accessible from P.
A closed invariant set B is called chain-transitive if, for any points P and @Q in B
and for any € > 0 and 7 > 0, the set B contains an (e, 7)-orbit connecting P and
Q. A compact invariant set B is called completely stable if, for any neighbourhood
U(B), there exist € > 0 and 7 > 0 and a neighbourhood V(B) C U(B) such that
all (e, 7)-orbits starting in V(B) do not leave U(B).

The attractor of our system in D is defined as the set A of all points accessible
from O. It is shown in [36] that A is the unique chain-transitive and completely
stable set in D, and it is accessible from any point in D. Thus A is the unique
Ruelle-Hurley attractor of the system in D (see [28, 20]). The volume-hyperbolicity
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implies that the attractor A is chaotic in the sense that every orbit in it has a
positive maximal Lyapunov exponent. A complete description of the structure of
A is impossible, as it may contain a Newhouse wild-hyperbolic set (see [36]). It is
also shown in [36] that the attractor .4 may contain coexisting saddles of different
indices. Here we strengthen the last statement by showing the following corollary
from Theorem 1.

Theorem 2. If system X satisfies conditions (C2) - (C5), then there exists a system
arbitrarily close to X in C" such that it satisfies the same symmetry condition, and
its attractor A in D contains a Newhouse wild set, a symmetric pair of homoclinic
loops, and a symmetric pair of heterodimensional cycles near these loops.

As we mentioned in Section 1.2, such strange attractor also exists in system (3).

3. Proof of Theorem 1. We prove Theorem 1 by finding heterodimensional cycles
for the Poincaré map on a cross-section II near the saddle-focus O. The proof is
divided into several parts. We first describe the Poincaré map T  on II. After this, we
consider a two-parameter family X, , with X = X ,«. We find a sequence {(u;, p;)}
of parameter values accumulating on (0, p*) such that system X, , has a double-
round homoclinic loop I'” and a connection from a single-round index-2 periodic
orbit to this loop (see Lemma 3). More specifically, we show that there exists an
index-1 fixed point P on the cross-section II such that W*(P) N W*S(M~) # ()
(where M~ is the first intersection point of I'~ and II).

Then, we define the parameter v that controls the separation of W*(P) and
W#5(M ™) localised near the intersection point given by (1, p;). This means that,
for any fixed pair (p;, p;), the two manifolds W*(P) and W**(M ~) will cross each
other with a non-zero velocity as v varies. Note that, in the space of dynamical sys-
tems with R-symmetry, there exists a codimension-1 surface #; containing X, ,.
such that all systems on this surface have a double-round homoclinic loop I'~; inside
this surface, there is a codimension-2 surface Ho corresponding to systems having
the intersection W*(P) N W?**(M~). We now embed system X, , into a two-
parameter family X, , such that this family lies in the surface H; and systems in
‘Ho correspond to parameter value v = 0. We remark here that p is now a function
of p: when p is changed, we need to change u accordingly to keep the double-round
homoclinic loop I'".

Next, we obtain a sequence {(p},v}')}, of parameter values converging to (p;,0)
such that the unstable manifold W*(P) intersects the stable manifold of an index-2
periodic point @ close to M~ (see Lemma 7). In the end, we show the existence
of the non-empty intersection W*(P) N W*(Q) for every pair (p7,v}). Therefore,
we obtain a heterodimensional cycle of the map T', which corresponds to one in the
flow X P The second cycle exists by the symmetry.

3.1. Construction of the Poincaré map T'. Recall that the local stable manifold
W .(O) is straightened and has the form {z = 0}. We pick two points M+ =
(0,y,0,2%) and M~ = (0,y;,0,27) near the equilibrium O such that M+ €
r*NWg.(0) and M~ € T~ N W;_(0). We define II = {(z,y1,0,2) | |z] <
O, lyr —yT| < 4, |lz]] < 6} with an upper part II; := IIN {z > 0} and a lower
part II; := II N {z < 0}. Denote by IIy the intersection of II with W} _(O), i.e.
IIN{z = 0}. Points on the cross-section have coordinates (z,y1, z) and we drop the
subscript of y; for simplicity. Note that ||z|| decreases much faster than ||y|| along the
homoclinic loops as t — +o0c so that we can assume ||27|| < §. Points M and M~
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are the intersection points of ' and I'~ with II, and have coordinates (x*,y*, z™)
and (z7,y~,27). By the symmetry, we have 2+ = —2~ and y* = y~. We will
consider families of perturbed systems, so &, y® and 2% are smooth functions of
parameters. Since p is the splitting parameter, we can assume z+ = —2~ =

In order to obtain the formula for the Poincaré map T, we use two additional
cross-sections Ilgop, = {(‘T =d, ylvavZ) | H(y15y2)”7 ”Z” < d} and Wgiop, = {(;l} =
—d,y1,92,2) | (y1,92)|, |z]] < d}, where d > 0. The Poincaré map T restricted to
II; (¢ = 1,2) is the composition of a local map Tjoc, @ II; = Igiop,, (20, Yo, 20) —
(y1,y2,21) and a global map Tgiop, : Mgion, — IL, (y1,Yy2,21) — (%0, Yo,%0). We
remark here that the ranges of Tyop, (and T; := Tyop, © Tioc; mentioned later) are
not completely contained in II; however, when we iterate the Poincaré map later in
the proofs, we will only consider the part of the image of II which does not leave
II. Therefore, we write Tgion, : Igion, — II (and T; : II; — II later) for simplicity.

The map T}, is given by (see equation (13.4.13) of [33])

n=u () oo (om (FL20)) o lwol),

() o () vt

o(lzo|?)
zZ1 = e
o(|zol”)
Here we denote the small terms in each equation in (4) by g, (k=1...n—1) , and
we have
0"t gy
w0 (y, 2, ¢, p)

The global maps T, are diffeomorphisms and can be written in Taylor expansions.
We have

=o(lz]’™") i+j<(r—1). (5)

To = (1) (p+any + a2y2 + a1zz1) + o (|y1, v2, 21])

o = Yyt +any + aznys +asz + oy, y2, 21)
(6)
a31y1 + az2y2 + assz
20 = Si+1 Z++ +0(|y1ay2azl|) 3
Ap—1,1Y1 + Gn-1,2Y2 + an—1321

where aj3 (j = 1...n — 1) are (n — 3)-dimensional vectors. Let T} := T, =
Tgiob, ©Tioe, : IIh = I and T := T\, = Tyiob, © Tioe, : Iz — II. Note that we have

lim 73(M)=M"% and lim To(M)=M". (7)
M-I M-Iy

After the scaling * = zo/d,y = yo/yT and 2z = 29, and replacing u/d by u, the
maps 11 and T, take the form
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_ 1
T = p+ Ayx? cos (wln — 4 0) 4 o(x”),

T

g=1+4+ Ajyx’ cos (w ln% + 61) + o(z?),

T : (8)
Asyx? cos (w 1né + 63) + o(z?)

2T+ ,

1
Ap—oyxP cos(wln — + 0,,_2) + o(x)
x

z

and
_ 1
Z = —p — Ay|x|? cos (wln Tl +0) + o(Jx|”),
x
_ 1
g=1+ Ayy|z|? cos (w lnm +61) + o(|z|?),
bR 1 (9)
Asylz|? cos (wln i 02) + o(|z|")
x
z=8zT+S . ;
1
Ay —oy|z|P cos(wIn Tl + 6,—2) + o(|z|?)
x
where z e R"™3, A = ytV/ai +aly, An = /a3, + a3y, Ay, = y+\/ a12n+1,1 + a’%n—i—l,Q
(m=2,...,n—2), tanf = —aiz/a11, tan b, = —aga/a21, tanb, = —amy1,2/Am+1,1-

Here a;; are coefficients from the global map given by formula (6). The small terms
o(]z|?) (for both 2 > 0 and x < 0) are functions of z,y, z, i, p satisfying (5).

Recall that we denote by M+ and M~ the first intersection points of II with
'™ and I'". Their coordinates are now (u,1,2%) and (—u,1,S82z%). The maps T}
(i = 1,2) can be extended to II; UIly and II respectively by letting

Ti(0,y,2) = (p,1,27) and T5(0,y,2) = (—p,1,827).

From now on, we will work with the maps 77 and 7. The non-degeneracy
condition mentioned in Section 1.1 is equivalent to

AA;sin(f; —6) #0. (10)

Indeed, in the coordinate system satisfying (1) and (2), the transversality stated
in the non-degeneracy condition is equivalent to the transversality of Tg;op, (Hglob1
NWEE(O)) and Tyion, Mgion, N WEE(O)) to the leaves {x = 0,y = y*} through

loc

M™* and {z = 0,y = y~ } through M, respectively, where the extended unstable
manifold W“Z(0) is an invariant manifold tangent to the {z = 0} (see [32]). By

loc
formula (6), this is

det 210 %0) £0
(y1,92)

for both maps 100, and Tyi0p,, Which is equivalent to

a1l a2

= AA;sin(0; — 0 0.
asi  ags 1sin(6r = 0) 7

As we mentioned before, if this condition is not satisfied, then we can make an
arbitrary small perturbation to achieve it, and it will hold for all C"-close systems.
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3.2. Coexistence of the homoclinic loop I'” and an index-1 point P with
WH*(P)NW?*(M~) # 0. Let us now consider a two-parameter family X, ,, where
Xo,p» = X. Shilnikov theorem implies that, for any system Xy , with p < 1, there
exists a countable set {P;"} C II; of index-1 fixed points of Ty accumulating on
M. The proof of this theorem will be included in the proof of Lemma 8 in Section
3.5. We now pick an arbitrary point P from this set. In what follows, we consider
sufficiently small perturbations such that P remains an index-1 fixed point of T7.
The bound for the size of such perturbation will be given in Lemma 8. We have
the following result:

Lemma 3. For any given value p* € (0,1/2), there exists a sequence {(u;,p;)} ac-
cumulating on (0, p*) such that the corresponding system X,,; ,. has a double-round
homoclinic loop T'~™ whose first intersection point M~ with II has a strong-stable
manifold W*5(M ™) that intersects the unstable manifold W*(P) quasi transverse-
ly.

