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Abstract. We prove that a pair of heterodimensional cycles can be born at the

bifurcations of a pair of Shilnikov loops (homoclinic loops to a saddle-focus e-
quilibrium) having a one-dimensional unstable manifold in a volume-hyperbolic

flow with a Z2 symmetry. We also show that these heterodimensional cycles

can belong to a chain-transitive attractor of the system along with persistent
homoclinic tangency.

1. Introduction. There is a point of view that the main feature of the dynam-
ics of non-hyperbolic chaotic systems is the persistent coexistence of orbits with
different numbers of positive Lyapunov exponents. This can be caused by the ex-
istence of either a homoclinic tangency or a heterodimensional cycle, i.e. a cycle
which includes heteroclinic connections between saddle periodic orbits with different
indices (dimensions of their unstable manifolds). In our opinion, for multidimen-
sional systems (i.e. diffeomorphisms with dimension three or higher and flows with
dimension four or higher), the most basic mechanism of this phenomenon must be a
heterodimensional cycle. Heterodimensional cycles of co-index 1 were first studied
by Newhouse and Palis in [23]. Here co-index is the difference between the indices
of the corresponding periodic orbits of a heterodimensional cycle. The fact that
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the non-transverse heteroclinic intersections in such cycles can be persistent was
discovered by Dı́az and collaborators (see [9, 10, 11, 6]); a comprehensive theo-
ry of C1-generic properties of diffeomorphisms having heterodimensional cycles of
co-index 1 was built mostly in the works of Bonatti and Dı́az (see [6, 7]).

In this paper we consider heterodimensional cycles for Cr flows in Rn (r >
3, n > 4). We give an example of a simple codimension-one homoclinic bifurcation
which (among other things) results in the emergence of heterodimensional cycles
of co-index 1. This is a symmetric version of the Shilnikov bifurcation of two
homoclinic loops to a saddle-focus. The symmetry also links heterodimensional
cycles to Lorenz-like systems. We show in Section 1.2 an example of the system
which satisfies the assumptions in this paper by adding an extra direction to the
geometric Lorenz model. Namely, the system

ẋ = σ(y − x),
ẏ = x(r − z)− y,
ż = −bz + xy + εu,
u̇ = −(b+ f)u− εz,

will, for some choice of parameter values and function f , undergo the bifurcation
which give rise to heterodimensional cycles (see Section 1.2 for more details ).

It has been shown in [24] that under certain (open) conditions on the eigenvalues
of the saddle-focus equilibrium the bifurcation of a homoclinic loop to the saddle-
focus in three-dimensional systems creates coexisting saddles periodic orbits with
different indices. We generalise this result for systems with dimension four or higher
(see Corollary 1 in Section 3.3) and show that a symmetric pair of such loops can
be split in such a way that some of these saddles acquire heteroclinic connections
and the heterodimensional cycles are formed (see Theorem 1 in Section 2.1). One
should note that it is impossible to create a heterodimensional cycle only using
saddles near one single homoclinic loop (under condition C1 in Section 1.1). The
interplay of two homoclinic loops is crucial and we will explain this in Section 1.1.

We remark here that, by imposing the symmetry requirement, the codimension
of the bifurcation under consideration is brought down to one. This is because that
the existence of one homoclinic loop now implies the existence of the second one;
moreover, the coincidence condition (which is an equality-type condition) needed
for the emergence of heterodimensional cycles will be fulfilled automatically (see
Section 1.1). In other words, the symmetry allows us to give a relatively simple cri-
terion for the heterodimensional cycle chaos. More specifically, under the symmetry
condition, the appearance of a single Shilnikov loop with the volume-hyperbolicity
near the equilibrium (condition C3 in Section 1.1) is sufficient to show the existence
of heterodimensional cycles in systems which can be arbitrarily close to the original
one. Therefore, we can obtain a complex structure from a simple one. The com-
putations we do here are quite involved. This is caused by the fact that we need
to consider the perturbations which keep the symmetry of the system. Creating
heterodimensional cycles for general systems without the symmetry is easier, but
the bifurcations become codimension three; this case is considered in [21].

We also show that if the Shilnikov loops are originally within an attractor, then
the heterodimensional cycles obtained in this paper can belong to this attractor (see
Theorem 2 in Section 2.2). The attractor considered here is the one proposed in
[36] which is chain-transitive volume-hyperbolic, and contains the equilibrium and
its two separatrices.
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1.1. Problem setting. In what follows we describe the system considered in this
paper, and give conditions required to create heterodimensional cycles via homo-
clinic bifurcations.

Let us consider a Cr flow X in Rn (where r > 3, n > 4) having an equilibrium O
with a one-dimensional unstable manifold and a homoclinic loop associated to O.
We assume that system X satisfies the conditions below.

(C1) (Non-degeneracy condition) The extended unstable manifold WuE(O) is
transverse to the strong-stable foliation F0 of the stable manifold W s(O) at the
points of the homoclinic loop.

An extended unstable manifold WuE(O) is a Cr1 smooth three-dimensional in-
variant manifold which is tangent at the points of Wu

loc to the eigenspace corre-
sponding to the unstable and weak stable characteristic exponents (those closest
to the imaginary axis from right). Here r1 depends on the gap between the weak
stable exponents and the next exponent to the left of it (see Chapter 2 of [32] for
details). The extended unstable manifold contains the stable manifold Wu(O) and
is transverse to the strong-stable manifold W ss

loc(O) at O. The foliation F0 is the
uniquely defined, smooth, invariant foliation of the stable manifold, which includes
W ss(O) as one of its leaves. We will discuss more on this foliation later.

Note that condition (C1) is open and dense in Cr topology, i.e., if it is not fulfilled
initially, then it can be achieved by an arbitrarily small perturbation of the system;
once this condition is satisfied, it holds for every Cr-close system. We proceed to
listing other conditions.

(C2) The equilibrium O is a saddle-focus, and the eigenvalues of the linearised
matrix of X at O are γ,−λ+ ωi,−λ− ωi, αj such that

ω 6= 0 and Re (αj) < −λ < 0 < γ (j = 1, 2 . . . n− 3).

It follows from the result in Appendix A of [32] that if (C2) is satisfied, then
system X near O can be brought to the form

ẋ = x,

ẏ1 = −ρy1 − ωy2 + f11(x, y, z)y + f12(x, y, z)z,

ẏ2 = ωy1 − ρy2 + f21(x, y, z)y + f22(x, y, z)z,

ż = Bz + f31(x, y, z)y + f32(x, y, z)z,

(1)

by some Cr−1-transformation of coordinates and time (with assuming γ = 1). Here
x = (x1, x2), and the eigenvalues of matrix B are α1 . . . αn−3. Functions fij are
Cr−1 smooth and satisfy

fij(0, 0, 0) = 0, f1j(0, y, z) ≡ 0, f2j(0, y, z) ≡ 0, fi1(x, 0, 0) ≡ 0 (i = 1, 2, 3; j = 1, 2).
(2)

In such coordinate system, the coordinates of O are (0, 0, 0) and the local invariant
manifolds are straightened, i.e. we have

Wu
loc(O) = {y = 0, z = 0}, W s

loc(O) = {x = 0}, W ss
loc(O) = {x = 0, y = 0}.

The one-dimensional unstable manifold of O consists of two separatrices; the up-
per one, Γ+ corresponds, locally, to x > 0 and the lower separatrix Γ− corresponds
to x < 0. Let the upper separatrix return to O as t→ +∞ and form a homoclinic
loop. Thus, the homoclinic loop, when it tends to O as t = −∞, coincides with a
piece of the x-axis, and when the loop tends to O as t → +∞ it lies in {x = 0}.
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In this coordinate system the extended unstable manifold WuE(O) is tangent to
{z = 0} at points of Γ+.

We also impose a condition which ensures that the three-dimensional volumes
near O are expanding:

(C3) The ratio ρ =
λ

γ
<

1

2
.

Under condition (C1), conditions (C2) and (C3) are necessary for obtaining het-
erodimensional cycles via bifurcations of homoclinic loops. Indeed, if O is a saddle
or O is a saddle-focus with ρ > 1, then at most one periodic orbit can be born
from the bifurcation of one homoclinic loop (see [33, 19]); in the case where O is
a saddle-focus with 1/2 < ρ < 1, there can be infinitely many coexisting periodic
orbits with indices 1 and 2 near one homoclinic loop (see [24]), but index-1 or-
bits are attractors, i.e. not saddles, and therefore they cannot be used to create
heterodimensional cycles.

When O is a saddle-focus with 0 < ρ < 1/2, one can obtain infinitely many
coexisting saddle periodic orbits of indices 2 and 3 near one homoclinic loop (see
Lemma 6 and Corollary 1 which generalize the same result obtained for three-
dimensional systems in [24]). However, it is known (see [35]) that, under some
genericity assumption on the homoclinic loop Γ+ (i.e. condition C1 of this paper),
the original system, and every system close to it, has a three-dimensional invariant
manifold M such that every orbit which lies entirely in a small neighbourhood of
O ∩ Γ+ must lie in M. This gives a robust three-dimensional reduction of the
dynamics near Γ+, which prevents the birth of heterodimensional cycles at any
bifurcations of Γ+. Therefore, the interplay of two homoclinic loops is required,
and we assume that the separatrix Γ− also forms a homoclinic loop. Indeed, the
existence of essentially four-dimensional dynamics can be guaranteed if system X
satisfies the coincidence condition: the loops Γ+ and Γ− intersect the same set of
leaves of the strong-stable foliation F0 on W s(O) (see [35, 5]). This means that,
for any point M+ ∈ Γ+ lying in a leaf l, there exists a point M− ∈ Γ− lying in the
same leaf l (see figure 1).

We now achieve this coincidence condition by imposing the symmetry:

(C4) System X is invariant with respect to the transformation R : (x, y, z) →
(−x, y,Sz) where S is a non-trivial involution which changes signs of some of the
z-coordinates.

With this condition satisfied, the existence of the loop Γ+ implies the existence
of the second homoclinic loop Γ−, and moreover the y-component will be the same
for both of these homoclinic solutions. Besides, the above-mentioned coincidence
is fulfilled automatically. In the rest of this paper we show that bifurcations of
this pair of homoclinic loops can lead to the birth of heterodimensional cycles of
co-index 1.

1.2. An example. A concrete example of a system satisfying conditions (C1) -
(C4) can be found by a modification of the well-known Lorenz model given by ẋ = σ(y − x),

ẏ = x(r − z)− y,
ż = −bz + xy.

Here the unstable and strong-stable directions are given by linear combinations of
x and y, and the weak-stable direction corresponds to coordinate z. This system
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Figure 1. The dashed curves represent the two homoclinic loops
and the solid vertical lines represent leaves of the foliation F0. The
coincidence condition for system X is that, for any point of Γ+

lying in a leaf l, there exists one point of Γ− that also lies in l.

is symmetric with respect to the transformation (x, y, z) → (−x,−y, z). We add a
new variable u, and consider the system of the form

ẋ = σ(y − x),
ẏ = x(r − z)− y,
ż = −bz + xy + εu,
u̇ = −(b+ f(x, y, z, u))u− εz,

(3)

where f can be any non-linear function such that

(1) the new system satisfies the symmetry with respect to the transformation
(x, y, z, u) → (−x,−y, z, u) (which is the same as the R symmetry introduced be-
fore); and

(2) we have f(0, 0, 0, 0) = ∂f(0, 0, 0, 0)/∂(x, y, z, u) = 0, and the sum (b + f) is
close to zero outside a small neighbourhood of the equilibrium (0, 0, 0, 0).

It is known ([34, 1, 2]) that there is an open set in the parameter space around
(σ = 10, b = 8/3, r = 28) such that, for parameter values inside this set, the
Lorenz system has a strong-stable foliation and the two-dimensional areas trans-
verse to the foliation are expanding near the equilibrium. The above property (2)
ensures that the strong-stable foliation is inherited by the new system (3), and
three-dimensional volumes transverse to the strong-stable foliation are expanded
which implies condition (C3). Besides, property (2) also leads to the existence of
an absorbing domain containing the equilibrium which implies the existence of a
volume-hyperbolic attractor inside the domain (see Section 2.2 for more details).
We note that the characteristic exponents corresponding to coordinates z and u are
conjugate complex numbers, and therefore the original equilibrium in the Lorenz
model now becomes a saddle-focus. There is numerical evidence (e.g. [4]) that, for a
dense subset of parameter values inside the open set near (σ = 10, b = 8/3, r = 28),
the Lorenz system has a symmetric pair of homoclinic loops. The loops will persist
after we add the extra coordinate u. Thus, at least for certain parameter values,
this new system falls into the class of systems considered in this paper.
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By Theorem 1 of this paper, we can have heterodimensional cycles by perturbing
this system. More specifically, there exist certain parameter values of σ, b and r,
and function f such that, for any δ > 0, one can find Cr functions g1, g2, g3 and g4

with ‖gi‖Cr < δ such that the system
ẋ = σ(y − x) + g1,
ẏ = x(r − z)− y + g2,
ż = −bz + xy + εu+ g3,
u̇ = −(b+ f(x, y, z, u))u− εz + g4,

has a symmetric pair of heterodimensional cycles. Moreover, these cycles belong to
the above-mentioned attractor (see Theorem 2).

2. Results.

2.1. Birth of heterodimensional cycles. The main result of this paper is the
following:

Theorem 1. If system X satisfies conditions (C2) - (C4), then in any arbitrarily
small Cr neighbourhood (r > 1) of X in the space of the R-symmetric systems, there
exists a system which has a symmetric pair of homoclinic loops to O, and a sym-
metric pair of heterodimensional cycles near these loops. Each heterodimensional
cycle is associated to two periodic orbits of indices 2 and 3.

