
DISCRETE AND CONTINUOUS doi:10.3934/dcds.2010.28.1713
DYNAMICAL SYSTEMS
Volume 28, Number 4, December 2010 pp. 1713–1751

ANALYTICAL PROOF OF SPACE-TIME CHAOS IN

GINZBURG-LANDAU EQUATIONS

Dmitry Turaev

Department of Mathematics, Imperial College London
London, SW7 2AZ, UK

Sergey Zelik

Department of Mathematics, University of Surrey
Guildford, GU27XH, Surrey, UK

Abstract. We prove that the attractor of the 1D quintic complex Ginzburg-
Landau equation with a broken phase symmetry has strictly positive space-time
entropy for an open set of parameter values. The result is obtained by studying
chaotic oscillations in grids of weakly interacting solitons in a class of Ginzburg-
Landau type equations. We provide an analytic proof for the existence of two-
soliton configurations with chaotic temporal behavior, and construct solutions
which are closed to a grid of such chaotic soliton pairs, with every pair in
the grid well spatially separated from the neighboring ones for all time. The

temporal evolution of the well-separated multi-soliton structures is described
by a weakly coupled lattice dynamical system (LDS) for the coordinates and
phases of the solitons. We develop a version of normal hyperbolicity theory
for the weakly coupled LDS’s with continuous time and establish for them
the existence of space-time chaotic patterns similar to the Sinai-Bunimovich
chaos in discrete-time LDS’s. While the LDS part of the theory may be of
independent interest, the main difficulty addressed in the paper concerns with
lifting the space-time chaotic solutions of the LDS back to the initial PDE.
The equations we consider here are space-time autonomous, i.e. we impose
no spatial or temporal modulation which could prevent the individual solitons
in the grid from drifting towards each other and destroying the well-separated
grid structure in a finite time. We however manage to show that the set of
space-time chaotic solutions for which the random soliton drift is arrested is
large enough, so the corresponding space-time entropy is strictly positive.

1. Introduction. We demonstrate that if an evolutionary system of partial dif-
ferential equations (PDE) in unbounded domain has a solution localized in space
and chaotic in time, then one should expect both temporal and spatial chaotic be-
havior in the system. Namely, one may observe a formation of non-trivial spatial
patterns that evolve in an irregular fashion with time, and the corresponding space-
time entropy [13, 44] is strictly positive. In other words, the number of solutions
which are essentially different from each other on a finite space-time window grows
exponentially with the window volume.
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As a tool for finding the spatially-localized, temporally-chaotic solutions one
may try, as we do it here, to look for special types of both spatially and temporally
localized solutions. Thus, like Shilnikov homoclinic loop and Lorenz butterfly serve
as a criterion for chaos formation in systems of ODE’s [35, 36, 37, 39], the existence
of the Shilnikov homoclinic loop in the dynamical system generated by the PDE on
the space of spatially localized solutions implies the space-time chaos in the extended
system that corresponds to uniformly bounded solutions of the same PDE.

We do not prove this principle in full generality here. Instead, we decided to
show how it works for a class of Ginzburg-Landau equations with a broken phase
symmetry. The main motivation for such approach is that despite a huge amount of
numerical and experimental data on different types of space-time irregular behavior
in various systems, there are very few rigorous mathematical results on this topic
and mathematically relevant models describing these phenomena. Therefore, we
made an effort of providing a free from numerics, completely analytic proof of the
existence of space-time chaos in an important equation of mathematical physics.

The basic mathematical model for the space-time chaotic behavior is the so-
called Sinai-Bunimovich chaos in discrete lattice dynamics, see [4, 10, 30, 31].
This model consists of a Zn-grid of discrete-time chaotic oscillators coupled by
a weak interaction. The single chaotic oscillator of this grid is described, say, by the
Bernoulli scheme M1 := {0, 1}Z, so the uncoupled system naturally has an infinite-
dimensional hyperbolic set homeomorphic to multi-dimensional Bernoulli scheme

Mn+1 := {0, 1}Z
n+1

= (M1)Z
n

. The temporal evolution operator is then conjugate
to the shift in Mn+1 along the first coordinate and the other n coordinate shifts are
associated with the spatial translations on the grid. Due to the structural stability
of hyperbolic sets, the above structure survives under a sufficiently weak coupling.
Thus, in this model, the space-time chaos is described by the multi-dimensional
Bernoulli scheme Mn+1.