Here quasi-transversality means that, for two manifolds U and V', we have T,U N

T.V = {0} for the intersection point & of U NV, where T,U and T,V are tangent
spaces. The intersection W*(P)NW?#*(M ™) is quasi-transverse if it exists. Indeed,
the strong stable manifold W*5(M ™) is a leaf of the foliation F; tangent to strong-
stable directions (i.e. close to z-directions), and W} _(P) is tangent to the center-
unstable direction (i.e. close to (z,y)-directions). Therefore, by letting {M} =
W*(P)NW?*(Q), we have Ty W _(Q) N TasW}.(P) = {0}, which gives the quasi-
transversality.
Proof of Lemma 3. We first change p to make I'”™ a double-round homoclinic loop.
This can be done by solving the equation To (M ~) = (0, ¥, 2), where M ~(—p,1,827)
is the first intersection point of I'” with II, and y, z can be arbitrary. By formulas
(8) for Th and (9) for Ts, we have

1
0=p+ Alplf cos(wln — +6) +o(Jul?) if p<O,

|1l
and )
0=—pu— Ap?cos(wln — +0) +o(p”) if u>0.
u
Denote )
wlnm =2mjo+& —0 & €10,2m). (11)

Note that the double-round loop follows both loop if g > 0 and only follows I'™ if
u < 0. The above two equations can be rewritten as

_ —2mjo — &o + 0 —2mjop — &op + Op
0 = exp|——————) —Aexp cos &y
w w
‘. (12)
+0<eXp (W))
w
and
0 — exp <—27TJ0 —&o + 9) + Aexp <—27TJ0P— Sop + 9P> cos €
w w
(13)

oo (Z5))
w

respectively.
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Since p < 1 and jo is large, we have

exp <—27TJ0 —&o + 9) < exp <—27T]0P —&op + 9P>

w w

—o7i
We divide both sides of equations (12) and (13) by exp (ﬂ) and take the

limit jo — 4+00. We seek for the solutions to the limit systems, which, by implicit

function theorem, will give us solutions to the original systems. Either of equations
(12) and (13) leads to

c0s €0 = (1) 4ox.

This along with equation (11) gives a sequence {;,} of solutions of the form

—27rj0—g—m7r+9

> ) +0(1)jyrt00 m=0,1. (14)

Wi, = T exp (

Obviously, uj, — 0 as jo — +o00. Such values of ;1 give us a double-round homoclinic
loop I'" (and another one 't by symmetry).

Let us now find the intersection of W*(P) with W#*(M ). Denote the coordi-
nates of P by (zp,¥p,2p). By taking a vertical line joining P and a point on Il
and iterating it, one can check that the local unstable manifold W} (P) of P is
spiral-like and winds onto M ™, which is given by

1
xr = p+ Ayyt? cos(wln n +6) + o(t”),
1
y = 14 Ajy,t? cos(wln n +61) + o(t”),

1
Aoypt? cos (wln n + 02) + o(t?)
z = 2T+

1
Ap_oypt? cos(wIn n + 6,—2) + o(tP)

where t € (0,z)).

We need a formula for the local strong-stable manifold W% (M ~), which is a
leaf of the strong-stable foliation F;. The leaves of F; are given by the following
lemma.

Lemma 4. Let M(xg,yo,20) be a point on IT with yo sufficiently small. The local
strong-stable manifold W25 (M) (i.e. the leaf of F1 through M) is the graph of the
function z — (x,y) :

(z,y) = (xo + (2 — 20)a1, yo + (2 — 20)az),

where a1 = o(|zo|) and az = 0(1) 4,0 are (n—3)-dimensional vectors whose compo-
nents are certain functions of z,yo, o, 20 and the parameters (denoted by a vector
g) satisfying

ai+la1

1—1 ;
_ - 1< (r—1),
8lxoal(zay072035) O(|$0| ) o (’r )

and
8la2

—— =0(1), [ <(r—1).
81(2'790’7«'075) O( ) 00 (r )
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The proof of this lemma is postponed until Section 3.6. The strong-stable man-
ifold W*#(M~) is now given by

= —p+(z+2")o(|ul),
(16)
y = 14 (z+27)o().
The intersection point of W**(M ~) with W*(P) is found by simultaneously solving
equations (15) and (16). By noting y, = 1+ O(=}) from formula (8) and 2z =
2zt 4+ O(t?) from (15), finding the intersection W*$(M~) N W¥(P) is equivalent to
solving the equations

2u = —AtP cos(w ln% +0) 4+ o(t?) + o(|u|),
1 (17)
o(l) = Ayt? cos(wln; + 61) + o(t?).

This can now be seen as finding an intersection of a spiral given by the RHS of
system (17) of equations with a point (u(u),v(r)) := (24,0(1)). Note that the u
value is given by equation (14), so here we will solve (17) for ¢ and p.

We first find ¢. Let tan(¢; — 0) = —b/a and rewrite equation (17) as

1
u = —A),‘F’(:os(wln;—|—0)_~_,“7
A 1 1
vo= ﬁtﬂ(bcos(wln;+0)+asin(wlng+9))+._.7

where we denote the small terms that tend to zero as u,t tend to zero by dots
throughout the proof. The above equations yield

v A1 1
—=——(b+t In(-)+6
D= g e £ )+

Avva? + b2
Ajau
Note that © = 2u does not vanish (see equation (14)), so no matter how p and p
change, equation (18) has a solution ¢ which depends continuously on all parameters

for every fixed k.
We proceed to find the values for p. Recall the discussion under (9), we have

A =yty/a? +a3,, A1 = /a3, + a3, tanfd = —ajz/a1; and tanfy = —aja/as;.

By plugging these coeflicients into (17), we obtain

i.e.

b
wlntz@—i—arctan( +E)+27Tk—|—.... (18)

+

1 1
uw = —ytajt? cos(wln ;) — 2T aot? sin(wIn Z) +...,

(19)

1 1
v = agt’cos(wln ;) + agot? sin(wIn z) +...,

where dots denote small terms that tend to zero as u,t tend to zero. By the non-
degeneracy condition (10), the matrix

*y+a11 *yﬂlu
a21 a22

is invertible. We denote the inverse matrix as

b1 b2
bar baa )’
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Then, we can rewrite equations in (19) as

1
biiu +bipv = t”cos(wln;)—i—...,

1
boru 4+ bogv = tPsin(wln E) + ...,
which, by squaring, summing up the above equations and taking logarithm, gives
1
plnt = 5 1n(b%1u2 + b%Q’UQ + b§1u2 + b%g’UZ + 2(b11b12 + bglbgz)uv) + ..., (20)
Let us divide equation (20) by (18) and consider the ratio

r_ In(b24u? + 03502 + b3, u? + b39v? + 2(b11b12 + ba1bag)uw) n

w /a2 2
AvvaE +5 +é)+47rk
a

(21)

20 + 2 arct (
+ 2arctan A au

Note that v may change as p and w change, and the above equation is not an explicit
function for p. We will show that we can find values of p from this equation anyway,
and moreover they form a dense set when j, and k tend to infinity.

The numerator of equation (21) satisfies

Cp? < b3 u? + b3y 4 b3 u? + b3gv? + 2(by1b1g + baybag )uv < o(1) -0, (22)

where C is a constant independent of p,w, and t. Note that the coefficients b;;
depend on all parameters. However, the range of parameter change is small, so the
coefficients just vary slightly. This means that the constant C' can be chosen the
same for all parameters under consideration, and it remains bounded away from
zero and infinity. We denote the right hand side of equation (21) by H. Inequality
(22), equation (14) along with the fact that the value

Avva? + b2 b)

arctan <7 + -
Ajau a

is bounded imply that there exist two functions K;(jo) and K3 (jo) such that

Ki(jo) K> (jo)
kO<H< 2k°. (23)

Here K (jo) and K>(jo) do not depend on ¢ and parameters, and we have K (jo),
K5 (jo) = +o0 as jo — +00. We now consider the function

Glp) =L - H. (24)

By continuity, whatever jo and k& we choose, we can find a value of p such that
G(p) = 0 by changing p from Kj(jo)/k to K2(jo)/k. Note that, for any given
number, we can choose a sequence of (jo, k) such that the corresponding intervals
(K1(jo)/k, K2(jo)/k) shrink to this number as (jo,k) — (400,4+00). Hence, we
obtain a dense set of p values. Lemma 3 is proven. O

3.3. Countable sets of index-2 periodic points. We first prove a lemma on
the condition for a periodic point of T" to have index 2. Then we will show that, for
some parameter values, there are infinitely many index-2 periodic points near the
intersection points of 't and I'~ with II.