Condition (C1) is not mentioned here since it can also be obtained by an arbi-
trarily small perturbation (without destroying the loops). We remark here that we
need r > 3 in our computations. If system X is originally Cr with r = 1 or 2, then
we can first make it C∞ by an arbitrarily small perturbation in Cr topology, and
recover the homoclinic loops (if destroyed) by an additional arbitrarily Cr-small
perturbation. After this, we can perturb the system again to create heterodimen-
sional cycles. We shall mention that, in the proof of the non-empty quasi-transverse
intersection in Section 3.4, we need to use the smooth dependence of the invariant
manifolds of periodic orbits on the right-hand side of system 1, and this is allowed
after we make our system C∞.

Before we sketch the proof, let us discuss more on the strong-stable foliation F0.
In the coordinates of (1), the leaves of F0 onW s

loc(O) are given by (x = 0, y = const).
The non-degeneracy condition (C1) implies that the closed invariant set O∪Γ+∪Γ−

is partially hyperbolic: at the points of this set the contraction along the strong-
stable leaves is stronger than a possible contraction in the directions tangent to
WuE . The partial hyperbolicity implies that the strong-stable foliation F0 extends
(see [18, 35, 36]), as a locally invariant, absolutely continuous foliation with smooth
leaves, to a neighbourhood U of O ∪ Γ+ ∪ Γ−, and the foliation persists for all
Cr-close systems. See [3, 18] for more details on the properties of such foliation.

We take a small cross-section Π transverse to the local stable manifold W s
loc(O)

such that both loops Γ+ and Γ− intersect Π. The flow induces a Poincaré map
T on Π. The intersections of the orbits of the leaves of F0 by the flow with the
cross-section Π form a strong-stable invariant foliation F1 for the Poincaré map T ,
which has leaves of the form (x, y) = h(z) where the derivative h′(z) is uniformly
bounded. The detailed sufficient condition for the existence of such strong-stable
foliation is proposed in [36] and our system X satisfies this condition. Note that the
coincidence condition (given by the symmetry) implies that the projections of Γ+

and Γ− onto any transversal along leaves of F0 coincide. Therefore, the intersection
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points M+ and M− of Γ+ and Γ− with Π lie on the same leaf of F1, and have the
same y-coordinate since Π is near O and the foliations on W s

loc(O) are straightened
(see figure 2).

Figure 2. For a four-dimensional system, the intersection points
M+ and M− on a small three-dimensional cross-section Π belong
to the same leaf of the foliation F1.

The foliation F1 is invariant such that T−1(l∩ (T (Π))) is a leaf of the foliation if
the intersection is non-empty. The foliation is also contracting in the sense that, for
any two points in the same leaf, the distance between their iterates under the map
T tends to zero exponentially. Besides, by the absolute continuity of the foliation,
the projection along the leaves from one transversal to another one changes areas
by a finite multiple bounded away from zero. Note that the condition ρ < 1/2
implies that the flow near O expands three-dimensional volume in the (x, y)-space;
the partial hyperbolicity of the flow near O∪Γ+∪Γ− and the fact that the orbits in
U spend only a finite time between successive returns to the small neighbourhood
of O imply that the flow in U uniformly expands the three-dimensional volume
transverse to the strong-stable foliation (see [35, 36]). Consequently, the Poincaré
map T expands two-dimensional areas transverse to the strong-stable foliation on
Π.

In what follows, we describe the steps for creating a heterodimensional cycle in
a small neighbourhood of Γ+ ∩Γ− ∩O. At the birth of this cycle, a second one will
be obtained automatically by the symmetry.

First, we note that, according to Shilnikov theorem (see [30, 31]), each of the
homoclinic loops Γ+ and Γ− is accumulated by a countable set of single-round
index-2 saddle periodic orbits of the flow (we call the orbit of the flow n-round if it
intersects Π exactly n times). Consequently, there exist two sets {P+

k } and {P−k }
of index-1 saddle fixed points of T in Π such that P+

k → M+ and P−k → M− as
k → +∞. Any finite number of these points survive sufficiently small perturbations
of the system. We embed X into a two-parameter family Xµ,ρ of R-symmetric
systems such that homoclinic loops split with a non-zero velocity as µ changes. We
take µ as the x-coordinate of the point M+ where the upper separatrix Γ+ first
intersects Π (so −µ is the x-coordinate of the point M− of the first intersection
of Γ− with Π). The second parameter is the ratio ρ = λ/γ. It is well-known that
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arbitrarily close to µ = 0 there are values of µ for which both Γ+ and Γ− form
a double-round homoclinic loop (see [12, 13, 14, 17]). Crucially, we show that by
an arbitrarily small perturbation of ρ (in addition to that of µ), at the moment of
existence of two double-round homoclinic loops, the unstable manifold of a point
P from the set {P+

k } that survives the splitting of the original loop intersects the
strong-stable manifold of the point M− (see Lemma 3).

Next, we use a generalization of Theorem 3 of [24] that if a system has a homo-
clinic loop to a saddle-focus with ρ < 1/2, then, by an arbitrarily small perturbation
which changes the value of ρ without splitting the loop, one can create an infinite
sequence of double-round saddle periodic orbits with three-dimensional unstable
manifold which converges to the loop (see Lemma 6). In our situation, we can
consider a family of perturbations localized in a sufficiently small neighbourhood of
O such that neither the symmetry of the system is broken, nor the double-round
loops are split, nor the heteroclinic intersection between Wu(P+

k ) and W ss(M−)
is destroyed, while the value of ρ changes with a non-zero velocity. Then, at an
appropriately chosen value of ρ the double-round loop Γ− becomes a limit of a se-
quence of 4-round saddle periodic orbits with three-dimensional unstable manifold
(see Figure 3 (a)). On the cross-section Π, we thus have an infinite sequence of
index-2 saddle points Q−k of period 4 which converges to M−; the stable manifolds
of these points are given by the leaves of the strong-stable foliation F1 through these
points, so we have W s(Q−k )→W ss(M−) as n→ +∞. Obviously, by an additional
small perturbation we can break the intersection between Wu(P ) and W ss(M−)
and create the heteroclinic intersection of Wu(P ) with W s(Q−k0), where Q−k0 is some

point from {Q−k } (see figure 3 (b)).
The last step is to show the existence of a transverse intersection of W s(P ) and

Wu(Q−k0). Denote by P+
k∗ the point closest to Π ∩W s(O) of those points P+

k that

survive the change of µ. We will prove that Wu(Q−k0) intersects the stable manifold

of P+
k∗ using the expansion of two-dimensional areas by the Poincaré map. The non-

empty intersection W s(P )∩Wu(Q−k0) follows from the homoclinic relation between

P and P+
k∗ . This completes the proof of the theorem.

2.2. Heterodimensional cycles in a strange attractor. Let us now consider
the case where the above bifurcation happens within the strange attractor proposed
in [36]. In this paper, we show that heterodimensional cycles obtained by Theorem
1 can belong to such attractor and coexist there with a Newhouse wild set. Here
a Newhouse wild set is a compact, invariant, and transitive hyperbolic set whose
stable manifold intersects non-transversely its unstable manifold in a C2 persistent
fashion (see [22, 26, 15]).

In order to have an attractor, we need the existence of a certain absorbing domain.
We fix a neighbourhood of O where formula (1) is valid; by a linear scaling of
the variables, we can make the size of the neighbourhood equal to 1. Let S =
{(x, y1, y2, z) | |x| 6 1, ‖(y1, y2)‖ = 1, ‖z‖ 6 1} be a cross-section to W s

loc(O).
Suppose that all orbits starting at S return to S. Then, the region D filled with
all orbits of the flow starting from S, plus the equilibrium O and its two unstable
separatrices Γ+ and Γ−, is forward invariant.

As we mentioned before, the non-degeneracy condition (C1) imposed on the ho-
moclinic loops Γ+ and Γ− along with the condition ρ < 1/2 implies the volume
hyperbolicity of the system near the set O ∪ Γ+ ∪ Γ−. We now assume that this
property extends to the whole of the forward invariant region D:
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Figure 3. As shown in figure (a), we can create an infinite se-
quence of index-2 point Q−k accumulating on M− while keeping
the intersection Wu(P )∩W ss(M−) by changing µ, ρ and ν togeth-
er. In figure (b), the intersection Wu(P ) ∩W s(Q−k0) is created by

changing ν).

(C5) (Volume-hyperbolicity condition): The tangent bundle of D admits a con-
tinuous dominated splitting at any point of D: TD = Nss ⊕N c, where Nss is the
strong-stable subspace (corresponding to coordinates z near O) and N c is the center
subspace (corresponding to coordinates x and y near O). The flow restricted to Nss

is exponentially contracting, and volumes are expanding in N c.

Note that this condition implies the existence of an absolutely-continuous invari-
ant foliation tangent to Nss at each point of D (see [36]).

Before we introduce the attractor, let us recall some definitions. Let XtP be the
time shift of point P by the flow X for the time t. Take ε > 0 and τ > 0; an (ε, τ)-
orbit is a sequence of points P1, P2, . . . , Pk such that the distance between Pi+1 and
XtPi is smaller than ε for some t > τ . A point Q is said to be (ε, τ)-accessible
from P if there exists an (ε, τ)-orbit connecting P and Q, and accessible from P if
for some fixed τ and all ε > 0, the point Q is (ε, τ)-accessible from P . A set B is
said to be accessible from a point P if it contains a point that is accessible from P .
A closed invariant set B is called chain-transitive if, for any points P and Q in B
and for any ε > 0 and τ > 0, the set B contains an (ε, τ)-orbit connecting P and
Q. A compact invariant set B is called completely stable if, for any neighbourhood
U(B), there exist ε > 0 and τ > 0 and a neighbourhood V (B) ⊆ U(B) such that
all (ε, τ)-orbits starting in V (B) do not leave U(B).

The attractor of our system in D is defined as the set A of all points accessible
from O. It is shown in [36] that A is the unique chain-transitive and completely
stable set in D, and it is accessible from any point in D. Thus A is the unique
Ruelle-Hurley attractor of the system in D (see [28, 20]). The volume-hyperbolicity
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implies that the attractor A is chaotic in the sense that every orbit in it has a
positive maximal Lyapunov exponent. A complete description of the structure of
A is impossible, as it may contain a Newhouse wild-hyperbolic set (see [36]). It is
also shown in [36] that the attractor A may contain coexisting saddles of different
indices. Here we strengthen the last statement by showing the following corollary
from Theorem 1.

Theorem 2. If system X satisfies conditions (C2) - (C5), then there exists a system
arbitrarily close to X in Cr such that it satisfies the same symmetry condition, and
its attractor A in D contains a Newhouse wild set, a symmetric pair of homoclinic
loops, and a symmetric pair of heterodimensional cycles near these loops.

As we mentioned in Section 1.2, such strange attractor also exists in system (3).

3. Proof of Theorem 1. We prove Theorem 1 by finding heterodimensional cycles
for the Poincaré map on a cross-section Π near the saddle-focus O. The proof is
divided into several parts. We first describe the Poincaré map T on Π. After this, we
consider a two-parameter familyXµ,ρ withX = X0,ρ∗ . We find a sequence {(µj , ρj)}
of parameter values accumulating on (0, ρ∗) such that system Xµj ,ρj has a double-
round homoclinic loop Γ− and a connection from a single-round index-2 periodic
orbit to this loop (see Lemma 3). More specifically, we show that there exists an
index-1 fixed point P on the cross-section Π such that Wu(P ) ∩ W ss(M−) 6= ∅
(where M− is the first intersection point of Γ− and Π).

Then, we define the parameter ν that controls the separation of Wu(P ) and
W ss(M−) localised near the intersection point given by (µj , ρj). This means that,
for any fixed pair (µj , ρj), the two manifolds Wu(P ) and W ss(M−) will cross each
other with a non-zero velocity as ν varies. Note that, in the space of dynamical sys-
tems with R-symmetry, there exists a codimension-1 surface H1 containing Xµj ,ρj

such that all systems on this surface have a double-round homoclinic loop Γ−; inside
this surface, there is a codimension-2 surface H2 corresponding to systems having
the intersection Wu(P ) ∩ W ss(M−). We now embed system Xµj ,ρj into a two-
parameter family Xρ,ν such that this family lies in the surface H1 and systems in
H2 correspond to parameter value ν = 0. We remark here that µ is now a function
of ρ: when ρ is changed, we need to change µ accordingly to keep the double-round
homoclinic loop Γ−.

Next, we obtain a sequence {(ρnj , νnj )}n of parameter values converging to (ρj , 0)
such that the unstable manifold Wu(P ) intersects the stable manifold of an index-2
periodic point Q close to M− (see Lemma 7). In the end, we show the existence
of the non-empty intersection W s(P ) ∩Wu(Q) for every pair (ρnj , ν

n
j ). Therefore,

we obtain a heterodimensional cycle of the map T , which corresponds to one in the
flow Xρnj ,ν

n
j

. The second cycle exists by the symmetry.