Importantly, the space-time entropy in the Sinai-Bunimovich model is strictly
positive. We know from the general theory of dissipative systems in unbounded
domains (see e.g. [13, 29, 42, 43, 44]) that under some reasonable dissipativity
assumptions this entropy is finite for systems of evolutionary PDE’s, therefore the
Sinai-Bunimovich model carries “enough complexity” to be able to capture certain
basic features of spatio-temporal chaos in systems of various nature. In particular, it
is well established by now (see e.g. [32, 22, 23, 8]) that the transition from regular
to chaotic space-time behavior often happens via the emergence of well spatially
separated and long living “turbulent spots”. As the interaction between such spots
seems to be weak, the Sinai-Bunimovich chaos paradigm can be relevant for the
analysis of these near-threshold phenomena.

Yet, a direct application of the Sinai-Bunimovich construction to systems with
continuous time and space is not possible, in general. Even the existence of one
PDE which possesses an infinite-dimensional Bernoulli scheme was a long-standing
open problem. The first examples of such PDEs (in the class of reaction-diffusion
systems), have been recently constructed in [27]. The method used in that paper
is based on a strong and explicit spatio-temporal modulation of the equation right-
hand sides, which effectively transforms the systems into a discrete-time lattice
dynamical system. The disadvantage is that very special (and artificial) nonlinear
interaction functions emerge in the result, which are far from the usual nonlinearities
arising in physics models.
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A different approach to the problem is suggested in [28], where a theory of weak
interaction of dissipative solitons was developed and, as an application, a space-
time chaotic pattern has been constructed for the perturbed 1D Swift-Hohenberg
equation

∂tu+ (∂2
x + 1)2u+ β2u+ f(u) = µh(t, x, µ), f(u) = u3 + κu2, µ≪ 1. (1.1)

Here µh(t, x, µ) is a space-time periodic forcing. Its exact form is quite non-trivial,
however the amplitude µ can be taken arbitrarily small. The idea is to create a
spatially localized spot of chaotic temporal behavior, and to build then a grid of
such spots, well separated in space. The spots are pinned down to the prescribed
locations at the grid points by spatial oscillations in the forcing µh. If the spots stay
sufficiently far apart, their interaction is small, so a small amplitude forcing occurs
to be sufficient to sustain the grid for all times (the wave length of the forcing has,
however, to grow as the amplitude decreases).

Equation (1.1) at µ = 0, like many other important equations, does have a
spatially localized solution, a soliton, u = U(x) with exponentially decaying tails.
One may therefore look, at all small µ, for multi-soliton solutions in the form

u(t, x) =
∑

j

U(x− ξj(t)) + “small corrections”,

where ξj(t) is the position of the j-th soliton; the well-separation condition reads
as L := infj 6=k ‖ξj − ξk‖ ≫ 1. Due to the “tail” interaction and the small forcing,
the solitons’ positions ξj(t) may move slowly, and this motion is described by a
lattice dynamical system (LDS), see [28] for details. The obtained LDS is not in
the form one needs for establishing the Sinai-Bunimovich chaos (a grid of chaotic
maps with weak coupling), since the individual solitons u = U(x) are equilibria at
µ = 0 and do not have their own (chaotic) dynamics. However, as it is shown in
[28], a pair of weakly interacting solitons in the 1D Swift-Hohenberg equation can be
forced to oscillate chaotically in time by an appropriate choice of the time-periodic
perturbation µh(t, x, µ). For a well-separated grid of such soliton pairs, one obtains
a time-periodic LDS, and the period map for this system is the sought discrete
lattice of weakly coupled chaotic maps, i.e the space-time chaos is established.