We introduce a transformation for the z-coordinates of points on the cross-section
1I:

1
wln= =2mj+£—0, ¢€l0,27), (25)
X
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by which we divide the cross-section into different regions, and £ is a new coordinate
in each region. Let @ be a periodic point of T of period k and have the orbit

{Q = Q1(z1,11,21), Qa2(22,Y2,22),.-.,Qr(Tk, Yk, 2x)}. The z-coordinates of this
orbit are represented as

1
wlnﬁ:2ﬂji+§¢—9 i=1,2,... k. (26)
T
Lemma 5. The period-k point Q is of index 2, if and only if
cos(&1 — p)cos(€a — @) ...cos(& — @) = (&, j,y,2) —1<e<1,

where ¥ = arCtan(W/P)y g = (517527' .. 7&6)7 j = (j17j27 v 7jk); Y= (ylvaa s 7yk);

2= (21,22, -,2K) and = 0(1)}, j,. . js—oo 05 a certain function depending con-
tinuously on &,y, z and parameters u, p, such that
R0

(&, y, 2, 1, p) 0( )]1;]2,..,,]k4)oo (Z (7« ))

Proof. We start by computing the trace of the matrix DT®) := 9T®*) /9 (x, y, 2),
which is the product of matrices of the form DT or DT, depending on the orbit
of Q. Note that DT} and D75 are the same up to different coefficients in front
of functions of the coordinates in each entry. Therefore, as can be seen from the
computation below, we obtain the same result for any type of composition of DT
For certainty, we assume that @ is periodic under Tj.

From formula (8) for 77, one can check that the y-coordinate of @Q; (i =1,...,k)
satisfies y; = 1+0(2}, 25, ..., 7). Thus, y; can be sufficiently close to 1 if we choose
x1,T2,...,xy sufficiently close to zero. By transformation (25) on coordinate = and
formula (8), we have

DTilg, =
Az Npcos€ +wsing) + o(z? ™) Azl cos&; + o(a?) a
— Az (pcos(&; + 01 — 0) Ajxf cos(& + 601 —0) a
+wsin(& + 61 — 0)) + o(z! ") +o(af) '
—AQQIZP_l(,O COS(& + 6y — 9) Agxf COS(fi + 05 — 9) a ,
+wsin(& + 0y — 0)) + o(z? ™) +o(xf) 2
—Ap 2z (pcos(& + 0o — 0) An_oaf cos(§i+0n2—0)
Hwsin(& + 0p_o — 0)) + o(z? ™) +o(xf) n2
(27)
where a and a; (j = 1...n — 2) are n — 3 dimensional vectors (rows) of the form
(o(xf),...,0(z?)). We symbolically represent matrix (27) in the form
af, aj, ais

Ap—11 Op-12 Qp_13
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Now we have

1 1 2 2
*) ai ajo ajs an ars ais
DT! =
Qk 1 1 1 2 2 2
Ap—11 Op-—12 Qp_13 Ap-1,1 Ap—12 Qp_13
k k
an aro arys

k k k
Ap—1,1 QAp—12 Qp_13

1.2 k
ap a7y ... a7+ ...

Here each of the terms denoted by dots contains at least one of zf (i =1...k) as
a factor, and the term a},a?, ...a}; is the only one which does not contain x# and
therefore the dominant one. This gives us the formula for the trace:

tr DTV - = ajaf... afy +o(@h ™+ a2l
AR(p? + w52l el cos (&1 — @) ... cos (& — ) (29)
+o(af T+ ap Y,

where ¢ = arctanw/p.
Before we proceed further, we show that the eigenvalues of DTl(k) correspond-
ing to z coordinates have the order of o(zf ...2%). We use Lemma 4, which implies

that, for any periodic point, there exists an (n — 3)-dimensional invariant subspace
E, to which its strong-stable manifold is tangent. Note that the eigenvalues of

DTl(k)’ can be divided into two groups: one includes A; and A corresponding to

coordinates z and y; the other includes A3 ... \,_1 corresponding to the restriction
S of DTl(k)‘Q to E,. Since E, is in the cone defined in the proof of Lemma 4,

we have ||SA1Z|| < o(xf ... x})||Az|| (see (104)), where Az € E,. It follows that
the (n — 3) strong-stable multipliers \s...\,_1 satisfy \; = o(z...z}), where
i=3,4.. .n—1.

We have the following expressions:

n—1
Mt =t DT =3TA and Ade =3 M- Y A, (30)
A ij 1<i<j<n—1
(4,4)#(1,2)

where M;; is the minor obtained by taking -th and j-th rows, and i-th and j-th

columns from DTl(k) ‘Q . One can check that Mo gives the largest contribution to
1
Zij M;; and that it is given by
k

M12 = H DT1|Qi = szmfpil Ce Iiﬁil + 0(1’?’771 + -+ Iipil)a (31)
i=1
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where C13 = —wAA; sin(f; — 6). Now from equations (29) and (31), we have

M+ = AR(p2+w?)zadt 2l eos (& — @) ... cos (€ — )
(32)
+o(x? 2T fo(ah . ah)
and 2p—1 2p—1 2p—1 2p—1
MAs = Chai .o o+ 42
+ho(al .. xh) 4+ Ao(af .. af) + o(z3” .. .mip).
By noting A1, Ag < [[DT*|| = O(z7*~"...27*7"), we have
MAg = Ok~ P o - . (33)
It can be checked that the equation for a periodic point to be of index 2 is
A1+ A :C(Al)\z-l-l), cE (—1,1) (34)

Indeed, the relation between the index of a point and the pair (A1 + A2, A1 A2)
is illustrated in Figure 4, where we assume that the directions corresponding to
Ag - -+ A\p_1 are the strong-stable ones.

index 2
1 i
index 0
index 1 index 1
—1
A1 A2
index 2

A1+ A2

FIGURE 4. The index is determined by the pair (A1 + A2, A1 A2).

By noting relations (26) and dividing both sides of equation (34) by «f ‘25" ...
xz_l, we obtain

COS(&I - SD) COS(SQ - QD) LR COS(é-k - SD) = Cw(é-?ya Z7j17j2)7 (35)

where § = (&1,&2,...,&k), ¥ = 0(1)}, j,—oc0 is continuous in ¢, y, z and all parameters

such that 5

W =0(1)j,,jomc0 I < (1 —2).

Since the computation of ¢ involves the first derivatives, we have i < (r —2) instead

ofi < (r—1). O
Lemma 5 offers a criterion to seek for index-2 periodic orbits, by using which we

have the following result.
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1
Lemma 6. For a dense set of p values in (0, 5), the system Xo,, has two countable
sets of index-2 periodic points of T in I1 accumulating on M and M~ , respectively.
It can be seen from the proof below that finding each set of index-2 points only

involves one homoclinic loop. Therefore, Lemma 6 extends Theorem 3 of [24] to
systems with dimension higher than three, and we can reformulate it as follows.

Corollary 1. Let system X, be a C” flow in R™ (r > 3,n > 4) having a saddle-focus
equilibrium O with a homoclinic loop ' associated to it, and exactly one positive
characteristic exponent with the ratio p € (0,1/2). For a dense set of p values in

1
(0, 5), system X, has a countable set of index-3 periodic orbits accumulating on I'.
Note that the p values obtained by Lemma 6 are not the same as those given by

Lemma 3. We will show a way to obtain the quasi-transverse intersection W*(P) N
W#(Q) by using Lemmas 3 and 6 together in the next subsection.

Proof of Lemma 6. By symmetry it is sufficient to only consider I'* and find a
sequence of index-2 points accumulating on M.

Let {Q1(x1,y1,21), Q2(x2,y2, 22)} C II; be an orbit of period 2 and index 2 under
T1. By (25), we have

1
wm;:27"'ji+§i—9, & € [0,271') i=1,2. (36)

By Lemma 5 and formula (8) for T3, an orbit of T} with period 2 and index 2 is
given by

zg = Ay12f cos &1 + o(f),
yo = 1+ Ayyraf cos (&1 + 01 — 0) + o(zh),

Asyr 2l cos (& + 02 — 6) + o(z])
2o = z+ + ce
Ap_oy124 cos(& + On—o — 0) + o)

x1 = Ayaf cos & + o(ah),
y1 = 1+ Aryexh cos (&2 + 61) + o(zh),

Asyoxh cos (&3 + 02 — 0) + o(xh)
21 = z+ —+ .
Ay —oyoxh cos(Ey + 0o — 0) + o)

cos(&1 — ) cos(a — ) = ¢,

where —1 < ¢ < 1 and 9 is a certain function of £, y, z depending continuously on
parameters and ¢ — 0 as ji,j2 — +o00. By expressing y and z as functions of z,
we obtain a reduced system given by

Ty = —Alz1|? cos &y + of|21]7) + O(|z1]7|z2]?),

21 = —Alra|? cos & + o [za]?) + O(fo1 7] ]?),
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cos(&1 — ) cos(§a — ) = .
We assume
|21]7 ~ |2l (37)
It will be shown later (equation (44)) that the solutions agree with this assump-
tion. Consequently, we replace the terms o(|z1|?) + O(|x1|?|z2]?) and o(|x2|?) +
O(|z1|P|z2]?)) in above equations by o(]z1|?) and o(|x2|?), respectively. The rela-
tion (36) now brings these equations to the following form:

exp (*27%;62 +0) — doxp (*2@31 — pé1 +p0> cosér +O(exp (*221)]1))7

w
(38)
exp (M) — dexp <727rpj2 — p&e +p9> cos s + o(exp (ﬂ))y
w w w
(39)
cos(&1 — ) cos(€2 — @) = cih. (40)

We solve this system with sufficiently large j; and j>. One should note that the
number of equations is larger than that of variables (1, £2), so whether this system
of equations is solvable depends on the value of the parameter p. Throughout
the rest of the proof, we denote by dots the small terms which are functions of
&1,&2, 71, j2 and tend to zero as j; and js tend to positive infinity.