3.1. Construction of the Poincaré map T . Recall that the local stable manifold
W s
loc(O) is straightened and has the form {x = 0}. We pick two points M+ =

(0, y+
1 , 0, z

+) and M− = (0, y−1 , 0, z
−) near the equilibrium O such that M+ ∈

Γ+ ∩ W s
loc(O) and M− ∈ Γ− ∩ W s

loc(O). We define Π = {(x, y1, 0, z) | |x| 6
δ, |y1 − y+| 6 δ, ‖z‖ 6 δ} with an upper part Π1 := Π ∩ {x > 0} and a lower
part Π2 := Π ∩ {x < 0}. Denote by Π0 the intersection of Π with W s

loc(O), i.e.
Π∩{x = 0}. Points on the cross-section have coordinates (x, y1, z) and we drop the
subscript of y1 for simplicity. Note that ‖z‖ decreases much faster than ‖y‖ along the
homoclinic loops as t→ +∞ so that we can assume ‖z+‖ < δ. Points M+ and M−



HETERODIMENSIONAL CYCLES NEAR SHILNIKOV LOOPS 4409

are the intersection points of Γ+ and Γ− with Π, and have coordinates (x+, y+, z+)
and (x−, y−, z−). By the symmetry, we have x+ = −x− and y+ = y−. We will
consider families of perturbed systems, so x±, y± and z± are smooth functions of
parameters. Since µ is the splitting parameter, we can assume x+ = −x− = µ

In order to obtain the formula for the Poincaré map T , we use two additional
cross-sections Πglob1 = {(x = d, y1, y2, z) | ‖(y1, y2)‖, ‖z‖ < d} and Πglob2 = {(x =
−d, y1, y2, z) | ‖(y1, y2)‖, ‖z‖ < d}, where d > 0. The Poincaré map T restricted to
Πi (i = 1, 2) is the composition of a local map Tloci : Πi → Πglobi , (x0, y0, z0) 7→
(y1, y2, z1) and a global map Tglobi : Πglobi → Π, (y1, y2, z1) 7→ (x̄0, ȳ0, z̄0). We
remark here that the ranges of Tglobi (and Ti := Tglobi ◦ Tloci mentioned later) are
not completely contained in Π; however, when we iterate the Poincaré map later in
the proofs, we will only consider the part of the image of Π which does not leave
Π. Therefore, we write Tglobi : Πglobi → Π (and Ti : Πi → Π later) for simplicity.

The map Tloci is given by (see equation (13.4.13) of [33])

y1 = y0

(
x0

(−1)i+1d

)ρ
cos

(
ω ln

(
(−1)i+1d

x0

))
+ o (|x0|ρ) ,

y2 = y0

(
x0

(−1)i+1d

)ρ
sin

(
ω ln

(
(−1)i+1d

x0

))
+ o(|x0|ρ),

z1 =

 o(|x0|ρ)
. . .

o(|x0|ρ)


(4)

Here we denote the small terms in each equation in (4) by gk (k = 1 . . . n− 1) , and
we have

∂i+jgk
∂ix∂j(y, z, ζ, ρ)

= o(|x|ρ−i) i+ j 6 (r − 1). (5)

The global maps Tglobi are diffeomorphisms and can be written in Taylor expansions.
We have

x̄0 = (−1)i+1(µ+ a11y1 + a12y2 + a13z1) + o (|y1, y2, z1|) ,

ȳ0 = y+ + a21y1 + a22y2 + a23z1 + o (|y1, y2, z1|) ,

z̄0 = Si+1

z+ +

 a31y1 + a32y2 + a33z1

· · ·
an−1,1y1 + an−1,2y2 + an−1,3z1

+ o (|y1, y2, z1|) ,

(6)

where aj3 (j = 1 . . . n − 1) are (n − 3)-dimensional vectors. Let T1 := T |Π1
=

Tglob1 ◦Tloc1 : Π1 → Π and T2 := T |Π2
= Tglob2 ◦Tloc2 : Π2 → Π. Note that we have

lim
M→Π+

0

T1(M) = M+ and lim
M→Π−0

T2(M) = M−. (7)

After the scaling x = x0/d, y = y0/y
+ and z = z0, and replacing µ/d by µ, the

maps T1 and T2 take the form
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T1 :



x̄ = µ+Ayxρ cos (ω ln
1

x
+ θ) + o(xρ),

ȳ = 1 +A1yx
ρ cos (ω ln

1

x
+ θ1) + o(xρ),

z̄ = z+ +


A2yx

ρ cos (ω ln
1

x
+ θ2) + o(xρ)

. . .

An−2yx
ρ cos(ω ln

1

x
+ θn−2) + o(xρ)

 ,

(8)

and

T2 :



x̄ = −µ−Ay|x|ρ cos (ω ln
1

|x|
+ θ) + o(|x|ρ),

ȳ = 1 +A1y|x|ρ cos (ω ln
1

|x|
+ θ1) + o(|x|ρ),

z̄ = Sz+ + S


A2y|x|ρ cos (ω ln

1

|x|
+ θ2) + o(|x|ρ)

. . .

An−2y|x|ρ cos(ω ln
1

|x|
+ θn−2) + o(|x|ρ)

 ,

(9)

where z ∈ Rn−3, A = y+
√
a2

11 + a2
12, A1 =

√
a2

21 + a2
22, Am = y+

√
a2
m+1,1 + a2

m+1,2

(m = 2, . . . , n−2), tanθ = −a12/a11, tan θ1 = −a22/a21, tan θm = −am+1,2/am+1,1.
Here aij are coefficients from the global map given by formula (6). The small terms
o(|x|ρ) (for both x > 0 and x < 0) are functions of x, y, z, µ, ρ satisfying (5).

Recall that we denote by M+ and M− the first intersection points of Π with
Γ+ and Γ−. Their coordinates are now (µ, 1, z+) and (−µ, 1,Sz+). The maps Ti
(i = 1, 2) can be extended to Πi ∪Π0 and Π respectively by letting

T1(0, y, z) = (µ, 1, z+) and T2(0, y, z) = (−µ, 1,Sz+).

From now on, we will work with the maps T1 and T2. The non-degeneracy
condition mentioned in Section 1.1 is equivalent to

AA1 sin(θ1 − θ) 6= 0. (10)

Indeed, in the coordinate system satisfying (1) and (2), the transversality stated
in the non-degeneracy condition is equivalent to the transversality of Tglob1(Πglob1

∩WuE
loc (O)) and Tglob2(Πglob2 ∩ WuE

loc (O)) to the leaves {x = 0, y = y+} through
M+ and {x = 0, y = y−} through M−, respectively, where the extended unstable
manifold WuE

loc (O) is an invariant manifold tangent to the {z = 0} (see [32]). By
formula (6), this is

det
∂(x̄0, ȳ0)

(y1, y2)
6= 0

for both maps Tglob1 and Tglob2 , which is equivalent to∣∣∣∣a11 a12

a21 a22

∣∣∣∣ = AA1 sin(θ1 − θ) 6= 0 .

As we mentioned before, if this condition is not satisfied, then we can make an
arbitrary small perturbation to achieve it, and it will hold for all Cr-close systems.
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3.2. Coexistence of the homoclinic loop Γ− and an index-1 point P with
Wu(P ) ∩W ss(M−) 6= ∅. Let us now consider a two-parameter family Xµ,ρ, where
X0,ρ∗ = X. Shilnikov theorem implies that, for any system X0,ρ with ρ < 1, there
exists a countable set {P+

k } ⊂ Π1 of index-1 fixed points of T1 accumulating on
M+. The proof of this theorem will be included in the proof of Lemma 8 in Section
3.5. We now pick an arbitrary point P from this set. In what follows, we consider
sufficiently small perturbations such that P remains an index-1 fixed point of T1.
The bound for the size of such perturbation will be given in Lemma 8. We have
the following result:

Lemma 3. For any given value ρ∗ ∈ (0, 1/2), there exists a sequence {(µj , ρj)} ac-
cumulating on (0, ρ∗) such that the corresponding system Xµj ,ρj has a double-round
homoclinic loop Γ− whose first intersection point M− with Π has a strong-stable
manifold W ss(M−) that intersects the unstable manifold Wu(P ) quasi transverse-
ly.

Here quasi-transversality means that, for two manifolds U and V , we have TxU ∩
TxV = {0} for the intersection point x of U ∩ V , where TxU and TxV are tangent
spaces. The intersection Wu(P )∩W ss(M−) is quasi-transverse if it exists. Indeed,
the strong stable manifold W ss(M−) is a leaf of the foliation F1 tangent to strong-
stable directions (i.e. close to z-directions), and Wu

loc(P ) is tangent to the center-
unstable direction (i.e. close to (x, y)-directions). Therefore, by letting {M} =
Wu(P ) ∩W s(Q), we have TMW s

loc(Q) ∩ TMWu
loc(P ) = {0}, which gives the quasi-

transversality.

Proof of Lemma 3. We first change µ to make Γ− a double-round homoclinic loop.
This can be done by solving the equation T2(M−) = (0, y, z), whereM−(−µ, 1,Sz+)
is the first intersection point of Γ− with Π, and y, z can be arbitrary. By formulas
(8) for T1 and (9) for T2, we have

0 = µ+A|µ|ρ cos(ω ln
1

|µ|
+ θ) + o(|µ|ρ) if µ < 0,

and

0 = −µ−Aµρ cos(ω ln
1

µ
+ θ) + o(µρ) if µ > 0.

Denote

ω ln
1

|µ|
= 2πj0 + ξ0 − θ ξ0 ∈ [0, 2π). (11)

Note that the double-round loop follows both loop if µ > 0 and only follows Γ− if
µ < 0. The above two equations can be rewritten as

0 = exp

(
−2πj0 − ξ0 + θ

ω

)
−A exp

(
−2πj0ρ− ξ0ρ+ θρ

ω

)
cos ξ0

+o

(
exp

(
−2πj0ρ

ω

))
,

(12)

and

0 = exp

(
−2πj0 − ξ0 + θ

ω

)
+A exp

(
−2πj0ρ− ξ0ρ+ θρ

ω

)
cos ξ0

+o

(
exp

(
−2πj0ρ

ω

))
,

(13)

respectively.
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Since ρ < 1 and j0 is large, we have

exp

(
−2πj0 − ξ0 + θ

ω

)
� exp

(
−2πj0ρ− ξ0ρ+ θρ

ω

)
We divide both sides of equations (12) and (13) by exp

(−2πj0ρ

ω

)
and take the

limit j0 → +∞. We seek for the solutions to the limit systems, which, by implicit
function theorem, will give us solutions to the original systems. Either of equations
(12) and (13) leads to

cos ξ0 = o(1)j→+∞.

This along with equation (11) gives a sequence {µj0} of solutions of the form

µj0 = ± exp

(−2πj0 −
π

2
−mπ + θ

ω

)
+ o(1)j0→+∞ m = 0, 1. (14)

Obviously, µj0 → 0 as j0 → +∞. Such values of µ give us a double-round homoclinic
loop Γ− (and another one Γ+ by symmetry).

Let us now find the intersection of Wu(P ) with W ss(M−). Denote the coordi-
nates of P by (xp, yp, zp). By taking a vertical line joining P and a point on Π0

and iterating it, one can check that the local unstable manifold Wu
loc(P ) of P is

spiral-like and winds onto M+, which is given by

x = µ+Aypt
ρ cos(ω ln

1

t
+ θ) + o(tρ),

y = 1 +A1ypt
ρ cos(ω ln

1

t
+ θ1) + o(tρ),

z = z+ +


A2ypt

ρ cos (ω ln
1

t
+ θ2) + o(tρ)

. . .

An−2ypt
ρ cos(ω ln

1

t
+ θn−2) + o(tρ)


(15)

where t ∈ (0, xp).
We need a formula for the local strong-stable manifold W ss

loc(M
−), which is a

leaf of the strong-stable foliation F1. The leaves of F1 are given by the following
lemma.

Lemma 4. Let M(x0, y0, z0) be a point on Π with y0 sufficiently small. The local
strong-stable manifold W ss

loc(M) (i.e. the leaf of F1 through M) is the graph of the
function z 7→ (x, y) :

(x, y) = (x0 + (z − z0)a1, y0 + (z − z0)a2),

where a1 = o(|x0|) and a2 = o(1)x0→0 are (n−3)-dimensional vectors whose compo-
nents are certain functions of z, y0, x0, z0 and the parameters (denoted by a vector
ε) satisfying

∂i+la1

∂ix0∂l(z, y0, z0, ε)
= o(|x0|1−i) i+ l 6 (r − 1),

and
∂la2

∂l(z, y0, z0, ε)
= o(1)x0→0 l 6 (r − 1).
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The proof of this lemma is postponed until Section 3.6. The strong-stable man-
ifold W ss(M−) is now given by

x = −µ+ (z + z+)o(|µ|),

y = 1 + (z + z+)o(1).
(16)

The intersection point of W ss(M−) with Wu(P ) is found by simultaneously solving
equations (15) and (16). By noting yp = 1 + O(xρp) from formula (8) and z =

z+ + O(tρ) from (15), finding the intersection W ss(M−) ∩Wu(P ) is equivalent to
solving the equations

2µ = −Atρ cos(ω ln
1

t
+ θ) + o(tρ) + o(|µ|),

o(1) = A1t
ρ cos(ω ln

1

t
+ θ1) + o(tρ).

(17)

This can now be seen as finding an intersection of a spiral given by the RHS of
system (17) of equations with a point (u(µ), v(µ)) := (2µ, o(1)). Note that the µ
value is given by equation (14), so here we will solve (17) for t and ρ.

We first find t. Let tan(θ1 − θ) = −b/a and rewrite equation (17) as

u = −Atρ cos(ω ln
1

t
+ θ) + . . . ,

v =
A1√
a2 + b2

tρ
(
b cos(ω ln

1

t
+ θ) + a sin(ω ln

1

t
+ θ)

)
+ . . . ,

where we denote the small terms that tend to zero as µ, t tend to zero by dots
throughout the proof. The above equations yield

v

u
=

A1

−A
√
a2 + b2

(b+ tan(ω ln(
1

t
) + θ)) + . . . ,

i.e.

ω ln t = θ + arctan
(Av√a2 + b2

A1au
+
b

a

)
+ 2πk + . . . . (18)

Note that u = 2µ does not vanish (see equation (14)), so no matter how µ and ρ
change, equation (18) has a solution t which depends continuously on all parameters
for every fixed k.

We proceed to find the values for ρ. Recall the discussion under (9), we have

A = y+
√
a2

11 + a2
12, A1 =

√
a2

21 + a2
22, tanθ = −a12/a11 and tan θ1 = −a12/a11.