The scope of [28] is much more general than the Swift-Hohenberg equation:
by developing the center manifold approach proposed in [34], the paper derives
the LDS that governs the evolution of weakly coupled multi-soliton configurations
for a large class of systems of evolutionary PDE’s. It also proposes a method for
constructing spatially localized and temporally chaotic solutions which are obtained
as a system of finitely many weakly coupled stationary solitons. Note that, although
spatially localized solutions with non-trivial temporal dynamics have been observed
numerically and experimentally in various physical systems (see e.g. [5, 9, 40]
and references therein), the direct analytic detection and study of such solutions
is obviously a very difficult task. However, when a finite system of well-separated
solitons is considered, the description provided by [28] for the evolution of such
object is often a low-dimensional system of ODE’s which can exhibit a chaotic
dynamics [40] and can be studied analytically, so the chaotic temporal behavior of
such localized patterns can be rigorously proven.

In the present paper we show how a space-time chaotic lattice can be built out
of these chaotic multi-soliton systems in the case where no spatial nor temporal
modulation is imposed. Two problems immediately appear in this setting:
1. with no external forcing, the LDS which describes the multi-soliton dynamics
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is an autonomous system with continuous time, so the Sinai-Bunimovich chaos
construction (for which the discreteness of time is very essential) is not applicable;
2. with no spatial modulation, there is no pinning mechanism which would keep the
solitons eternally close to any given spatial grid, therefore the infinite-time validity
of the LDS description is no longer guaranteed.

We resolve here both the issues. As an application, we consider the 1D quintic
complex Ginzburg-Landau equation with slightly broken phase symmetry:

∂tu = (1 + iβ)∂2
xu− (1 + iδ)u+ (i+ ρ)|u|2u− (ε1 + iε2)|u|4u+ µ, (1.2)

where β, δ, ρ, ε1,2, µ are some real parameters, and µ ≪ 1. We mention that, in
contrast to the previous on the Swift-Hohenberg equation, we do not have here
any artificial functions, and the only freedom we have is the choice of the numeric
parameters. Note also that the Ginzburg-Landau equation serves as a normal form
near an onset of instability, i.e. it very often appears in applications as a modulation
equation for various more complicated problems. The phase symmetry in the mod-
ulation equation appears as an artefact of closeness to the instability threshold, so if
there is no such symmetry in the original problem, then the effects of small symme-
try breaking also need to be considered, see [26] and references therein. While we
introduce only the simplest symmetry breaking term (“+µ”) in (1.2), the general
case is also covered by the theory (see Section 2).

The main result of the paper is the following theorem (Section 3).

Theorem 1.1. There exists an open set of parameters (β, δ, ρ, ε1, ε2, µ) such that
equation (1.2) possesses a global attractor A (say, in the phase space L2

b(R)) with
strictly positive space-time entropy

hs−t(A) > 0.

Equation (1.2) at µ = 0 has the additional phase symmetry u → eiφu. There-
fore, for each stationary soliton u = V (x) of this equation, u = eiφV (x) is also a
stationary soliton. Therefore, the multi-soliton configurations are given by

u(t, x) =
∑

i

eiφi(t)V (x − ξi(t)) + “small corrections”,

where ξj and φj are the coordinate and phase of the j-th soliton. For a soliton pair
with the states (ξ1, φ1) and (ξ2, φ2), the evolution is governed, to the leading order
with respect to the distance |ξ2 − ξ1|, by the following system of ODE’s:











d
dτR = ae−αR sin(ωR+ θ1) cos(Φ),
d
dτΦ = be−αR cos(ωR+ θ2) sin(Φ) − 2cν sin(Φ

2 ) sin(Ψ),
d
dτΨ = b

2e
−αR sin(ωR+ θ2) cos(Φ) + cν cos(Φ

2 ) cos(Ψ) − Ω,

(1.3)