Equation (40) implies that one of the terms cos(§; — ¢) and cos(§2 — ¢) must be
small. We assume that cos(£; — ) is small and cos(§s — ) is bounded away from
zero, by which we have

cos(§1 — ) =y, (41)
where 1 = 0(1);, j,—+o0o 1S a function of &1, &a, j1,j2 depending continuously on
&1, &5 and parameters. Then, we obtain

T .
& = arccos(eypy) + kym 4+ = 3 + ki 4+ o 4+ ¥ (&1, 62, 51, 52, €), (42)

where k1 = 0,1 since & € [0,27m), ¢ = arctan(p/w), and the function ¢y =
0(1),.,j2—+00 depends continuously on &1, &2, ¢ and parameters. Note that the value
of ¢ changes slightly when ¢ varies in (-1,1).

Another expression for cos§; can by found from equation (38):

(le—j2)+9—,09+/)€1—§2)_'_'m

(43)

2
cos& = B lexp ( T
w

Recall that we assume that cos(&; — ¢) is small which means that cos &; is bounded
away from zero. Equation (43) implies that cos¢; is positive. Therefore, we have
k‘l =1in (42)

We proceed to find &. After taking logarithm on both sides of equation (43) and
sorting the terms, we get

pj1 —Jjoe =wln(Bcos&) — 0+ pf —p& + &+ ..., (44)
Since cos&; is bounded away from zero, the above equation implies that pj; — jo is
bounded, which means pjo — j; is large. Note that this agrees with the assumption
(37).
We divide both sides of equation (39) by exp(—2mpjz/w) and take the limit
j1,J2 — 400. By noting that pjo — j; is large, we have

&= kTt (45)
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where ko = 0,1 since & € [0,27). The expression for & implies that cos(&s — ) is
bounded away from zero. This agrees with our assumption above (41).

The variables &; can be solved out by implicit function theorem from (42) and
(45), and they are functions of ji, jo and ¢. By plugging the new expressions for ;
into equation (44), we have

pi1 = j2 = ¥(p, j1, J2, ¢), (46)
where ¢ € (—1,1) and ¥ is a uniformly bounded function continuous in p and ¢. For
any fixed p € (1/2) and ¢ € (—1,1), each solution (j1,72) to equation (46) gives an
index-2 periodic orbit {Q1, @2} of the Poincaré map, and thus an index-3 periodic
orbit of the system X ,. In what follows we show that there exists a dense set of
p values in (0,1/2) such that, for each value p in this set, there exists a sequence
{41, 75} of solutions satisfying j& /j* — p as n — +oo. This will immediately imply
Lemma 6.

By the boundedness of ¥(p, j1, j2, ¢), we can assume |¥| < C for some constant

C. Let N1 > 0 be any large integer and I; = [aj, as] be an arbitrary interval in
(0,1/2). We fix ¢ = ¢’ € (—1,1) and pick j{ > N;. We have

aljll_\ll(p7j17j27cl) < |—a1.]11+c-| =mzy, (47)
and

azji — ¥(p, j1,j2,¢') > lazji — C| = mo. (48)

Note that ji can be chosen sufficiently large such that mo > m;. Now consider the
function

F(p7j17j2) = p]l - \I](p7j1aj27 C/) —my.
Equations (47) and (48) imply that

F(a1,ji,m1) <0 and F(ag,ji,m1) > 0. (49)

Therefore, by the continuity of ¥, there exist a value p; € I; and a pair (ji, j3 = m1)
such that they satisfy
prit = Jz = U(p1, i, dz, ) (50)

Note that ¥ is also continuous in ¢, so one can find ¢} and ¢} with ¢/ € (ei,¢cl) (or
(c3,cl)) such that

‘I'(Pl,jll7j21;0%) <P1j11—j21 <\If(p17j11,j21,cé). (51)
The continuity of ¥ in p now implies that there exists a neighbourhood J; of py
such that inequality (51) holds for all p values taken from Jj.

We choose Io C J; such that p; ¢ Io. We can find py € I5 and the corresponding
pair (¢?,¢c3) with ¢,c¢3 € (0,1) and (j%,j3) with j2 > Ny > ji such that an
inequality of the same form of (51) holds. By proceeding like this, we will find a
sequence {I,} of nested intervals. Consequently, there exist a value py € ﬂ::; I,,
and two sequences {(c},c5)} and {(57, %)} where j7, i — 400 and j¥/57 — po
as n — +oo such that

W(po, i+ 3, €1) < prji — 2 < Wpo, i1 35+ ¢5). (52)
This means that for each n we can find a value ¢ € (0,1) such that
PO]{I—JS = \I/(p()vjilujgvcn% (53)

which implies the existence of an index-2 period-2 point of T5.
Since I; is chosen arbitrarily, such values py are dense in (0,1/2). O



HETERODIMENSIONAL CYCLES NEAR SHILNIKOV LOOPS 4421

3.4. Quasi-transverse intersection W"(P)NW?*(Q). We fix a pair (u;, p;) given
by Lemma 3 with a sufficiently large j, and consider perturbations of system X, ..
Recall that parameter i controls the splitting of the homoclinic loops I'* around the
points '+ N1I, and parameter p is a function of the characteristic exponents at O.
We now introduce another parameter v which governs the separation of W*(M ™)
and W*(P) in system X, ,. around the intersection given by Lemma 3.

To be more precise, we note that system X, ,. lies in the codimension-1 sur-
face H; consisting of systems having the double-round homoclinic loop I'". Inside
H1, there exists a codimension-2 surface Hs such that the corresponding systems
have the non-empty intersection W*$(M~) N W*(P). Then, we consider the two
parameter family X,,. Note that the parameter u is now a function of p such
that the system X, , always has the double-round loop when we change p. These
surfaces are smooth submanifolds of the space of sufficiently smooth R — symmetric
systems (as we discussed under Theorem 1, we make the original system C*° from
the very beginning). Indeed, if the system is C'* then the invariant manifolds
w#(0), W*(0), W*(P) and W**(M ~) smoothly depend on the system. Obviously,
this is true for W#*(0), W*(O) and W"(P) since the stable and unstable manifolds
of hyperbolic periodic orbits and equilibrium states depend on parameters smoothly.
Regarding W#*(M ™), we explain as follows. Inside the surface H;, the separatrix
'~ is always a homoclinic loop, and therefore, the strong-stable manifold W**(M ~)
lies in the stable manifold W?*(O). By noting that W*®(M ™) is a leaf of the strong-
stable foliation J7 and the part of F; contained in W?*(O) smoothly depends on
parameters, we have that W**(M~) smoothly depends on the system in ;. As
the corresponding stable and unstable manifolds depend on the system smoothly,
the existence of their intersections correspond to the vanishing of certain smooth
functionals. We can control the values of such functionals by adding to the system
perturbations supported in a sufficiently small neighbourhood of the intersection
points of W*$(M~) N W*(P). This implies the smoothness of the surfaces H; and
Hs.

Let v be the value of the functional that measures the splitting of W*(P) and
W#¢(M~) for systems in H1, so the surface Hs is given by equation v = 0. The
explicit expression for v is not obtained at this moment. It could be found if we had
a better formula for the small terms o(|z|?) in (8) and (9). We embed the system
X* = X, p; into a smooth two-parameter family X, , of systems in #;. We assume
that X, , is transverse to Hy in Hi. We also assume that the difference between
X, and X* is localised in a small neighbourhood of M + 0 and the preimage by
T of the intersection point of W*(P) N W*°(M~) given by Lemma 3. Therefore,
changes of v separate W*(P) and W**(M ~) without changing the behaviour near
the double-round homoclinic loop I'", while changing p is done without destroying
the loop and the intersection of W*(P) with W*¢(M ™).

Now we can apply Lemma 6 to a neighbourhood of the double-round homoclinic
loop while keeping the intersection W*(M ~)NW*(P). This means that, by chang-
ing p in the family X, ,—¢, one can find a value of p arbitrarily close to p; such that
the corresponding system will have a countable set {Q, } of periodic orbits of index
2 accumulating on M~ while the intersection W*(P)NW**(M ~) is still intact. The
points @), have period 2 with respect to the double-round homoclinic loop I'", so
they have period 4 with respect to the original homoclinic loops. Since the stable
manifolds W*(Q, ) and the strong-stable manifold W**(M ™) are leaves of the folia-
tion Fi, we have that W*(Q, ) accumulates on W**(M ™) as well. This sequence of
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index-2 points will persist when we change v while keeping p constant as our family
X, is such that the behaviour near the loop does not depend on v. Consequently,
by an arbitrarily small change in v, we can destroy the intersection of W*(P) with
W#5(M~) and create an intersection of W*(P) with the stable manifold W*(Q) of
a point @ € {Q }. The quasi-transversality of this intersection W*(Q) N W*(P)
follows from the argument used above the proof of Lemma 3. Thus, we have the
following result.