By plugging these coefficients into (17), we obtain

u = −y+a11t
ρ cos(ω ln

1

t
)− x+a12t

ρ sin(ω ln
1

t
) + . . . ,

v = a21t
ρ cos(ω ln

1

t
) + a22t

ρ sin(ω ln
1

t
) + . . . ,

(19)

where dots denote small terms that tend to zero as µ, t tend to zero. By the non-
degeneracy condition (10), the matrix(

−y+a11 −y+a12

a21 a22

)
is invertible. We denote the inverse matrix as(

b11 b12

b21 b22

)
.
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Then, we can rewrite equations in (19) as

b11u+ b12v = tρ cos(ω ln
1

t
) + . . . ,

b21u+ b22v = tρ sin(ω ln
1

t
) + . . . ,

which, by squaring, summing up the above equations and taking logarithm, gives

ρ ln t =
1

2
ln(b211u

2 + b212v
2 + b221u

2 + b222v
2 + 2(b11b12 + b21b22)uv) + . . . . (20)

Let us divide equation (20) by (18) and consider the ratio

ρ

ω
=

ln(b211u
2 + b212v

2 + b221u
2 + b222v

2 + 2(b11b12 + b21b22)uv)

2θ + 2 arctan
(Av√a2 + b2

A1au
+
b

a

)
+ 4πk

+ . . . . (21)

Note that v may change as ρ and ω change, and the above equation is not an explicit
function for ρ. We will show that we can find values of ρ from this equation anyway,
and moreover they form a dense set when j0 and k tend to infinity.

The numerator of equation (21) satisfies

Cµ2 < b211u
2 + b212v

2 + b221u
2 + b222v

2 + 2(b11b12 + b21b22)uv < o(1)µ→0, (22)

where C is a constant independent of ρ, ω, µ and t. Note that the coefficients bij
depend on all parameters. However, the range of parameter change is small, so the
coefficients just vary slightly. This means that the constant C can be chosen the
same for all parameters under consideration, and it remains bounded away from
zero and infinity. We denote the right hand side of equation (21) by H. Inequality
(22), equation (14) along with the fact that the value

arctan
(Av√a2 + b2

A1au
+
b

a

)
is bounded imply that there exist two functions K1(j0) and K2(j0) such that

K1(j0)

k
< H <

K2(j0)

k
. (23)

Here K1(j0) and K2(j0) do not depend on t and parameters, and we have K1(j0),
K2(j0)→ +∞ as j0 → +∞. We now consider the function

G(ρ) =
ρ

ω
−H. (24)

By continuity, whatever j0 and k we choose, we can find a value of ρ such that
G(ρ) = 0 by changing ρ from K1(j0)/k to K2(j0)/k. Note that, for any given
number, we can choose a sequence of (j0, k) such that the corresponding intervals
(K1(j0)/k,K2(j0)/k) shrink to this number as (j0, k) → (+∞,+∞). Hence, we
obtain a dense set of ρ values. Lemma 3 is proven.

3.3. Countable sets of index-2 periodic points. We first prove a lemma on
the condition for a periodic point of T to have index 2. Then we will show that, for
some parameter values, there are infinitely many index-2 periodic points near the
intersection points of Γ+ and Γ− with Π.

We introduce a transformation for the x-coordinates of points on the cross-section
Π:

ω ln
1

x
= 2πj + ξ − θ, ξ ∈ [0, 2π), (25)
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by which we divide the cross-section into different regions, and ξ is a new coordinate
in each region. Let Q be a periodic point of T of period k and have the orbit
{Q = Q1(x1, y1, z1), Q2(x2, y2, z2), . . . , Qk(xk, yk, zk)}. The x-coordinates of this
orbit are represented as

ω ln
1

|xi|
= 2πji + ξi − θ i = 1, 2, . . . , k. (26)

Lemma 5. The period-k point Q is of index 2, if and only if

cos(ξ1 − ϕ) cos(ξ2 − ϕ) . . . cos(ξk − ϕ) = cψ(ξ, j, y, z) − 1 < c < 1,

where ϕ = arctan(ω/ρ), ξ = (ξ1, ξ2, . . . , ξk), j = (j1, j2, . . . , jk), y = (y1, y2, . . . , yk),
z = (z1, z2, . . . , zk) and ψ = o(1)j1,j2,...,jk→∞ is a certain function depending con-
tinuously on ξ, y, z and parameters µ, ρ, such that

∂iψ

∂i(ξ, y, z, µ, ρ)
= o(1)j1,j2,...,jk→∞ (i 6 (r − 2)).

Proof. We start by computing the trace of the matrix DT (k) := ∂T (k)/∂(x, y, z),
which is the product of matrices of the form DT1 or DT2 depending on the orbit
of Q. Note that DT1 and DT2 are the same up to different coefficients in front
of functions of the coordinates in each entry. Therefore, as can be seen from the
computation below, we obtain the same result for any type of composition of DT (k).
For certainty, we assume that Q is periodic under T1.

From formula (8) for T1, one can check that the y-coordinate of Qi (i = 1, . . . , k)
satisfies yi = 1+O(xρ1, x

ρ
2, . . . , x

ρ
k). Thus, yi can be sufficiently close to 1 if we choose

x1, x2, . . . , xk sufficiently close to zero. By transformation (25) on coordinate x and
formula (8), we have

DT1|Qi =

Axρ−1
i (ρ cos ξi + ω sin ξi) + o(xρ−1

i ) Axρi cos ξi + o(xρi ) a

−A1x
ρ−1
i (ρ cos(ξi + θ1 − θ)

+ω sin(ξi + θ1 − θ)) + o(xρ−1
i )

A1x
ρ
i cos(ξi + θ1 − θ)

+o(xρi )
a1

−A2x
ρ−1
i (ρ cos(ξi + θ2 − θ)

+ω sin(ξi + θ2 − θ)) + o(xρ−1
i )

A2x
ρ
i cos(ξi + θ2 − θ)

+o(xρi )
a2

. . . . . . . . .

−An−2x
ρ−1
i (ρ cos(ξi + θn−2 − θ)

+ω sin(ξi + θn−2 − θ)) + o(xρ−1
i )

An−2x
ρ
i cos(ξi + θn−2 − θ)

+o(xρi )
an−2



,

(27)
where a and aj (j = 1 . . . n − 2) are n − 3 dimensional vectors (rows) of the form
(o(xρi ), . . . , o(x

ρ
i )). We symbolically represent matrix (27) in the form ai11 ai12 ai13

. . . . . . . . .
ain−1,1 ain−1,2 ain−1,3

 .
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Now we have

DT
(k)
1

∣∣∣
Qk

=

 a1
11 a1

12 a1
13

. . . . . . . . .
a1
n−1,1 a1

n−1,2 a1
n−1,3

 a2
11 a2

12 a2
13

. . . . . . . . .
a2
n−1,1 a2

n−1,2 a2
n−1,3



. . .

 ak11 ak12 ak13

. . . . . . . . .
akn−1,1 akn−1,2 akn−1,3



=

a1
11a

2
11 . . . a

k
11 + . . . . . . . . .

. . . . . . . . .

. . . . . . . . .

 .

(28)

Here each of the terms denoted by dots contains at least one of xρi (i = 1 . . . k) as
a factor, and the term a1

11a
2
11 . . . a

k
11 is the only one which does not contain xρi and

therefore the dominant one. This gives us the formula for the trace:

tr DT
(k)
1

∣∣∣
Qi

= a1
11a

2
11 . . . a

k
11 + o(xρ−1

1 + · · ·+ xρ−1
k )

= Ak(ρ2 + ω2)
k
2 xρ−1

1 . . . xρ−1
k cos (ξ1 − ϕ) . . . cos (ξk − ϕ)

+o(xρ−1
1 + · · ·+ xρ−1

k ),

(29)

where ϕ = arctanω/ρ.

Before we proceed further, we show that the eigenvalues of DT
(k)
1

∣∣∣
Qi

correspond-

ing to z coordinates have the order of o(xρ1 . . . x
ρ
k). We use Lemma 4, which implies

that, for any periodic point, there exists an (n− 3)-dimensional invariant subspace
Ez to which its strong-stable manifold is tangent. Note that the eigenvalues of

DT
(k)
1

∣∣∣
Qi

can be divided into two groups: one includes λ1 and λ2 corresponding to

coordinates x and y; the other includes λ3 . . . λn−1 corresponding to the restriction

S of DT
(k)
1

∣∣∣
Qi

to Ez. Since Ez is in the cone defined in the proof of Lemma 4,

we have ‖S∆z‖ 6 o(xρ1 . . . x
ρ
k)‖∆z‖ (see (104)), where ∆z ∈ Ez. It follows that

the (n − 3) strong-stable multipliers λ3 . . . λn−1 satisfy λi = o(xρ1 . . . x
ρ
k), where

i = 3, 4 . . . n− 1.
We have the following expressions:

λ1 + λ2 = tr DT
(k)
1

∣∣∣
Q1

−
n−1∑
i=3

λi and λ1λ2 =
∑
ij

Mij −
∑

16i<j6n−1
(i,j)6=(1,2)

λiλj , (30)

where Mij is the minor obtained by taking i-th and j-th rows, and i-th and j-th

columns from DT
(k)
1

∣∣∣
Q1

. One can check that M12 gives the largest contribution to∑
ijMij and that it is given by

M12 =

k∏
i=1

DT1|Qi = Ck12x
2ρ−1
1 . . . x2ρ−1

k + o(x2ρ−1
1 + · · ·+ x2ρ−1

k ), (31)
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where C12 = −ωAA1 sin(θ1 − θ). Now from equations (29) and (31), we have

λ1 + λ2 = Ak(ρ2 + ω2)
k
2 xρ−1

1 . . . xρ−1
k cos (ξ1 − ϕ) . . . cos (ξk − ϕ)

+o(xρ−1
1 + · · ·+ xρ−1

k ) + o(xρ1 . . . x
ρ
k)

(32)

and
λ1λ2 = Ck12x

2ρ−1
1 . . . x2ρ−1

k + o(x2ρ−1
1 + · · ·+ x2ρ−1

k )

+λ1o(x
ρ
1 . . . x

ρ
k) + λ2o(x

ρ
1 . . . x

ρ
k) + o(x2ρ

1 . . . x2ρ
k ).

By noting λ1, λ2 < ‖DT k‖ = O(x2ρ−1
1 . . . x2ρ−1

k ), we have

λ1λ2 = Ck12x
2ρ−1
1 . . . x2ρ−1

k + o(x2ρ−1
1 + · · ·+ x2ρ−1

k ). (33)

It can be checked that the equation for a periodic point to be of index 2 is

λ1 + λ2 = c(λ1λ2 + 1), c ∈ (−1, 1). (34)

Indeed, the relation between the index of a point and the pair (λ1 + λ2, λ1λ2)
is illustrated in Figure 4, where we assume that the directions corresponding to
λ3 · · ·λn−1 are the strong-stable ones.

Figure 4. The index is determined by the pair (λ1 + λ2, λ1λ2).

By noting relations (26) and dividing both sides of equation (34) by xρ−1
1 xρ−1

2 . . .

xρ−1
k , we obtain

cos(ξ1 − ϕ) cos(ξ2 − ϕ) . . . cos(ξk − ϕ) = cψ(ξ, y, z, j1, j2), (35)

where ξ = (ξ1, ξ2, . . . , ξk), ψ = o(1)j1,j2→∞ is continuous in ξ, y, z and all parameters
such that

∂iψ

∂i(ξ, y, z, ζ, ρ)
= o(1)j1,j2→∞ i 6 (r − 2).

Since the computation of ψ involves the first derivatives, we have i 6 (r−2) instead
of i 6 (r − 1).

Lemma 5 offers a criterion to seek for index-2 periodic orbits, by using which we
have the following result.
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Lemma 6. For a dense set of ρ values in (0,
1

2
), the system X0,ρ has two countable

sets of index-2 periodic points of T in Π accumulating on M+ and M−, respectively.

It can be seen from the proof below that finding each set of index-2 points only
involves one homoclinic loop. Therefore, Lemma 6 extends Theorem 3 of [24] to
systems with dimension higher than three, and we can reformulate it as follows.

Corollary 1. Let system Xρ be a Cr flow in Rn (r > 3, n > 4) having a saddle-focus
equilibrium O with a homoclinic loop Γ associated to it, and exactly one positive
characteristic exponent with the ratio ρ ∈ (0, 1/2). For a dense set of ρ values in

(0,
1

2
), system Xρ has a countable set of index-3 periodic orbits accumulating on Γ.

Note that the ρ values obtained by Lemma 6 are not the same as those given by
Lemma 3. We will show a way to obtain the quasi-transverse intersection Wu(P )∩
W s(Q) by using Lemmas 3 and 6 together in the next subsection.

Proof of Lemma 6. By symmetry it is sufficient to only consider Γ+ and find a
sequence of index-2 points accumulating on M+.

Let {Q1(x1, y1, z1), Q2(x2, y2, z2)} ⊂ Π1 be an orbit of period 2 and index 2 under
T1. By (25), we have

ω ln
1

xi
= 2πji + ξi − θ, ξi ∈ [0, 2π) i = 1, 2. (36)

By Lemma 5 and formula (8) for T1, an orbit of T1 with period 2 and index 2 is
given by

x2 = Ay1x
ρ
1 cos ξ1 + o(xρ1),

y2 = 1 +A1y1x
ρ
1 cos (ξ1 + θ1 − θ) + o(xρ1),

z2 = z+ +

 A2y1x
ρ
1 cos (ξ1 + θ2 − θ) + o(xρ1)

. . .
An−2y1x

ρ
1 cos(ξ1 + θn−2 − θ) + o(xρ1)

 ,

x1 = Ay2x
ρ
2 cos ξ2 + o(xρ2),

y1 = 1 +A1y2x
ρ
2 cos (ξ2 + θ1) + o(xρ2),

z1 = z+ +

 A2y2x
ρ
2 cos (ξ2 + θ2 − θ) + o(xρ2)

. . .
An−2y2x

ρ
2 cos(ξ2 + θn−2 − θ) + o(xρ2)

 ,

cos(ξ1 − ϕ) cos(ξ2 − ϕ) = cψ,

where −1 < c < 1 and ψ is a certain function of ξ, y, z depending continuously on
parameters and ψ → 0 as j1, j2 → +∞. By expressing y and z as functions of x,
we obtain a reduced system given by

x2 = −A|x1|ρ cos ξ1 + o(|x1|ρ) +O(|x1|ρ|x2|ρ),

x1 = −A|x2|ρ cos ξ2 + o(|x2|ρ) +O(|x1|ρ|x2|ρ),
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cos(ξ1 − ϕ) cos(ξ2 − ϕ) = cψ.