Lemma 7. There exists a sequence {(p},v}')}n where (pf,v}) — (p;,0) as n —
400 such that the separatriz '~ forms a double-round homoclinic loop, and, on
the cross-section Il in system Xp;,zyl,]n, there exits an index-1 fized point P and an
index-2 period-4 point Q for which the intersection W*(P)NW?*(Q) is non-empty.
Moreover, this intersection is quasi-transverse.

3.5. Transverse intersection W*(P)NW*(Q). As mentioned before, by Shilnikov
theorem, there exist two countable sets {P;} C II; and {P, } C Il of index-
1 fixed points of T} and Th accumulating on M™ and M ™, respectively. The
points P]j and P, are obtained by solving the equations Ti(z,y,2) = (z,y,2)
and Ts(x,y, z) = (x,y, 2), respectively. In the previous sections, we picked an arbi-
trary point P from the set {P,:r } which remains an index-1 fixed point under the
small perturbation. Note that all results still hold if we pick P from the set {P, }.
In what follows, we first give a detailed discussion on the points P,j and their local
stable manifolds; then we prove that the intersection W*(P)NW*(Q) is non-empty,

3.5.1. The set {P,j} of index-1 fized points. We start by giving a lemma on the
local stable manifolds of the points P,;" in two cases, where we consider the p = 0
case for the original set of index-1 fixed points given by Shilnikov theorem, as well
as the pu # 0 case for those points which survive the perturbation.

Lemma 8. At u =0, there exists a set {Plj} of index-1 fixed points of the map Ty
such that the x-coordinate of each point is given by

xp = Cexp (_Tﬂk) +0(6Xp (_Tﬂk)} (54)

where C = exp((20 — m)/2w). The local stable manifolds Wi, (P;) are graphs of
functions g(y, z) defined for all y and z values in 11 and take the form

—7k
2= Cexp (== ) + o(Lirtoo: (55)

where o(1) stands for a function of y and z that is uniformly small together with its
derivatives up to order r — 2. Those manifolds accumulate on Iy in C°-topology as
k — +o0.

For any u # 0 sufficiently close to 0, there exists a constant C1 such that points
in {P;} which satisfy the condition

Ty > C1|u‘% (56)

remain index-1 fixed points of the map Ty, and their local stable manifolds VVl‘f)c(P;)
take the same form as given by formula (55).

Proof. Let p = 0. We first find the fixed points P,j , which can be done by plugging
(=2, =y,z = z) into (8). From the last two equations in (8), the coordinates y



HETERODIMENSIONAL CYCLES NEAR SHILNIKOV LOOPS 4423

and z can be expressed as functions of x, which leads to the equation for coordinate
x:

x = Az’ cos(wln % +0) + o(z”). (57)
We have the fixed points P,j with
= o () o ().
Yr = 1+0<exp (%ﬂg)), (58)

oo (24

where yi, Tk, 2z, are the coordinates of P,j, C = exp((20 — 7)/2w), and k is any
positive integer greater than some sufficiently large K. Let us show that the points
Pt are of index 1. Recall the transformation (25) of z-coordinate of points on II;:

2k

1
§:wln; +6—2m5 £€]0,2m)

by which we divide the cross-section into different regions V; and let £ be a new
coordinate in each region. By Lemma 5, a fixed point P(x,y, z) of T; (i = 1,2) has
index 2 only if cos¢ is close to a value bounded away from zero. However, the first
equation in (58) implies that cos&y is small when k is sufficiently large. We also
note that, under our consideration, the index of a periodic point is at most 2 since
the multipliers corresponding to z coordinates stay inside the unit circle for all the
small perturbations.

We now consider the inverse image under 7T; of a small piece of the surface
{z = 2} containing P;". By formula (8), we have

™ 1 1 Tk
in (2 _g— 17):7(— 1 ) 59
sm(2 win) =5 = T o(Lam0 (59)
where = and y are coordinates of the points in the inverse image (z coordinates
are in the o(1) term). Note that = is bounded since the small cross-section II is
bounded. We have following equation if x and x /2 are sufficiently small:

T 1 1 /x
579—wln;:y—A(m—§+0(1)1_>0)+m7r om=0,£1,42,... ,  (60)

which, by noting that the surface contains P]j , leads to

—7k
x = Cexp (Tﬁ) + 0(1) k=100, (61)

where the term o(1) stands for a function of y and z that is uniformly small together
with its derivatives up to order r—2. Formula (61) is valid for all values of y, z, where
(x,y,2) € II, if  and xy/x” are sufficiently small. This requirement is equivalent
to that k is sufficiently large. One can check that the successive backward iterates
of a small piece of the surface * = z; containing P,j take the same form as (61),
where the term o(1) stays uniformly small. Since W} _(P) is the limit of a sequence
of those iterates, W .(P) is given by (61). Obviously, those manifolds accumulate
on Iy as k = 400 in C%-topology.
At p #£ 0, the fixed points are given by

1
x = p+ Az? cos(wIn . + 0) + o(z?), (62)
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which will still lead to the formula (58) for the coordinates of the fixed point P
if |p] exp(mpk/w) is sufficiently small, i.e. there is a sufficiently large constant C;
such that xp < Cl|m%. Note that formula (58) now only gives us finitely many
fixed points and they are still of index 1.

We now consider again the inverse image under 7 of a small piece of the surface
{z = 21} containing P;" but with p # 0. From equations in (8), we have

sin (g —9—wh %) - yiA(% - ﬁ n 0(1)H0), (63)

where (z,y) are coordinates of the points in the inverse image and y is bounded
since the small cross-section II is bounded. In addition to = and xg/x?, if |u|/x” is
also sufficiently small, then we have the following equation similar to equation (60):

T 1 rxy W _
5—0—wh- gTA(F - +o(1)H0) tmr o m=0,£1,42,... , (64)
which also gives
—7k
z = Cexp (T) + 0(1) s oo (65)

Formula (65) has the same form as (61), and it is valid for all values of y, z, where
(x,y,2) € II, if |u|exp(mpk/w), z,xp /2P and p/zP are sufficiently small. This is
equivalent to that k is sufficiently large and |u| exp(7pk/w) is sufficiently small. This
can be achieved since p < 1 and we can choose sufficiently small p and sufficiently
large k independently. It can be checked that the successive backward iterates of
the curve given by (65) take the same form, where the term o(1) stays uniformly
small. It follows that the local stable manifold W} (P) is given by (65). O

For a non-zero p value, we can no longer chose P as close to the surface Iy as we
want, since infinitely many points in {P,j' } which accumulate on IIy are destroyed.
In order to find the intersection W*(P) N W*(Q), more details are required on the
positions of the points Py that remain index-1 and fixed after changing pu.

Let P, € {P;} be the first point (the one with the largest subscript) in {P;}
satisfying zj, > C1|M\% where p # 0 (see Lemma 8). Obviously, the number k*
mainly depends on u, and k* — +o0o0 as u — 0. We have the following results.

Lemma 9. For any given constant Co > 0, there exists a positive number pu(Cs)
such that the inequality

T < Chlu| (66)
holds for all |u| < u(Cs).

Proof. By the definition of the point P,:Z, it is sufficient to prove that, for any given
Cs, there exists a point P,j satisfying

1 1
Chlpl? < xp < Colu|2s, (67)

where (7 is the constant in Lemma 8. Recall that we have

o= (ZE) ol (),

from formula (58). Now by letting

W
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we have
1 1 1
Pl _ r s ki P
Tk _ | :Cexp(fun)"exp G=pkm\"
|l * w w
and
Pk v &\F (k- ”
2p — P _
L: Tp —Cexp(n #) exp u +.'.7
Tk T w w

where dots denote small terms that go to zero as j and k go to plus infinity. Con-

sequently, there exists sufficiently large integer K and J such that the inequalities
1

- G- o))’ ul# 20k — )\ *
— > C}exp — and > Chexp Q]

|l ® Tk

hold for all j > J and k > K, where C] and C} are two constants that do not
depend on j and k. It follows that, in order to obtain inequality (67), it is now
sufficient to find j and k that satisfy inequalities

wplnCy/CY _2wpIn G204
7r T ’

j—pk > and 2pk—j >

ie.
+pk<j< + 2pk. (69)
Obviously, for any sufficiently large integer j, one can find an integer k£ such that
the above inequality holds (note 2p < 1).

Let jo be such that for every j > jo there exists k such that (4, k) is a solution
to inequality (69). Now let

wplnCy/Cy 2wpln CoCY
7r s

—mjot9 9). (70)

Then, for any |u| < wu(Cs), the corresponding j given by equation (68) satisfies
j = jo. The lemma is proven. O

1(C2) = exp(

Lemma 10. There exists a constant K for all p values close to p* (the p value of the
original system) such that points in {P;} with K(p) < k < k* are homoclinically
related.

Proof. The case where y = 0 (i.e. k* = 400) is the result of [31]. When p is
non-zero, as long as yr < C’1|/,L|%, the parameter p will enter small terms of all
equations used in the computation in [31], and therefore we have Lemma 10. O

3.5.2. The transverse intersection. If the intersection W*(P)NW*(Q) exists, then it
must be transverse. This is because that the invariant manifold W*(Q) is transverse
to the strong-stable foliation, but W?*(P) consists of leaves of the strong-stable
foliation.
We assume that the point P € {Pk+ } used in the previous sections has a subscript
satisfying
K <k < k*, (71)
where k* is the largest subscript among points in {P;f} which remain index-1 and
fixed after a small perturbation, and K is the constant given by Lemma 10. This
means that our point P lies in the set of the remaining points in {Pk+ } which are not
only index-1 and fixed but also homoclinically related with each other after small
perturbations in p.
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In what follows we will show that, for any periodic point ) of T" with index 2, its
unstable manifold W*(Q) transversely intersects the stable manifold W?*(P). To
achieve this, we use the following result:

Lemma 11. The unstable manifold W*(Q) of the orbit of an indexz-2 periodic point
Q intersects g = {y = 0} transversely.

This is Lemma 5 in [21] and here we only sketch the proof. It is proved by
considering the quotient map T = (Tl,Tz) obtained from the Poincaré map T =
(11, Tg) by taking quotient along leaves of the strong-stable foliation ;1 on II. The
map T acts on the 2-dimensional quotient cross-section II = ITN {z = 2*} where
z* is some constant and [|z*|| < d. For any region V C I, its image T(V) is the
projection of T(V) onto IT along the leaves of Fy. Let Q be the projection of @
on II by the leaf which goes through Q. Note that W“(Q) is obtained by taking
limit of the iterates of a small two-dimensional neighbourhood of @ on II. By the
volume-hyperbolicity of the flow and the absolute continuity of the foliation, two-
dimensional areas on II is expanding under T. Therefore, the unstable manifold
W*(Q) intersects W*(0) N 11, which implies the lemma.

By Lemma 11, we can take a connected component L C W} (Q) such that it
intersects ITy. We will consider the iterate of L under the map 7 (the second
iterate of T'). We show (see Lemma 12 below) that some iterate of L transversely
intersects the local stable manifold Wi _(P7) if I't and I'~ form double-round
homoclinic loops, which is the case when we consider the parameters given by
Lemma 7.

Recall that the point P picked is homoclinically related to P,:;. Therefore, by the
A-lemma, we obtain the transverse intersection W#(P) N W*(Q). This intersection
along with the quasi-transverse intersection W*(P) N W*(Q) obtained in Lemma
7 immediately implies the existence of a heterodimensional cycle of the Poincaré
map T associated to P and Q. It follows that we obtain a heterodimensional cycle
associated to two periodic orbits of indices 2 and 3 in the full system Xy pn n. In
this way, Theorem 1 will be proven.

Let us now give the lemma used in the above argument. Let | C L be a curve
joining two points My (0, x0,29) € L N1y and My(z1,y1,21) € (LNT) \ . We
now consider the iterate of this curve [ under the map T.

Lemma 12. IfT't and I'~ are two double-round homoclinic loops, then there exists
some i such that the iterate T™ (1) intersects the local stable manifold Wi (P;.).

This lemma immediately implies the existence of the non-empty transverse in-
tersection W (P) N WE(Q).

Proof of Lemma 12. By Lemma 8, the local stable manifold W} (P;.) is given by

*

T = CGXP(_ )+ oDk 400 = Thr + 0(1) k400, (72)

where xp~ is the z-coordinate of Pkt. Therefore, by Lemma 9, we can find two
positive constants Co and u(Cs) such that W (P) is below the surface {z =

Cg|u\$} for all € (—p(Cs), u(Cs)). Consequently, if z; > Cg|u|%, then Lemma
12 automatically holds. We now assume

21 < Calp|?. (73)
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We first show that there exists a point Ma(ysa, 2, 22) € I with 0 < o < x; such
that the z-coordinate 7 of its second iterate T(2)(My) is larger than x;. Note that
we have T (M,) = T2 (My) if 5 > 0 and T (Ms) = Ty o Ty (My) if pu < 0. For
certainty, we consider the case where p > 0. The same result holds for the other
case.

Since My € Ty and the homoclinic loop 't is double-round (i.e. we consider
here only the parameter values given by Lemma 7), we have

Ty(Mo) = Mt (p,1,z%) and TP (M) = (0,70, Z0)- (74)
Let M(z,y, z) be an arbitrary point on [ and we consider the z-coordinate Z of its

second iterate Tl(z)(M ). Recall the equation for x-coordinate in the formula (8) of

the map T, which is
1
F(x,y,z) ==& = p+ Ayz” cos (wln — 4 0) + o(z”). (75)
x
By the mean value theorem, we have

T = -0
= F(i‘vgvz) _F(ualaz+)

OF (w4, Y, 2t) 7 + OF (x4, s, 2t)

— = aF(xtvytazt)

-1+ 9

(Z - Z+)7

where (z¢, yi, 2e) = (1 —t)(Z,9,2) + t(u, 1, 21) for some t € (0,1). By equation (75)
and formula (8) of the map T}, equation (76) yields

B o= (Pl coswln 40— 9) +olaf )@ - ) + Olaf)@ — 1)

+0(2))(z — zT)

_ 1 1 _
V2 + w2zl cos(wln — + 0 — ) Ayx? cos(wln = + 0) + o(z? " zP),
Tt x
(77)
w

where ¢ = arctan(—).

Let us now find an estimate for Z. It can be seen from equation (77) that the
first term in (77) is dominant if

1 1
cos(wIn —+ 0) #0 and cos(wln s 0—p)Z£0 te(0,1). (78)
t

Moreover, this first term is also monotone if cos(wInz; = + 6 — ) does not change
sign for all ¢ € (0,1). In what follows we find points on the curve [ satisfying these
conditions and the lower bound of the xz-coordinates T of their second iterate under
the map T7.

Obviously, there exists a sufficiently small € > 0 such that if

<In(l+¢) ie.

1 1 T

In- —In- $—1‘<5, (79)
pox 1

then cos(wlnz; =t 4+ 6 — ) does not change sign for all ¢t € (0,1), and therefore
equation (77) implies that

- 1
|Z| > C3p”~ | Ay cos(wIn . +6) + o(z”)|, (80)
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where Cj is a constant depending on €. Now recall the variable £ introduced by the
relation (25) that

wlnﬁ:2ﬁj+£*9 € €[0,2m). (81)

We consider a sequence {M;(Z¢j, Yej, 2cj) }; of points on the curve I such that

cos(w In

+6) =cos&; #0. (82)

cj
Specifically, we consider points that satisfy

aF(zcja Yeijs ch)
or

\/mxgj_l cos(&ej — @) +o(zej) = 0,

=0 (83)

i.e.

which implies
™
Cej =5 ot hmt-- (84)
where k£ = 0,1 since &; € [0,27) and the dots denote terms that go to zero as j
goes to plus infinity. Generically, inequality (82) is satisfied by those &;.
Note that, for any ¢, condition (79) can be satisfied by all points in {M,.;} with
sufficiently large j. This is because, by equation (75), we have
Ayejal; cosej + o(al;)

I

Tej

I

(85)

_1’:

when x.; is sufficiently small (i.e. j is sufficiently large) since y.; is uniformly
bounded by the definition of the cross-section II. Indeed, by the relation (81),
equation (85) yields

—2mpj — ple; + pb —2mpj
Aycj exp ( TP = Pl TP ) cos&ej + 0<exp ( ij)) ’ < ue, (86)
w

w

ie.

- gcj w HE
T A P

2 2mp . Aycjlcosé.;l o
Now let Jy be the smallest integer such that the above small term o(1); 4o is
smaller than 1 for all j > J5, and let J = max(J; + 1, J2). It follows that all points
M,; with j > J satisfy the condition (79).

Note that equation (82) implies that there exists a constant Cy which does not
depend on p such that we have

|Aycjx§j cos&ej + o(xgj)\ > C4:E’C’j. (88)

Jj> (D)jstoo =t J1 + 0(1)jos 400 (87)

Thus, for points M.; with j > J, inequality (80) now implies
|a:70j| > CgC4up_1$p (89)

cy*
We next claim that there exists a positive constant C5 independent of u such
that one can always find some jy > J satisfying the inequality
Ep
x> 90
cJo C’5 ( )
at u # 0. By the relation (81), inequality (90) is equivalent to

—2mpjo — pejy + PO
exp( Tpjo wp§g0+p)>g;7

(91)
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ie.

0—8jo W | HE
2w 2rp  Cs

By comparing inequality (92) with the definition of J (87) and also noting that

Aycj| cos&.;| is bounded, one can easily find the constant C5 stated in the claim.