We assume
|x1|ρ ∼ |x2|. (37)

It will be shown later (equation (44)) that the solutions agree with this assump-
tion. Consequently, we replace the terms o(|x1|ρ) + O(|x1|ρ|x2|ρ) and o(|x2|ρ) +
O(|x1|ρ|x2|ρ)) in above equations by o(|x1|ρ) and o(|x2|ρ), respectively. The rela-
tion (36) now brings these equations to the following form:

exp

(
−2πj2 − ξ2 + θ

ω

)
= A exp

(
−2πρj1 − ρξ1 + ρθ

ω

)
cos ξ1 + o

(
exp

(
−2πρj1
ω

))
,

(38)

exp

(
−2πj1 − ξ1 + θ

ω

)
= A exp

(
−2πρj2 − ρξ2 + ρθ

ω

)
cos ξ2 + o

(
exp

(
−2πρj2
ω

))
,

(39)

cos(ξ1 − ϕ) cos(ξ2 − ϕ) = cψ. (40)

We solve this system with sufficiently large j1 and j2. One should note that the
number of equations is larger than that of variables (ξ1, ξ2), so whether this system
of equations is solvable depends on the value of the parameter ρ. Throughout
the rest of the proof, we denote by dots the small terms which are functions of
ξ1, ξ2, j1, j2 and tend to zero as j1 and j2 tend to positive infinity.

Equation (40) implies that one of the terms cos(ξ1−ϕ) and cos(ξ2−ϕ) must be
small. We assume that cos(ξ1 − ϕ) is small and cos(ξ2 − ϕ) is bounded away from
zero, by which we have

cos(ξ1 − ϕ) = cψ1, (41)

where ψ1 = o(1)j1,j2→+∞ is a function of ξ1, ξ2, j1, j2 depending continuously on
ξ1, ξ2 and parameters. Then, we obtain

ξ1 = arccos(cψ1) + k1π + ϕ =
π

2
+ k1π + ϕ+ ψ2(ξ1, ξ2, j1, j2, c), (42)

where k1 = 0, 1 since ξ1 ∈ [0, 2π), ϕ = arctan(ρ/ω), and the function ψ2 =
o(1)j1,j2→+∞ depends continuously on ξ1, ξ2, c and parameters. Note that the value
of ψ2 changes slightly when c varies in (-1,1).

Another expression for cos ξ1 can by found from equation (38):

cos ξ1 = B−1 exp

(
2π(ρj1 − j2) + θ − ρθ + ρξ1 − ξ2

ω

)
+ . . . . (43)

Recall that we assume that cos(ξ1−ϕ) is small which means that cos ξ1 is bounded
away from zero. Equation (43) implies that cos ξ1 is positive. Therefore, we have
k1 = 1 in (42).

We proceed to find ξ2. After taking logarithm on both sides of equation (43) and
sorting the terms, we get

ρj1 − j2 = ω ln(B cos ξ1)− θ + ρθ − ρξ1 + ξ2 + . . . , (44)

Since cos ξ1 is bounded away from zero, the above equation implies that ρj1 − j2 is
bounded, which means ρj2 − j1 is large. Note that this agrees with the assumption
(37).

We divide both sides of equation (39) by exp(−2πρj2/ω) and take the limit
j1, j2 → +∞. By noting that ρj2 − j1 is large, we have

ξ2 =
π

2
+ k2π + . . . , (45)
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where k2 = 0, 1 since ξ2 ∈ [0, 2π). The expression for ξ2 implies that cos(ξ2 − ϕ) is
bounded away from zero. This agrees with our assumption above (41).

The variables ξi can be solved out by implicit function theorem from (42) and
(45), and they are functions of j1, j2 and c. By plugging the new expressions for ξi
into equation (44), we have

ρj1 − j2 = Ψ(ρ, j1, j2, c), (46)

where c ∈ (−1, 1) and Ψ is a uniformly bounded function continuous in ρ and c. For
any fixed ρ ∈ (1/2) and c ∈ (−1, 1), each solution (j1, j2) to equation (46) gives an
index-2 periodic orbit {Q1, Q2} of the Poincaré map, and thus an index-3 periodic
orbit of the system X0,ρ. In what follows we show that there exists a dense set of
ρ values in (0, 1/2) such that, for each value ρ in this set, there exists a sequence
{jn1 , jn2 } of solutions satisfying jn2 /j

n
1 → ρ as n→ +∞. This will immediately imply

Lemma 6.
By the boundedness of Ψ(ρ, j1, j2, c), we can assume |Ψ| < C for some constant

C. Let N1 > 0 be any large integer and I1 = [a1, a2] be an arbitrary interval in
(0, 1/2). We fix c = c′ ∈ (−1, 1) and pick j1

1 > N1. We have

a1j
1
1 −Ψ(ρ, j1, j2, c

′) < da1j
1
1 + Ce = m1, (47)

and

a2j
1
1 −Ψ(ρ, j1, j2, c

′) > ba2j
1
1 − Cc = m2. (48)

Note that j1
1 can be chosen sufficiently large such that m2 > m1. Now consider the

function

F (ρ, j1, j2) := ρj1 −Ψ(ρ, j1, j2, c
′)−m1.

Equations (47) and (48) imply that

F (a1, j
1
1 ,m1) < 0 and F (a2, j

1
1 ,m1) > 0. (49)

Therefore, by the continuity of Ψ, there exist a value ρ1 ∈ I1 and a pair (j1
1 , j

1
2 = m1)

such that they satisfy

ρ1j
1
1 − j1

2 = Ψ(ρ1, j
1
1 , j

1
2 , c
′). (50)

Note that Ψ is also continuous in c, so one can find c11 and c12 with c′ ∈ (c11, c
1
2) (or

(c12, c
1
1)) such that

Ψ(ρ1, j
1
1 , j

1
2 , c

1
1) < ρ1j

1
1 − j1

2 < Ψ(ρ1, j
1
1 , j

1
2 , c

1
2). (51)

The continuity of Ψ in ρ now implies that there exists a neighbourhood J1 of ρ1

such that inequality (51) holds for all ρ values taken from J1.
We choose I2 ⊂ J1 such that ρ1 /∈ I2. We can find ρ2 ∈ I2 and the corresponding

pair (c21, c
2
2) with c21, c

2
2 ∈ (0, 1) and (j2

1 , j
2
2) with j2

1 > N2 > j1
1 such that an

inequality of the same form of (51) holds. By proceeding like this, we will find a

sequence {In} of nested intervals. Consequently, there exist a value ρ0 ∈
⋂+∞
n=1 In,

and two sequences {(cn1 , cn2 )} and {(jn1 , jn2 )} where jn1 , j
n
2 → +∞ and jn2 /j

n
1 → ρ0

as n→ +∞ such that

Ψ(ρ0, j
n
1 , j

n
2 , c

n
1 ) < ρ1j

1
1 − j1

2 < Ψ(ρ0, j
n
1 , j

n
2 , c

n
2 ). (52)

This means that for each n we can find a value cn ∈ (0, 1) such that

ρ0j
n
1 − jn2 = Ψ(ρ0, j

n
1 , j

n
2 , c

n), (53)

which implies the existence of an index-2 period-2 point of T2.
Since I1 is chosen arbitrarily, such values ρ0 are dense in (0, 1/2).
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3.4. Quasi-transverse intersection Wu(P )∩W s(Q). We fix a pair (µj , ρj) given
by Lemma 3 with a sufficiently large j, and consider perturbations of system Xµj ,ρj .
Recall that parameter µ controls the splitting of the homoclinic loops Γ± around the
points Γ± ∩Π, and parameter ρ is a function of the characteristic exponents at O.
We now introduce another parameter ν which governs the separation of W ss(M−)
and Wu(P ) in system Xµj ,ρj around the intersection given by Lemma 3.

To be more precise, we note that system Xµj ,ρj lies in the codimension-1 sur-
face H1 consisting of systems having the double-round homoclinic loop Γ−. Inside
H1, there exists a codimension-2 surface H2 such that the corresponding systems
have the non-empty intersection W ss(M−) ∩Wu(P ). Then, we consider the two
parameter family Xρ,ν . Note that the parameter µ is now a function of ρ such
that the system Xρ,ν always has the double-round loop when we change ρ. These
surfaces are smooth submanifolds of the space of sufficiently smooth R−symmetric
systems (as we discussed under Theorem 1, we make the original system C∞ from
the very beginning). Indeed, if the system is C∞ then the invariant manifolds
W s(O),Wu(O),Wu(P ) and W ss(M−) smoothly depend on the system. Obviously,
this is true for W s(O),Wu(O) and Wu(P ) since the stable and unstable manifolds
of hyperbolic periodic orbits and equilibrium states depend on parameters smoothly.
Regarding W ss(M−), we explain as follows. Inside the surface H1, the separatrix
Γ− is always a homoclinic loop, and therefore, the strong-stable manifold W ss(M−)
lies in the stable manifold W s(O). By noting that W ss(M−) is a leaf of the strong-
stable foliation F1 and the part of F1 contained in W s(O) smoothly depends on
parameters, we have that W ss(M−) smoothly depends on the system in H1. As
the corresponding stable and unstable manifolds depend on the system smoothly,
the existence of their intersections correspond to the vanishing of certain smooth
functionals. We can control the values of such functionals by adding to the system
perturbations supported in a sufficiently small neighbourhood of the intersection
points of W ss(M−) ∩Wu(P ). This implies the smoothness of the surfaces H1 and
H2.

Let ν be the value of the functional that measures the splitting of Wu(P ) and
W ss(M−) for systems in H1, so the surface H2 is given by equation ν = 0. The
explicit expression for ν is not obtained at this moment. It could be found if we had
a better formula for the small terms o(|x|ρ) in (8) and (9). We embed the system
X∗ := Xµj ,ρj into a smooth two-parameter familyXρ,ν of systems inH1. We assume
that Xρ,ν is transverse to H2 in H1. We also assume that the difference between
Xρ,ν and X∗ is localised in a small neighbourhood of M±, O and the preimage by
T of the intersection point of Wu(P ) ∩W ss(M−) given by Lemma 3. Therefore,
changes of ν separate Wu(P ) and W ss(M−) without changing the behaviour near
the double-round homoclinic loop Γ−, while changing ρ is done without destroying
the loop and the intersection of Wu(P ) with W ss(M−).

Now we can apply Lemma 6 to a neighbourhood of the double-round homoclinic
loop while keeping the intersection W ss(M−)∩Wu(P ). This means that, by chang-
ing ρ in the family Xρ,ν=0, one can find a value of ρ arbitrarily close to ρj such that
the corresponding system will have a countable set {Q−k } of periodic orbits of index
2 accumulating on M− while the intersection Wu(P )∩W ss(M−) is still intact. The
points Q−k have period 2 with respect to the double-round homoclinic loop Γ−, so
they have period 4 with respect to the original homoclinic loops. Since the stable
manifolds W s(Q−k ) and the strong-stable manifold W ss(M−) are leaves of the folia-

tion F1, we have that W s(Q−k ) accumulates on W ss(M−) as well. This sequence of
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index-2 points will persist when we change ν while keeping ρ constant as our family
Xρ,ν is such that the behaviour near the loop does not depend on ν. Consequently,
by an arbitrarily small change in ν, we can destroy the intersection of Wu(P ) with
W ss(M−) and create an intersection of Wu(P ) with the stable manifold W s(Q) of
a point Q ∈ {Q−k }. The quasi-transversality of this intersection W s(Q) ∩Wu(P )
follows from the argument used above the proof of Lemma 3. Thus, we have the
following result.

Lemma 7. There exists a sequence {(ρnj , νnj )}n where (ρnj , ν
n
j ) → (ρj , 0) as n →

+∞ such that the separatrix Γ− forms a double-round homoclinic loop, and, on
the cross-section Π in system Xρnj ,ν

n
j

, there exits an index-1 fixed point P and an

index-2 period-4 point Q for which the intersection Wu(P ) ∩W s(Q) is non-empty.
Moreover, this intersection is quasi-transverse.

3.5. Transverse intersection W s(P )∩Wu(Q). As mentioned before, by Shilnikov
theorem, there exist two countable sets {P+

k } ⊂ Π1 and {P−k } ⊂ Π2 of index-
1 fixed points of T1 and T2 accumulating on M+ and M−, respectively. The
points P+

k and P−k are obtained by solving the equations T1(x, y, z) = (x, y, z)
and T2(x, y, z) = (x, y, z), respectively. In the previous sections, we picked an arbi-
trary point P from the set {P+

k } which remains an index-1 fixed point under the

small perturbation. Note that all results still hold if we pick P from the set {P−k }.
In what follows, we first give a detailed discussion on the points P+

k and their local
stable manifolds; then we prove that the intersection W s(P )∩Wu(Q) is non-empty,

3.5.1. The set {P+
k } of index-1 fixed points. We start by giving a lemma on the

local stable manifolds of the points P+
k in two cases, where we consider the µ = 0

case for the original set of index-1 fixed points given by Shilnikov theorem, as well
as the µ 6= 0 case for those points which survive the perturbation.