Jo < (92)

We now consider the point M.j,. The assumption z; < Cg|u|ﬁ (73) and in-
equality (90) imply

1
epz
G,

P>

o (93)
The z-coordinate Z.j, of the second iterate Tl(Q)(MCj ) can be now estimated by
inequalities (89) and (93) as
60304 p—1_p

. 94
CoCs BTy (94)

Note that the constants Cs, Cs, C4 and Cs do not depend on p, and the point M,
exists for all u # 0 by the above claim. Therefore, we can choose p sufficiently small
such that inequality (94) implies

|Zejo| >

|'%Cjo| > 2xq. (95)

Note that the sign of §.j, is the same of that of cos(wIny; ™' +60 — @) cos &, (see
(77)). When ¢ is small, the sign of cos(wlny; ! + @ — ) depends on the value of
w. Also, it can be seen from equation (84) that

Aycjoxgjo cos &cjy + o(xgjo) >0 if k=1,
and

Ayejort; cosej, +o(xl; ) <0 if k=0.
It follows that we can choose k accordingly such that Z.j, given by equation (77) is
positive. Consequently, we can rewrite inequality (95) as

‘%cjo > 2x7. (96)
Now let M,;, be the point Ms(x2, y2, z2) mentioned in the beginning of the proof.
We return to the iterate of the curve ! joining points My and M (z1,y1,21). From
the above argument, the second iterate T fz)(l) contains a curve /7 joining points
TI(Q)(MO) =: M5 and Tl(z)(Mg) =: My(x4,y4,24) such that x4 > 2z7. Note that
we have M3 € Il since the separatrices I'™ and I'™ form double-round homoclinic
loops for the y values considered, i.e. T (TIy) C TIy. Hence, we can apply the same
argument to the curve /1, and obtain a point M5 € [y and a new curve [, C 7@ (lh)
joining points T3 (Ms) =: Mg € Iy and T (Ms) =: My(x7,y7,27) such that
x7 > 2x4. This procedure can be continued until we find a curve [ joining points
Msy, € Ty and Msg41(®3k+1, Ysk+1, 23k+1) such that the assumption (73)

1
r3pp1 < Co|u|2e
is violated. Consequently, we now have

T3k41 2 02|M|%,

which means that [, intersects W (P;%). The lemma is proven. O
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3.6. Proof of Lemma 4. Proof. Let M;(x1,y1,21) be a point on IT; and denote
by Ma(xa,ys, 22) its image under T7. We first show that there exist two cones Cy
and Cy at My and M, respectively such that the preimage of any tangent vector in
Cy under T7 lies in Cy, provided y; is sufficiently small.

We start by estimating the norms of the preimages. By formula (27) for the
derivative of Ty, we obtain

DT1|M1 =
Azl (peoséy +wsinéy) + oz ™) Az cos&y + o(x) a
— At (peos(& +m — ) Aqzf cos(& +m — 1) a
fwsin(@ fm—n) to@l ) +olaf)
—Asa ™ (peos(&y + 12 — ) Azt cos(&1 + 12 — 1) as ;
wsin6r +op - )+ ol ) +olad)
—An—o2t (peos(& + -2 =) Ansrfcos(§ k2 —m)
+wsin(€y +mn—2 —n)) + o) +o(af) "
(97)
where a and a; are 1 x (n — 3) vectors of the form (o(zf),...,o0(xf)). We rewrite

the above matrix as

Y b yibis bis
yf71521 yfb22 bas | ,
Y0 a1 yibss bas
where b3; and bss are (n — 3) X 1 vectors, byz and bag are 1 x (n — 3) vectors, bas is
a (n —3) x (n — 3) matrix, and b;; are uniformly bounded.
Denote by E the 2 x 2 block in the top-left corner of DT1[,, . One can check
that the determinant of E is
wAA 23 sing + o237, (98)
We then have
Az cos(§y +m —n) + o(af) Ayf cos&r + o(yY)
1
detEf Az (pcos(Er +m —n) Azt (pcosé,
+wsin(& +m — 1)) + o(zf ™) +wsiné;) +o(z 1)

(auyi_p a12y}_p)
a1y’ axy, ")’

(99)
where a;; = a;; + 0(1)y1%0 while @;; are uniformly bounded when z; is small. Let

(Azq, Aya, Azz) be a vector in the cone Csa, i.e. |Axy, Ays| < K||Az|| for some given
K > 0. We have

E—l

Azo Az
Ay, | = DT} |M1 Ay |, (100)
Azo Az
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Az 1 Azo o(z]) Az
=F — . 101
(Ay1> ((Ayg) (o(x’f)Azl (101)
After the transformation Az, = x1Au, the above equation yields
(Au) _ (anxlﬂ a12m19> <<Ax2) B (o(m‘f)Azl>> (102)
Ay agizy”  agwy” Ays o(x})Az ) )"

We now recover some relations among Azq, Ay; and Az; from the above equal-
ities. By equations (97) and (102), we get

which implies

Azy = b3 Au+ bgax{ Ay + o(z]) Az
= bglm’f(anx;prg — (1110(1)A21 + algxf"Ayg — (1120(1)A21)
—|—bgzx’f(a21x1_pr2 — a210(1)AZ1 + azgxl_pAyg — CLQQO(I)AZl) (103)
+o(z) Az
= (bs1a11 + bzaa1)Axza + (bg1a12 + bs2as)Ays + O(QC?)AZM
which, by noting that |Azq, Ays| < K||Azs]|, leads to
o(z)[| Az |

1 — (|lbs1ar1 + bszaor || + ||bs1ai2 + bszass||) K-

The above inequality along with equation (102) and the assumption |Azg, Ays| <
K||Az|| implies

Az < (104)

|A£L’1| <
o(1)(la11] + a12]) K )
+o(1)]a;; +a z1||Az
(' 1 — (||bs1a11 + bs2ao1 |l + ||bs1a12 + bszass||) K (Dla 2] JouflAz]
= K1||A2’1”
(105)
and
Ay, | <
o(1)(Jaz1| + aze|) K >
+o(1)|az + a Az
<’ 1 — (||bs1a11 + b32az]|| + ||bz1a12 + bseaas]||) K (Dlazy + az] } | Az]

=: Ks|| Az,

(106)
where K7 = o(z1), K2 = 0(1)s, -0 and Ky, Ko < K when z; is sufficiently small.
This shows the existence of the desired cones C; and C; defined in the beginning.

Note that the matrices used in the computation above keep the same form if we
choose M, from Il5, and therefore all above results hold. This means that for any
point M € II, we have a sequence {C;} of cones along its orbit {M;} such that,
for each vector w € C;11, its preimage DT ! (w) belongs to C;, provided {M;} is
sufficiently close to IIy. In what follows we continue assuming M; € II; and seek
for the formula of its local strong-stable manifold.

We obtained the above three inequalities (104) - (106) by only using the as-
sumption |Axzg, Ays| < K||Azs||. However, we also know |Axs| = ki||Azs|| and
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|Ays| = ko||Azz|| for some positive constants k1 and ks. By taking into account
this fact and assuming (Azg, Ays, Azs) € Co, the above computation will lead to
the following equalities:

|Azy| = o(x1)[[Azi]| and  |Ayi| = 0o(1)a, so0l| Az (107)

(where the small terms o(x1) and o(1) are different from those in (105) and (106)).

Recall the discussion on the non-degeneracy condition in Section 1.1. We know
that there exists a strong-stable foliation Fy on II, and W*(M;) (i = 1,2) are
smooth leaves with the form

where h;1(2) is the z-coordinate and h;2(z) is the y-coordinate. We also have that
dh;;/dz (i,j = 1,2) are uniformly bounded. Let (h11(z), h12(2), 2) be a point on
W#s(My). Denote by z = f3(hi1, hi2, 2) =: F(z) the third equation in the formula
(8) for a point on W*5(M;), which is the equation for z-coordinates in T;. We take
derivative of both sides of T (h11(z2), h12(2), 2) = (ha1(F(2)), haa(F(2)), F(2)), and
obtain

dhn(z) dhgl(z) F/
dz dz
DT2|(h11(z),h12(z),z) dhlg(z) = dhgg(z) Jad (109)
dz dz
1 F’

By noting that the derivative dhs;/dz is uniformly bounded, say ||(dhe;/d2)| < k,
we have [|(dhgej(2)/d2)F’|| < k|| F'||, which implies that the vector ((dho1(z)/dz)F’,
(dhaa(2)/dz)F’, F') is in an above-mentioned cone. Therefore, we obtain the fol-
lowing estimate:

dh
LEN o (a))
dhm(z) = O(l)hu(z)ﬁo . (110)
dz
1 1
Moreover, we have
dh !
hi1(z1) + %(zle) 1 +o(z(2"))(z — 21)
hi1(2) “ .,
h = h = dh = 1 z(2" — s
1(2) 122(2) hi2(z1) + 7155 )(z —21) yrto(lan(z = 2)

z
z

(111)
where 2z’ and z” are intermediate values between z; and z, and hq1(:) =: z(+).
We now show that we can replace o(z(z’)) by o(x1) in (111). Let z(s) = 21 +
(z — 21)s and X (s) = z(2(s)) = h11(2(s)), where s € [0,1]. Our goal is to prove
X(s)— a1
T

—0 as x1 — 0 uniformly.

Now suppose that there exist some sg and € > 0 such that (X(so) — z1)/z1 > ¢ for
all z1. In what follows we show a contradiction.
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Note that we have (X (0) — x1)/x1 = 0. By the continuity of X (s), there exists
s* € (0, sp] such that (X (s*) —x1)/x1 = e and (X (s) —z1)/z1 < € for every s < s*.
This further implies that, for any s < s*, we have

X(s) =z1 + €' (), (112)

where €'(s) € (0,¢) is a continuous function defined on s € [0, s*]. Equation (112)
along with (110) leads to

T — o1 (3(9)) = oX(5)) = ol + ).

Therefore, we have

dhll(z(s))

dz -0 .
T EC)
and, particularly,
dhll(z(s))
dz < c (113)

hi11(z(s)) 2(z — z1)s(1+¢')’
for all s € (s1,s*) with any given s; € (0, s*) by choosing x; sufficiently small.

Let us now look at X'(s) on [0, s*) given by

x'(s) = LD

which, by taking integral on both sides, yields

X(s) — a1 = (Z—zl)/oswds

(114)
dhip(2(s’
= (Z*Zl)S 11((12( ))a
where s’ € (0, s). By plugging equation (114) into (113) and using (112), we obtain
X(s)— a1
(z—2z1)s - €

x1 + €'z 2(z —z1)s(1+¢)’
ie.
5
X(S) <1+ 51:1,

which holds for all s € (s1,s*). This contradicts the continuity of X (s) since we
have lims_, ¢+ X(s) = z1 + ex7.

We now have proved o(z(z’)) ~ o(x1). By a similar argument, we also have
o(z(2")) ~ o(x1). The function of W**(M;) arrives at the following form:

x1 4+ o(x1)(z — 21)
hll(z)
hi(z) = | hi2(2) | = | y1 +0(1)a,»0(z — 21)

which leads to the statement of Lemma 4. O
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4. Proof of Theorem 2. We first prove that, by an arbitrarily small perturbation
to system X, we can simultaneously find heterodimensional cycles and a wild hyper-
bolic set. Then, we show that with condition (C5) satisfied the heterodimensional
cycles and the wild hyperbolic set belong to the attractor A.

Lemma 13. There exists a sequence {X,,} of systems converging to system X in
C" topology such that each system X,, contains heterodimensional cycles as well as
a wild hyperbolic set.

Proof. By Shilnikov theorem (see Lemma 8), there exists a countable set of periodic
orbits of X with index-1 in any small neighbourhood of the homoclinic loop I'T.
Besides, it is shown in [31] that, for some sufficiently large integer K > 0 and any p’
close to p*, there exists an invariant hyperbolic set Ak, in any such neighbourhood
with one-to-one correspondence to the set of two-sided sequences {i,}*%, where
p'in < ipy1 and i, > K for all n. For any small x4 # 0, there exists K > K
such that one can find a closed invariant hyperbolic set Ay z , with one-to-one
correspondence to the set of two-sided sequence {i, }T2°, where p'i,, < i,41 and
K < i, < K for all n. The purpose of finding K is to single out a closed subset
Yk i, from Xg o such that Ag g , survives from small perturbation due to its
closeness. Note that the sets A, and Ay g , corresponding to different p" are
different, but they all exist in system X. We drop the subscript p’ of these sets for
avoiding ambiguity.

The set Ay g can be wild. Indeed, Theorem 1 of [24] states that there exists a
dense set {py, } of p values in (0,1/2) such that system X, contains a homoclinic
tangency associated to a periodic orbit L in Ak, and the original homoclinic loops
are kept. By choosing K sufficiently large, we can ensure that the periodic orbit L
lie in the set Ay , and therefore make Ay g a wild hyperbolic set.

By Newhouse theorem (see [15, 26]), for each p,y,, we have a small neighbourhood
of it such that, for each p value in it, the corresponding systems X, contains a wild
hyperbolic set. Moreover, systems sufficiently close to system X, in C" topology
also contain such sets. Let € be the set of parameters other than p. Let px be the
p value of the original system X. It follows that there exist infinitely many open
neighbourhood Bj,, of X5, in the space of R-symmetric systems where |5, — p| <
1/2™ such that any system in these neighbourhoods has a wild hyperbolic set A .

Now we can apply Theorem 1 to system X, since it satisfies all conditions
required by the theorem. Thus, in each ball Bj ,, we can find a system X,, such
that it contains heterodimensional cycles as well as a wild hyperbolic set. O

We next prove that the set A g and the heterodimensional cycle coexist in the
attractor A of system X,,, with sufficiently large m. Recall the cross-section defined
in Section 2.2, which is

S ={(z1, 22,9, 2)| (1, 22)l| = 1, |y < 1, [|2] < 1}

It is also a cross-section for W} _(O). Denote W7 _(0O) NS by So, {y > 0} NS by
Sy and {y < 0} NS by Sy. By the assumption of the volume hyperbolicity in D,
system X always have a strange attractor A in D.

Let us recall some properties of this attractor given by Theorem 3 in [36]. Denote
by MljE the successive intersections of separatrices I'* with the cross-section S. The
intersection A N S consists of N connected components, where 2 < N < 2+ [(p)
is a finite number bounded above by a function I(p) > 0 with 0 < p < 1/2, and
each connected component contains at least one of the points Ml-i. Note that N is
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independent of parameters other than p. Moreover, we have two integers N ' and
N~ satisfying NT + N~ = N such that

ANS=AfuU-- UAL, UAT U---UA,

where A7 and A are disjoint connected components. Denote by Ts = (Ts,,Ts,)
the Poincaré map on S = S; U Sy. We have

AFNnSy=0, A7nSy=0 (115)
and
Ts, (Afe UAR )N S) = AF,  Ts,(Af UAy )N Sy) = A7

(116)
Aj = TS1AT7 A; =Ts, A7,

where 1 <i< Nt and1<j<N™.

We assume that, at g = 0, the unstable separatrices '™ and I'™ of the system X
intersect S for M times in total such that M > N, where N is the above-mentioned
number of the connected components. This assumption is not a restriction. Indeed,
results in [13] state that a homoclinic loop to a saddle focus equilibrium can be
split in a way such that the splitting forms a new loop with arbitrary more rounds
with respect to the original one. Suppose now the system X has a single round
homoclinic loop. Let us choose a surface L corresponding to systems having a
homoclinic loop to a saddle-focus equilibrium in the space of dynamical systems,
and let it contain the system X. Then the surfaces corresponding to systems having
homoclinic loops with arbitrarily many rounds are accumulating on L. Since our
family X, is transverse to L with respect to u, it is transverse to all close surfaces.
Let X, := X. It follows that we can pick X.«, with £* arbitrarily close to ¢ from
either left or right, such that the system at ¢ = ¢* has a homoclinic loop with more
than one round, which intersects S for multiple times. Any result on bifurcation
that holds for all such system X.- will automatically hold for X.,.

We now choose the cross-section II used in the proof of Theorem 1 sufficiently
small such that the loops T'F are still single-round with respect to II in system X,
and therefore double-round in systems X,,. This makes all the arguments used for
proving Theorem 1 valid here.

Let P; be the index-1 point of the Poincaré map T on II used to create a heterodi-
mensional cycle in system X, by Theorem 1. In system X,,, the periodic orbit L
of the flow whose stable manifold intersects its unstable manifold non-transversely
is double-round with respect to II. There are two points in L N II, and we denote
by P, € II; the one closer to IIp = II N {z = 0}. By Lemma 9, the point P; can be
chosen such that its z-coordinate x; is in (0, |¢|). The point P> can be arbitrarily
close to Iy by choosing L close to I'" (see the proof of Theorem 1 in [24]). Espe-
cially, we can let its z-coordinate x5 also lie in (0, |p|). By Lemma 8, we know that
the local stable manifolds W} _(P;) (¢ = 1,2) are given by

x=x; + o(1)z, -0, (117)

which are bounded between Iy and {z = |u|}. We now follow the backward or-
bits of the flow starting on W} _(P;) until they intersect the cross-section S. This
gives us two periodic points P/ € S of the map Ts along with their local stable
manifolds W (P/). One can check that those manifolds are bounded by Sy and
{z = o(1)u—>0}, where the small term is positive and is a continuous function of
21,2 and p. In fact, it is shown in [36] that the stable manifold of a fixed point of
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Ts is a nearly horizontal curve circling around O on the cylinder-like cross-section
S; by choosing a small part S* from S such that P/ is a fixed point of Ts|g-, we

7
can achieve the same result on W#(P/). This means that points on W*(P/) have

the same z-coordinate z! of P/ up to some small corrections. Obviously, z; — 0

as x; — 0. Note that we can pick P; with sufficiently small z-coordinates when |u|
is sufficiently small. Therefore, the stable manifolds W*(P/) (i = 1,2) lie under a
surface {z = o(1),-0}

We are now in the position to finish the proof. Recall the discussion on the

attractor A. Since we have M > N, the connected component MJ\+,Jr € A; L isata

finite distance from Sy. Therefore, we obtain a connected curve [T C AEJr joining
My, and a point on Sp. If I C Sy, then we have W, (P/) Nl # 0 by choosing p
sufficiently small; if [T C S, then we achieve the same result by consider similar
points P; from II,. Note that the manifolds W} .(P]) are sufficiently long to intersect
the connected components since they circle around O on S for multiple times. Recall
that attractor A is the set of points accessible from the equilibrium O. Hence, the
set ANS contains W#(P/) and P/ along with their unstable manifolds, which implies
that it contains a heterodimensional cycle as well as a wild hyperbolic set of the
map T. When we return to the full system X,,, we find a heterodimensional cycle
and the wild hyperbolic set Ay z coexisting in A. The theorem is proven.
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