Lemma 8. At µ = 0, there exists a set {P+
k } of index-1 fixed points of the map T1

such that the x-coordinate of each point is given by

xk = C exp
(−πk

ω

)
+ o
(

exp
(−πk

ω

))
, (54)

where C = exp((2θ − π)/2ω). The local stable manifolds W s
loc(P

+
k ) are graphs of

functions g(y, z) defined for all y and z values in Π and take the form

x = C exp
(−πk

ω

)
+ o(1)k→+∞, (55)

where o(1) stands for a function of y and z that is uniformly small together with its
derivatives up to order r− 2. Those manifolds accumulate on Π0 in C0-topology as
k → +∞.

For any µ 6= 0 sufficiently close to 0, there exists a constant C1 such that points
in {P+

k } which satisfy the condition

xk > C1|µ|
1
ρ (56)

remain index-1 fixed points of the map T1, and their local stable manifolds W s
loc(P

+
k )

take the same form as given by formula (55).

Proof. Let µ = 0. We first find the fixed points P+
k , which can be done by plugging

(x̄ = x, ȳ = y, z̄ = z) into (8). From the last two equations in (8), the coordinates y
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and z can be expressed as functions of x, which leads to the equation for coordinate
x:

x = Axρ cos(ω ln
1

x
+ θ) + o(xρ). (57)

We have the fixed points P+
k with

xk = C exp
(−πk

ω

)
+ o
(

exp
(−πk

ω

))
,

yk = 1 + o
(

exp
(−πk

ω

))
,

zk = z+ + o
(

exp
(−πk

ω

))
,

(58)

where yk, xk, zk are the coordinates of P+
k , C = exp((2θ − π)/2ω), and k is any

positive integer greater than some sufficiently large K. Let us show that the points
P+
k are of index 1. Recall the transformation (25) of x-coordinate of points on Π1:

ξ = ω ln
1

x
+ θ − 2πj ξ ∈ [0, 2π)

by which we divide the cross-section into different regions Vj and let ξ be a new
coordinate in each region. By Lemma 5, a fixed point P (x, y, z) of Ti (i = 1, 2) has
index 2 only if cos ξ is close to a value bounded away from zero. However, the first
equation in (58) implies that cos ξk is small when k is sufficiently large. We also
note that, under our consideration, the index of a periodic point is at most 2 since
the multipliers corresponding to z coordinates stay inside the unit circle for all the
small perturbations.

We now consider the inverse image under T1 of a small piece of the surface
{x = xk} containing P+

k . By formula (8), we have

sin
(π

2
− θ − ω ln

1

x

)
=

1

yA

(xk
xρ

+ o(1)x→0

)
, (59)

where x and y are coordinates of the points in the inverse image (z coordinates
are in the o(1) term). Note that x is bounded since the small cross-section Π is
bounded. We have following equation if x and xk/x

ρ are sufficiently small:

π

2
− θ − ω ln

1

x
=

1

yA

(xk
xρ

+ o(1)x→0

)
+mπ ,m = 0,±1,±2, . . . , (60)

which, by noting that the surface contains P+
k , leads to

x = C exp
(−πk

ω

)
+ o(1)k→+∞, (61)

where the term o(1) stands for a function of y and z that is uniformly small together
with its derivatives up to order r−2. Formula (61) is valid for all values of y, z, where
(x, y, z) ∈ Π, if x and xk/x

ρ are sufficiently small. This requirement is equivalent
to that k is sufficiently large. One can check that the successive backward iterates
of a small piece of the surface x = xk containing P+

k take the same form as (61),
where the term o(1) stays uniformly small. Since W s

loc(P ) is the limit of a sequence
of those iterates, W s

loc(P ) is given by (61). Obviously, those manifolds accumulate
on Π0 as k → +∞ in C0-topology.

At µ 6= 0, the fixed points are given by

x = µ+Axρ cos(ω ln
1

x
+ θ) + o(xρ), (62)
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which will still lead to the formula (58) for the coordinates of the fixed point P+
k

if |µ| exp(πρk/ω) is sufficiently small, i.e. there is a sufficiently large constant C1

such that xk < C1|µ|
1
ρ . Note that formula (58) now only gives us finitely many

fixed points and they are still of index 1.
We now consider again the inverse image under T1 of a small piece of the surface

{x = xk} containing P+
k but with µ 6= 0. From equations in (8), we have

sin
(π

2
− θ − ω ln

1

x

)
=

1

yA

(xk
xρ
− µ

xρ
+ o(1)x→0

)
, (63)

where (x, y) are coordinates of the points in the inverse image and y is bounded
since the small cross-section Π is bounded. In addition to x and xk/x

ρ, if |µ|/xρ is
also sufficiently small, then we have the following equation similar to equation (60):

π

2
− θ − ω ln

1

x
=

1

yA

(xk
xρ
− µ

xρ
+ o(1)x→0

)
+mπ ,m = 0,±1,±2, . . . , (64)

which also gives

x = C exp
(−πk

ω

)
+ o(1)k→+∞. (65)

Formula (65) has the same form as (61), and it is valid for all values of y, z, where
(x, y, z) ∈ Π, if |µ| exp(πρk/ω), x, xk/x

ρ and µ/xρ are sufficiently small. This is
equivalent to that k is sufficiently large and |µ| exp(πρk/ω) is sufficiently small. This
can be achieved since ρ < 1 and we can choose sufficiently small µ and sufficiently
large k independently. It can be checked that the successive backward iterates of
the curve given by (65) take the same form, where the term o(1) stays uniformly
small. It follows that the local stable manifold W s

loc(P ) is given by (65).
For a non-zero µ value, we can no longer chose P as close to the surface Π0 as we

want, since infinitely many points in {P+
k } which accumulate on Π0 are destroyed.

In order to find the intersection W s(P ) ∩Wu(Q), more details are required on the
positions of the points Pk that remain index-1 and fixed after changing µ.

Let P+
k∗ ∈ {P

+
k } be the first point (the one with the largest subscript) in {P+

k }
satisfying xk > C1|µ|

1
ρ where µ 6= 0 (see Lemma 8). Obviously, the number k∗

mainly depends on µ, and k∗ → +∞ as µ→ 0. We have the following results.

Lemma 9. For any given constant C2 > 0, there exists a positive number µ(C2)
such that the inequality

xk∗ < C2|µ|
1
2ρ (66)

holds for all |µ| < µ(C2).

Proof. By the definition of the point P+
k∗ , it is sufficient to prove that, for any given

C2, there exists a point P+
k satisfying

C1|µ|
1
ρ < xk < C2|µ|

1
2ρ , (67)

where C1 is the constant in Lemma 8. Recall that we have

xk = C exp
(−πk

ω

)
+ o
(

exp
(−πk

ω

))
,

from formula (58). Now by letting

µ = exp

(
−πj − ξµ + η

ω

)
(68)
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we have

xk

|µ|
1
ρ

=

∣∣∣∣xρkµ
∣∣∣∣ 1ρ = C exp

(
ξµ − η
ω

) 1
ρ

exp

(
(j − ρk)π

ω

) 1
ρ

+ . . .

and

|µ|
1
2ρ

xk
=

∣∣∣∣∣ µx2ρ
k

∣∣∣∣∣
1
2ρ

=
1

C
exp

(
η − ξµ
ω

) 1
2ρ

exp

(
(2ρk − j)π

ω

) 1
2ρ

+ . . . ,

where dots denote small terms that go to zero as j and k go to plus infinity. Con-
sequently, there exists sufficiently large integer K and J such that the inequalities

xk

|µ|
1
ρ

> C ′1 exp

(
(j − ρk)π

ω

) 1
ρ

and
|µ|

1
2ρ

xk
> C ′2 exp

(
(2ρk − j)π

ω

) 1
2ρ

,

hold for all j > J and k > K, where C ′1 and C ′2 are two constants that do not
depend on j and k. It follows that, in order to obtain inequality (67), it is now
sufficient to find j and k that satisfy inequalities

j − ρk > ωρ lnC1/C
′
1

π
and 2ρk − j > −2ωρ lnC2C

′
2

π
,

i.e.
ωρ lnC1/C

′
1

π
+ ρk < j <

2ωρ lnC2C
′
2

π
+ 2ρk. (69)

Obviously, for any sufficiently large integer j, one can find an integer k such that
the above inequality holds (note 2ρ < 1).

Let j0 be such that for every j > j0 there exists k such that (j, k) is a solution
to inequality (69). Now let

µ(C2) = exp(
−πj0 + θ

ω
). (70)

Then, for any |µ| < µ(C2), the corresponding j given by equation (68) satisfies
j > j0. The lemma is proven.

Lemma 10. There exists a constant K for all ρ values close to ρ∗ (the ρ value of the
original system) such that points in {P+

k } with K(ρ) < k ≤ k∗ are homoclinically
related.

Proof. The case where µ = 0 (i.e. k∗ = +∞) is the result of [31]. When µ is

non-zero, as long as yk < C1|µ|
1
ρ , the parameter µ will enter small terms of all

equations used in the computation in [31], and therefore we have Lemma 10.

3.5.2. The transverse intersection. If the intersection W s(P )∩Wu(Q) exists, then it
must be transverse. This is because that the invariant manifold Wu(Q) is transverse
to the strong-stable foliation, but W s(P ) consists of leaves of the strong-stable
foliation.

We assume that the point P ∈ {P+
k } used in the previous sections has a subscript

satisfying
K < k < k∗, (71)

where k∗ is the largest subscript among points in {P+
k } which remain index-1 and

fixed after a small perturbation, and K is the constant given by Lemma 10. This
means that our point P lies in the set of the remaining points in {P+

k } which are not
only index-1 and fixed but also homoclinically related with each other after small
perturbations in ρ.
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In what follows we will show that, for any periodic point Q of T with index 2, its
unstable manifold Wu(Q) transversely intersects the stable manifold W s(P ). To
achieve this, we use the following result:

Lemma 11. The unstable manifold Wu(Q) of the orbit of an index-2 periodic point
Q intersects Π0 = {y = 0} transversely.

This is Lemma 5 in [21] and here we only sketch the proof. It is proved by

considering the quotient map T̃ ≡ (T̃1, T̃2) obtained from the Poincaré map T ≡
(T1, T2) by taking quotient along leaves of the strong-stable foliation F1 on Π. The

map T̃ acts on the 2-dimensional quotient cross-section Π̃ = Π ∩ {z = z∗} where

z∗ is some constant and ‖z∗‖ < δ. For any region V ⊂ Π̃, its image T̃ (V ) is the

projection of T (V ) onto Π̃ along the leaves of F1. Let Q̃ be the projection of Q

on Π̃ by the leaf which goes through Q. Note that Wu(Q̃) is obtained by taking

limit of the iterates of a small two-dimensional neighbourhood of Q̃ on Π̃. By the
volume-hyperbolicity of the flow and the absolute continuity of the foliation, two-
dimensional areas on Π̃ is expanding under T̃ . Therefore, the unstable manifold
Wu(Q̃) intersects W s(O) ∩ Π̃, which implies the lemma.

By Lemma 11, we can take a connected component L ⊂ Wu
loc(Q) such that it

intersects Π0. We will consider the iterate of L under the map T (2) (the second
iterate of T ). We show (see Lemma 12 below) that some iterate of L transversely
intersects the local stable manifold W s

loc(P
+
k∗) if Γ+ and Γ− form double-round

homoclinic loops, which is the case when we consider the parameters given by
Lemma 7.

Recall that the point P picked is homoclinically related to P+
k∗ . Therefore, by the

λ-lemma, we obtain the transverse intersection W s(P ) ∩Wu(Q). This intersection
along with the quasi-transverse intersection Wu(P ) ∩W s(Q) obtained in Lemma
7 immediately implies the existence of a heterodimensional cycle of the Poincaré
map T associated to P and Q. It follows that we obtain a heterodimensional cycle
associated to two periodic orbits of indices 2 and 3 in the full system Xµnj ,ρ

n
j ,ν

n
j

. In

this way, Theorem 1 will be proven.
Let us now give the lemma used in the above argument. Let l ⊂ L be a curve

joining two points M0(0, x0, z0) ∈ L ∩ Π0 and M1(x1, y1, z1) ∈ (L ∩ Π1) \ Π0. We
now consider the iterate of this curve l under the map T .

Lemma 12. If Γ+ and Γ− are two double-round homoclinic loops, then there exists
some i such that the iterate T (i)(l) intersects the local stable manifold W s

loc(P
+
k∗).

This lemma immediately implies the existence of the non-empty transverse in-
tersection W s

loc(P
+
k∗) ∩Wu

loc(Q).

Proof of Lemma 12. By Lemma 8, the local stable manifold W s
loc(P

+
k∗) is given by

x = C exp(
−πk∗

ω
) + o(1)k∗→+∞ = xk∗ + o(1)k∗→+∞, (72)

where xk∗ is the x-coordinate of P+
k∗ . Therefore, by Lemma 9, we can find two

positive constants C2 and µ(C2) such that W s
loc(P

+
k∗) is below the surface {x =

C2|µ|
1
2ρ } for all µ ∈ (−µ(C2), µ(C2)). Consequently, if x1 > C2|µ|

1
2ρ , then Lemma

12 automatically holds. We now assume

x1 < C2|µ|
1
2ρ . (73)
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We first show that there exists a point M2(y2, x2, z2) ∈ l with 0 < x2 < x1 such
that the x-coordinate ¯̄x2 of its second iterate T (2)(M2) is larger than x1. Note that

we have T (2)(M2) = T
(2)
1 (M2) if µ > 0 and T (2)(M2) = T2 ◦ T1(M2) if µ < 0. For

certainty, we consider the case where µ > 0. The same result holds for the other
case.

Since M0 ∈ Π0 and the homoclinic loop Γ+ is double-round (i.e. we consider
here only the parameter values given by Lemma 7), we have

T1(M0) = M+(µ, 1, z+) and T
(2)
1 (M0) = (0, ¯̄y0, ¯̄z0). (74)

Let M(x, y, z) be an arbitrary point on l and we consider the x-coordinate ¯̄x of its

second iterate T
(2)
1 (M). Recall the equation for x-coordinate in the formula (8) of

the map T1, which is

F (x, y, z) := x̄ = µ+Ayxρ cos (ω ln
1

x
+ θ) + o(xρ). (75)

By the mean value theorem, we have

¯̄x = ¯̄x− 0

= F (x̄, ȳ, z̄)− F (µ, 1, z+)

=
∂F (xt, yt, zt)

∂x
(x̄− µ) +

∂F (xt, yt, zt)

∂y
(ȳ − 1) +

∂F (xt, yt, zt)

∂z
(z̄ − z+),

(76)
where (xt, yt, zt) = (1− t)(x̄, ȳ, z̄) + t(µ, 1, z+) for some t ∈ (0, 1). By equation (75)
and formula (8) of the map T1, equation (76) yields

¯̄x = (
√
ρ2 + ω2xρ−1

t cos(ω ln
1

xt
+ θ − ϕ) + o(xρ−1

t ))(x̄− µ) +O(xρt )(x̄− 1)

+O(xρt )(z̄ − z+)

=
√
ρ2 + ω2xρ−1

t cos(ω ln
1

xt
+ θ − ϕ)Ayxρ cos(ω ln

1

x
+ θ) + o(xρ−1

t xρ),

(77)

where φ = arctan(
ω

ρ
).

Let us now find an estimate for ¯̄x. It can be seen from equation (77) that the
first term in (77) is dominant if

cos(ω ln
1

x
+ θ) 6= 0 and cos(ω ln

1

xt
+ θ − ϕ) 6≡ 0 t ∈ (0, 1). (78)

Moreover, this first term is also monotone if cos(ω lnxt
−1 + θ−ϕ) does not change

sign for all t ∈ (0, 1). In what follows we find points on the curve l satisfying these
conditions and the lower bound of the x-coordinates ¯̄x of their second iterate under
the map T1.

Obviously, there exists a sufficiently small ε > 0 such that if∣∣∣∣ln 1

µ
− ln

1

x̄

∣∣∣∣ < ln(1 + ε) i.e.

∣∣∣∣ x̄µ − 1

∣∣∣∣ < ε, (79)

then cos(ω lnxt
−1 + θ − ϕ) does not change sign for all t ∈ (0, 1), and therefore

equation (77) implies that

|¯̄x| > C3µ
ρ−1|Ayxρ cos(ω ln

1

x
+ θ) + o(xρ)|, (80)
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where C3 is a constant depending on ε. Now recall the variable ξ introduced by the
relation (25) that

ω ln
1

|x|
= 2πj + ξ − θ ξ ∈ [0, 2π). (81)

We consider a sequence {Mcj(xcj , ycj , zcj)}j of points on the curve l such that

cos(ω ln
1

xcj
+ θ) = cos ξcj 6= 0. (82)

Specifically, we consider points that satisfy

∂F (xcj , ycj , zcj)

∂x
= 0 (83)

i.e. √
ρ2 + ω2xρ−1

cj cos(ξcj − ϕ) + o(xcj) = 0,

which implies

ξcj =
π

2
+ φ+ kπ + · · · (84)

where k = 0, 1 since ξcj ∈ [0, 2π) and the dots denote terms that go to zero as j
goes to plus infinity. Generically, inequality (82) is satisfied by those ξcj .

Note that, for any ε, condition (79) can be satisfied by all points in {Mcj} with
sufficiently large j. This is because, by equation (75), we have∣∣∣∣ x̄cjµ − 1

∣∣∣∣ =

∣∣∣∣∣Aycjx
ρ
cj cos ξcj + o(xρcj)

µ

∣∣∣∣∣ < ε (85)

when xcj is sufficiently small (i.e. j is sufficiently large) since ycj is uniformly
bounded by the definition of the cross-section Π. Indeed, by the relation (81),
equation (85) yields∣∣∣∣Aycj exp

(
−2πρj − ρξcj + ρθ

ω

)
cos ξcj + o

(
exp

(
−2πρj

ω

))∣∣∣∣ < µε, (86)

i.e.

j >
θ − ξcj

2π
− ω

2πρ
ln

µε

Aycj | cos ξcj |
+ o(1)j→+∞ =: J1 + o(1)j→+∞. (87)

Now let J2 be the smallest integer such that the above small term o(1)j→+∞ is
smaller than 1 for all j > J2, and let J = max(J1 + 1, J2). It follows that all points
Mcj with j > J satisfy the condition (79).

Note that equation (82) implies that there exists a constant C4 which does not
depend on µ such that we have

|Aycjxρcj cos ξcj + o(xρcj)| > C4x
ρ
cj . (88)

Thus, for points Mcj with j > J , inequality (80) now implies

|¯̄xcj | > C3C4µ
ρ−1xρcj . (89)

We next claim that there exists a positive constant C5 independent of µ such
that one can always find some j0 > J satisfying the inequality

xρcj0 >
εµ

C5
(90)

at µ 6= 0. By the relation (81), inequality (90) is equivalent to

exp

(
−2πρj0 − ρξcj0 + ρθ

ω

)
>
εµ

C5
, (91)
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i.e.

j0 <
θ − ξcj0

2π
− ω

2πρ
ln
µε

C5
. (92)

By comparing inequality (92) with the definition of J (87) and also noting that
Aycj | cos ξcj | is bounded, one can easily find the constant C5 stated in the claim.

We now consider the point Mcj0 . The assumption x1 < C2|µ|
1
2ρ (73) and in-

equality (90) imply

xρcj0 >
εµ

1
2

C2C5
xρ1. (93)

The x-coordinate ¯̄xcj0 of the second iterate T
(2)
1 (Mcj0) can be now estimated by

inequalities (89) and (93) as

|¯̄xcj0 | >
εC3C4

C2C5
µρ−1xρ1. (94)

Note that the constants C2, C3, C4 and C5 do not depend on µ, and the point Mcj0

exists for all µ 6= 0 by the above claim. Therefore, we can choose µ sufficiently small
such that inequality (94) implies

|¯̄xcj0 | > 2x1. (95)

Note that the sign of ¯̄ycj0 is the same of that of cos(ω ln yt
−1 +θ−ϕ) cos ξcj0 (see

(77)). When ε is small, the sign of cos(ω ln yt
−1 + θ − ϕ) depends on the value of

µ. Also, it can be seen from equation (84) that

Aycj0x
ρ
cj0

cos ξcj0 + o(xρcj0) > 0 if k = 1,

and

Aycj0x
ρ
cj0

cos ξcj0 + o(xρcj0) < 0 if k = 0.

It follows that we can choose k accordingly such that ¯̄xcj0 given by equation (77) is
positive. Consequently, we can rewrite inequality (95) as

¯̄xcj0 > 2x1. (96)

Now let Mcj0 be the point M2(x2, y2, z2) mentioned in the beginning of the proof.
We return to the iterate of the curve l joining points M0 and M1(x1, y1, z1). From

the above argument, the second iterate T
(2)
1 (l) contains a curve l1 joining points

T
(2)
1 (M0) =: M3 and T

(2)
1 (M2) =: M4(x4, y4, z4) such that x4 > 2x1. Note that

we have M3 ∈ Π0 since the separatrices Γ+ and Γ− form double-round homoclinic
loops for the µ values considered, i.e. T (2)(Π0) ⊂ Π0. Hence, we can apply the same
argument to the curve l1, and obtain a point M5 ∈ l1 and a new curve l2 ⊂ T (2)(l1)
joining points T (2)(M3) =: M6 ∈ Π0 and T (2)(M5) =: M7(x7, y7, z7) such that
x7 > 2x4. This procedure can be continued until we find a curve lk joining points
M3k ∈ Π0 and M3k+1(x3k+1, y3k+1, z3k+1) such that the assumption (73)

x3k+1 < C2|µ|
1
2ρ

is violated. Consequently, we now have

x3k+1 > C2|µ|
1
2ρ ,

which means that lk intersects W s
loc(P

+
k∗). The lemma is proven.
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3.6. Proof of Lemma 4. Proof. Let M1(x1, y1, z1) be a point on Π1 and denote
by M2(x2, y2, z2) its image under T1. We first show that there exist two cones C1
and C2 at M1 and M2 respectively such that the preimage of any tangent vector in
C2 under T1 lies in C1, provided y1 is sufficiently small.

We start by estimating the norms of the preimages. By formula (27) for the
derivative of T1, we obtain

DT1|M1
=



Axρ−1
1 (ρ cos ξ1 + ω sin ξ1) + o(xρ−1

1 ) Axρ1 cos ξ1 + o(xρ1) a

−A1x
ρ−1
1 (ρ cos(ξ1 + η1 − η)

+ω sin(ξ1 + η1 − η)) + o(xρ−1
1 )

A1x
ρ
1 cos(ξ1 + η1 − η)

+o(xρ1)
a1

−A2x
ρ−1
1 (ρ cos(ξ1 + η2 − η)

+ω sin(ξ1 + η2 − η)) + o(xρ−1
1 )

A2x
ρ
1 cos(ξ1 + η2 − η)

+o(xρ1)
a2

. . . . . . . . .

−An−2x
ρ−1
1 (ρ cos(ξ1 + ηn−2 − η)

+ω sin(ξ1 + ηn−2 − η)) + o(xρ−1
1 )

An−2x
ρ
1 cos(ξ1 + ηn−2 − η)

+o(xρ1)
an−2



,

(97)
where a and ai are 1 × (n − 3) vectors of the form (o(xρ1), . . . , o(xρ1)). We rewrite
the above matrix as yρ−1

1 b11 yρ1b12 b13

yρ−1
1 b21 yρ1b22 b23

yρ−1
1 b31 yρ1b32 b33

 ,

where b31 and b32 are (n− 3)× 1 vectors, b13 and b23 are 1× (n− 3) vectors, b33 is
a (n− 3)× (n− 3) matrix, and bij are uniformly bounded.

Denote by E the 2 × 2 block in the top-left corner of DT1|M1
. One can check

that the determinant of E is

ωAA1x
2ρ−1
1 sin η + o(x2ρ−1

1 ). (98)

We then have

E−1 =
1

detE


A1x

ρ
1 cos(ξ1 + η1 − η) + o(xρ1) Ayρ1 cos ξ1 + o(yρ1)

A1x
ρ−1
1 (ρ cos(ξ1 + η1 − η)

+ω sin(ξ1 + η1 − η)) + o(xρ−1
1 )

Axρ−1
1 (ρ cos ξ1

+ω sin ξ1) + o(xρ−1
1 ))


=

(
a11y

1−ρ
1 a12y

1−ρ
1

a21y
−ρ
1 a22y

−ρ
1

)
,

(99)
where aij = ãij + o(1)y1→0 while ãij are uniformly bounded when x1 is small. Let
(∆x2,∆y2,∆z2) be a vector in the cone C2, i.e. |∆x2,∆y2| 6 K‖∆z‖ for some given
K > 0. We have ∆x2

∆y2

∆z2

 = DT1|M1

∆x1

∆y1

∆z1

 , (100)
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which implies (
∆x1

∆y1

)
= E−1

((
∆x2

∆y2

)
−
(
o(xρ1)∆z1

o(xρ1)∆z1

))
. (101)

After the transformation ∆x1 = x1∆u, the above equation yields(
∆u
∆y1

)
=

(
a11x

−ρ
1 a12x

−ρ
1

a21x
−ρ
1 a22x

−ρ
1

)((
∆x2

∆y2

)
−
(
o(xρ1)∆z1

o(xρ1)∆z1

))
. (102)

We now recover some relations among ∆x1, ∆y1 and ∆z1 from the above equal-
ities. By equations (97) and (102), we get

∆z2 = b31x
ρ
1∆u+ b32x

ρ
1∆y1 + o(xρ1)∆z1

= b31x
ρ
1(a11x

−ρ
1 ∆x2 − a11o(1)∆z1 + a12x

−ρ
1 ∆y2 − a12o(1)∆z1)

+b32x
ρ
1(a21x

−ρ
1 ∆x2 − a21o(1)∆z1 + a22x

−ρ
1 ∆y2 − a22o(1)∆z1)

+o(xρ1)∆z1

= (b31a11 + b32a21)∆x2 + (b31a12 + b32a22)∆y2 + o(xρ1)∆z1,

(103)

which, by noting that |∆x2,∆y2| 6 K‖∆z2‖, leads to

‖∆z2‖ 6
o(xρ1)‖∆z1‖

1− (‖b31a11 + b32a21‖+ ‖b31a12 + b32a22‖)K
. (104)

The above inequality along with equation (102) and the assumption |∆x2,∆y2| 6
K‖∆z‖ implies

|∆x1| 6(∣∣∣∣ o(1)(|a11|+ |a12|)K
1− (‖b31a11 + b32a21‖+ ‖b31a12 + b32a22‖)K

∣∣∣∣+ o(1)|a11 + a12|
)
x1‖∆z1‖

=: K1‖∆z1‖
(105)

and

|∆y1| 6(∣∣∣∣ o(1)(|a21|+ |a22|)K
1− (‖b31a11 + b32a21‖+ ‖b31a12 + b32a22‖)K

∣∣∣∣+ o(1)|a21 + a22|
)
‖∆z1‖

=: K2‖∆z1‖,
(106)

where K1 = o(x1), K2 = o(1)x1→0 and K1,K2 6 K when x1 is sufficiently small.
This shows the existence of the desired cones C1 and C2 defined in the beginning.

Note that the matrices used in the computation above keep the same form if we
choose M1 from Π2, and therefore all above results hold. This means that for any
point M ∈ Π, we have a sequence {Ci} of cones along its orbit {Mi} such that,
for each vector w ∈ Ci+1, its preimage DT−1(w) belongs to Ci, provided {Mi} is
sufficiently close to Π0. In what follows we continue assuming M1 ∈ Π1 and seek
for the formula of its local strong-stable manifold.

We obtained the above three inequalities (104) - (106) by only using the as-
sumption |∆x2,∆y2| 6 K‖∆z2‖. However, we also know |∆x2| = k1‖∆z2‖ and
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|∆y2| = k2‖∆z2‖ for some positive constants k1 and k2. By taking into account
this fact and assuming (∆x2,∆y2,∆z2) ∈ C2, the above computation will lead to
the following equalities:

|∆x1| = o(x1)‖∆z1‖ and |∆y1| = o(1)x1→0‖∆z1‖ (107)

(where the small terms o(x1) and o(1) are different from those in (105) and (106)).
Recall the discussion on the non-degeneracy condition in Section 1.1. We know

that there exists a strong-stable foliation F1 on Π, and W ss(Mi) (i = 1, 2) are
smooth leaves with the form

hi(z) =

hi1(z)
hi2(z)
z

 , (108)

where hi1(z) is the x-coordinate and hi2(z) is the y-coordinate. We also have that
dhij/dz (i, j = 1, 2) are uniformly bounded. Let (h11(z), h12(z), z) be a point on
W ss(M1). Denote by z̄ = f3(h11, h12, z) =: F (z) the third equation in the formula
(8) for a point on W ss(M1), which is the equation for z-coordinates in T1. We take
derivative of both sides of T1(h11(z), h12(z), z) = (h21(F (z)), h22(F (z)), F (z)), and
obtain

DT2|(h11(z),h12(z),z)


dh11(z)

dz

dh12(z)

dz

1

 =


dh21(z)

dz
F ′

dh22(z)

dz
F ′

F ′

 . (109)

By noting that the derivative dh2j/dz is uniformly bounded, say ‖(dh2j/dz)‖ 6 k,
we have ‖(dh2j(z)/dz)F

′‖ 6 k‖F ′‖, which implies that the vector ((dh21(z)/dz)F ′,
(dh22(z)/dz)F ′, F ′) is in an above-mentioned cone. Therefore, we obtain the fol-
lowing estimate: 

dh11(z)

dz

dh12(z)

dz

1

 =


o(h11(z))

o(1)h11(z)→0

1

 . (110)

Moreover, we have

h1(z) =

h11(z)
h12(z)
z

 =


h11(z1) +

dh11(z′)

dz
(z − z1)

h12(z1) +
dh12(z′′)

dz
(z − z1)

z

 =


x1 + o(x(z′))(z − z1)

y1 + o(1)x(z′′)(z − z1)

z

 ,

(111)
where z′ and z′′ are intermediate values between z1 and z, and h11(·) =: x(·).

We now show that we can replace o(x(z′)) by o(x1) in (111). Let z(s) = z1 +
(z − z1)s and X(s) = x(z(s)) = h11(z(s)), where s ∈ [0, 1]. Our goal is to prove

X(s)− x1

x1
→ 0 as x1 → 0 uniformly.

Now suppose that there exist some s0 and ε > 0 such that (X(s0)− x1)/x1 > ε for
all x1. In what follows we show a contradiction.
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Note that we have (X(0)− x1)/x1 = 0. By the continuity of X(s), there exists
s∗ ∈ (0, s0] such that (X(s∗)− x1)/x1 = ε and (X(s)− x1)/x1 < ε for every s < s∗.
This further implies that, for any s < s∗, we have

X(s) = x1 + ε′(s)x1, (112)

where ε′(s) ∈ (0, ε) is a continuous function defined on s ∈ [0, s∗]. Equation (112)
along with (110) leads to

dh11(z(s))

dz
= o(h11(z(s))) = o(X(s)) = o(x1 + ε′x1).

Therefore, we have

dh11(z(s))

dz
h11(z(s))

= o(1)x1→0,

and, particularly,

dh11(z(s))

dz
h11(z(s))

<
ε

2(z − z1)s(1 + ε′)
, (113)

for all s ∈ (s1, s
∗) with any given s1 ∈ (0, s∗) by choosing x1 sufficiently small.

Let us now look at X ′(s) on [0, s∗) given by

X ′(s) =
dh11(z(s))

dz
(z − z1)

which, by taking integral on both sides, yields

X(s)− x1 = (z − z1)

∫ s

0

dh11(z(s))

dz
ds

= (z − z1)s
dh11(z(s′))

dz
,

(114)

where s′ ∈ (0, s). By plugging equation (114) into (113) and using (112), we obtain

X(s)− x1

(z − z1)s

x1 + ε′x1
<

ε

2(z − z1)s(1 + ε′)
,

i.e.

X(s) < x1 +
ε

2
x1,

which holds for all s ∈ (s1, s
∗). This contradicts the continuity of X(s) since we

have lims→s∗ X(s) = x1 + εx1.
We now have proved o(x(z′)) ∼ o(x1). By a similar argument, we also have

o(x(z′′)) ∼ o(x1). The function of W ss(M1) arrives at the following form:

h1(z) =

h11(z)
h12(z)
z

 =


x1 + o(x1)(z − z1)

y1 + o(1)x1→0(z − z1)

z

 .

which leads to the statement of Lemma 4.
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4. Proof of Theorem 2. We first prove that, by an arbitrarily small perturbation
to system X, we can simultaneously find heterodimensional cycles and a wild hyper-
bolic set. Then, we show that with condition (C5) satisfied the heterodimensional
cycles and the wild hyperbolic set belong to the attractor A.

Lemma 13. There exists a sequence {Xm} of systems converging to system X in
Cr topology such that each system Xm contains heterodimensional cycles as well as
a wild hyperbolic set.

Proof. By Shilnikov theorem (see Lemma 8), there exists a countable set of periodic
orbits of X with index-1 in any small neighbourhood of the homoclinic loop Γ+.
Besides, it is shown in [31] that, for some sufficiently large integer K > 0 and any ρ′

close to ρ∗, there exists an invariant hyperbolic set ΛK,ρ′ in any such neighbourhood
with one-to-one correspondence to the set of two-sided sequences {in}+∞−∞, where

ρ′in 6 in+1 and in > K for all n. For any small µ 6= 0, there exists K̄ � K
such that one can find a closed invariant hyperbolic set ΛK,K̄,ρ′ with one-to-one

correspondence to the set of two-sided sequence {in}+∞−∞, where ρ′in 6 in+1 and

K 6 in 6 K̄ for all n. The purpose of finding K̄ is to single out a closed subset
ΣK,K̄,ρ′ from ΣK,ρ′ such that ΛK,K̄,ρ′ survives from small perturbation due to its
closeness. Note that the sets ΛK,ρ′ and ΛK,K̄,ρ′ corresponding to different ρ′ are
different, but they all exist in system X. We drop the subscript ρ′ of these sets for
avoiding ambiguity.

The set ΛK,K̄ can be wild. Indeed, Theorem 1 of [24] states that there exists a
dense set {ρ̄m} of ρ values in (0, 1/2) such that system Xρ̄m contains a homoclinic
tangency associated to a periodic orbit L in ΛK , and the original homoclinic loops
are kept. By choosing K̄ sufficiently large, we can ensure that the periodic orbit L
lie in the set ΛK,K̄ , and therefore make ΛK,K̄ a wild hyperbolic set.

By Newhouse theorem (see [15, 26]), for each ρ̄m, we have a small neighbourhood
of it such that, for each ρ value in it, the corresponding systems Xρ contains a wild
hyperbolic set. Moreover, systems sufficiently close to system Xρ in Cr topology
also contain such sets. Let ε be the set of parameters other than ρ. Let ρ∗ be the
ρ value of the original system X. It follows that there exist infinitely many open
neighbourhood Bρ̄m of Xρ̄m in the space of R-symmetric systems where |ρ̄m − ρ| <
1/2m such that any system in these neighbourhoods has a wild hyperbolic set ΛK,K̄ .

Now we can apply Theorem 1 to system Xρ̄m since it satisfies all conditions
required by the theorem. Thus, in each ball Bρ̄m , we can find a system Xm such
that it contains heterodimensional cycles as well as a wild hyperbolic set.

We next prove that the set ΛK,K̄ and the heterodimensional cycle coexist in the
attractor A of system Xm with sufficiently large m. Recall the cross-section defined
in Section 2.2, which is

S = {(x1, x2, y, z)|‖(x1, x2)‖ = 1, |y| 6 1, ‖z‖ 6 1}.

It is also a cross-section for W s
loc(O). Denote W s

loc(O) ∩ S by S0, {y > 0} ∩ S by
S1 and {y 6 0} ∩ S by S2. By the assumption of the volume hyperbolicity in D,
system X always have a strange attractor A in D.

Let us recall some properties of this attractor given by Theorem 3 in [36]. Denote
by M±i the successive intersections of separatrices Γ± with the cross-section S. The
intersection A ∩ S consists of N connected components, where 2 6 N < 2 + l(ρ)
is a finite number bounded above by a function l(ρ) > 0 with 0 < ρ < 1/2, and
each connected component contains at least one of the points M±i . Note that N is
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independent of parameters other than ρ. Moreover, we have two integers N+ and
N− satisfying N+ +N− = N such that

A ∩ S = A+
1 ∪ · · · ∪A

+
N+ ∪A−1 ∪ · · · ∪A

−
N− ,

where A+
i and A−j are disjoint connected components. Denote by TS ≡ (TS1

, TS2
)

the Poincaré map on S = S1 ∪ S2. We have

A+
i ∩ S0 = ∅, A−j ∩ S0 = ∅ (115)

and

TS1
((A+

N+ ∪A−N−) ∩ S1) = A+
1 , TS2

((A+
N+ ∪A−N−) ∩ S2) = A−1 ,

A+
i = TS1

A+
1 , A−j = TS2

A−1 ,
(116)

where 1 < i < N+ and 1 < j < N−.
We assume that, at µ = 0, the unstable separatrices Γ+ and Γ− of the system X

intersect S for M times in total such that M > N , where N is the above-mentioned
number of the connected components. This assumption is not a restriction. Indeed,
results in [13] state that a homoclinic loop to a saddle focus equilibrium can be
split in a way such that the splitting forms a new loop with arbitrary more rounds
with respect to the original one. Suppose now the system X has a single round
homoclinic loop. Let us choose a surface L corresponding to systems having a
homoclinic loop to a saddle-focus equilibrium in the space of dynamical systems,
and let it contain the system X. Then the surfaces corresponding to systems having
homoclinic loops with arbitrarily many rounds are accumulating on L. Since our
family Xε is transverse to L with respect to µ, it is transverse to all close surfaces.
Let Xε0 := X. It follows that we can pick Xε∗ , with ε∗ arbitrarily close to ε0 from
either left or right, such that the system at ε = ε∗ has a homoclinic loop with more
than one round, which intersects S for multiple times. Any result on bifurcation
that holds for all such system Xε∗ will automatically hold for Xε0 .

We now choose the cross-section Π used in the proof of Theorem 1 sufficiently
small such that the loops Γ± are still single-round with respect to Π in system X,
and therefore double-round in systems Xm. This makes all the arguments used for
proving Theorem 1 valid here.

Let P1 be the index-1 point of the Poincaré map T on Π used to create a heterodi-
mensional cycle in system Xm by Theorem 1. In system Xm, the periodic orbit L
of the flow whose stable manifold intersects its unstable manifold non-transversely
is double-round with respect to Π. There are two points in L ∩ Π, and we denote
by P2 ∈ Π1 the one closer to Π0 = Π ∩ {x = 0}. By Lemma 9, the point P1 can be
chosen such that its x-coordinate x1 is in (0, |µ|). The point P2 can be arbitrarily
close to Π0 by choosing L close to Γ+ (see the proof of Theorem 1 in [24]). Espe-
cially, we can let its x-coordinate x2 also lie in (0, |µ|). By Lemma 8, we know that
the local stable manifolds W s

loc(Pi) (i = 1, 2) are given by

x = xi + o(1)xi→0, (117)

which are bounded between Π0 and {x = |µ|}. We now follow the backward or-
bits of the flow starting on W s

loc(Pi) until they intersect the cross-section S. This
gives us two periodic points P ′i ∈ S of the map TS along with their local stable
manifolds W s

loc(P
′
i ). One can check that those manifolds are bounded by S0 and

{x = o(1)µ→0}, where the small term is positive and is a continuous function of
x1, x2 and µ. In fact, it is shown in [36] that the stable manifold of a fixed point of
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TS is a nearly horizontal curve circling around O on the cylinder-like cross-section
S; by choosing a small part S∗ from S such that P ′i is a fixed point of TS |S∗ , we
can achieve the same result on W s(P ′i ). This means that points on W s(P ′i ) have
the same x-coordinate x′i of P ′i up to some small corrections. Obviously, x′i → 0
as xi → 0. Note that we can pick Pi with sufficiently small x-coordinates when |µ|
is sufficiently small. Therefore, the stable manifolds W s(P ′i ) (i = 1, 2) lie under a
surface {x = o(1)µ→0}.

We are now in the position to finish the proof. Recall the discussion on the
attractor A. Since we have M > N , the connected component M+

N+ ∈ A+
N+ is at a

finite distance from S0. Therefore, we obtain a connected curve l+ ⊂ A+
N+ joining

M+
N+ and a point on S0. If l+ ⊂ S1, then we have W s

loc(P
′
i ) ∩ l 6= ∅ by choosing µ

sufficiently small; if l+ ⊂ S2, then we achieve the same result by consider similar
points Pi from Π2. Note that the manifoldsW s

loc(P
′
i ) are sufficiently long to intersect

the connected components since they circle around O on S for multiple times. Recall
that attractor A is the set of points accessible from the equilibrium O. Hence, the
set A∩S contains W s(P ′i ) and P ′i along with their unstable manifolds, which implies
that it contains a heterodimensional cycle as well as a wild hyperbolic set of the
map T . When we return to the full system Xm, we find a heterodimensional cycle
and the wild hyperbolic set ΛK,K̄ coexisting in A. The theorem is proven.
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