see [41, 40, 28]. Here τ is a scaled slow time, R := (ξ2 − ξ1)/2, Φ := φ1 − φ2, Ψ :=
(φ1 + φ2)/2 and a, b, ω, θ1,2, c, ν and Ω are parameters whose exact values depend
on the values of the original parameters of (1.2) (see the corresponding expressions,
as well as asymptotic expansions near the exactly solvable nonlinear Schrödinger
equation, in Sections 2,3). While the variables R,Φ and Ψ can be treated as the
“internal variables” of the two-soliton pattern, the variable p := (ξ1 + ξ2)/2 marks
the spatial position of the soliton pair. To the leading order, it is governed by the
equation

d

dτ
p =

a

2
e−αR cos(ωR+ θ1) sin(Φ) := g(R,Φ). (1.4)
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A numerical study of system (1.3) undertaken in [40] revealed various chaotic
regimes for different parameter values. In order to provide an analytic proof of the
chaotic behavior (i.e. the existence of a nontrivial hyperbolic invariant set) in this
system for an open set of parameter values, we have found a point in the plane of
parameters (ν,Ω) which corresponds to the existence of a degenerate equilibrium in
the system, with 3 zero eigenvalues. The presence of a codimension-3 bifurcation in
a two-parameter family of systems is surprising, however the fact holds true for an
open set of the values of the coefficients a, b, c, α, ω, θ1,2, and it even persists for the
more general two-soliton interaction equations (2.30) which we obtain for a quite
general symmetry-breaking term µG(u) replacing µ in (1.2) (see Lemma 2.3). The
normal form calculations for this bifurcation (cf. [6]) make the system close to the
following 3rd order equation:

Y ′′′ = 1 − Y 2 + EY ′,

where E (a certain combination of the parameters of the original system) can take
any real values. In [17], the existence of a Shilnikov homoclinic loop for this equation
was proven at certain E values, which implies [35, 36] chaos for some interval of the
E values and, hence, for an open set of parameter values for system (1.3).

Chaotic solutions of system (1.3) correspond to a chaotically oscillating soliton
pair, which is a temporally chaotic and spatially localised solution, by construction.
After that, according to the program described above, we build a well spatially sep-
arated lattice of such time-chaotic solitons. The center manifold reduction theorem
proved in [28] ensures that the evolution of this lattice is governed by a system of
infinitely many weakly coupled copies of the ODE’s (1.3),(1.4).

Even when every individual ODE-subsystem in the continuous time LDS is hy-
perbolic, the LDS itself is not hyperbolic (this is a principal difference with the
Sinai-Bunimovich chaos in the discrete-time LDS’s where the countable product of
hyperbolic sets for the individual maps is hyperbolic again). Each constituent ODE
contributes a neutral direction corresponding to the time shift, so for the linearized
flow of the continuous time LDS we have infinitely many neutral directions. There-
fore, after a weak coupling is switched on, the dynamics is not preserved (the LDS
can hardly be topologically conjugate to the uncoupled one). Still, the invariant
manifold theorem of Section 4 shows that if, given any orbit of the uncoupled LDS,
we consider the family of all orbits obtained by all possible time-reparametrizations
in each of the constituent ODE’s, then this family continues in a unique way as an
invariant manifold of the weakly coupled LDS. This fact allows to show the strict
positivity of space-time topological entropy for the countable systems of weakly
coupled chaotic oscillators with continuous time.

In fact, results of Section 4 cover LDS’s of a more general type. The problem we
have to deal with is that, although system (1.3) for the internal variables (R,Φ,Ψ) of
the chaotic soliton does have a uniformly hyperbolic set, the full system describing
the motion of the chaotic soliton includes equation (1.4) for the soliton position p,
and is clearly non-hyperbolic (so we have to consider the LDS’s built of partially-
hyperbolic individual ODE’s). The neutral directions appear because the right-
hand sides of (1.3),(1.4) are p-independent, which is a mere consequence of the
translational symmetry of the PDE under consideration, i.e. their presence is an
inherent property of the soliton-interaction equations in systems without a spatial
modulation.
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Since the internal variables of the soliton change chaotically with time, the soliton
position p(t) performs, essentially, an unbounded random walk (as an integral of
a chaotic input, see (1.4)). When the chaotic solitons are well spatially separated,
the contribution of the neighboring solitons to the p-equation is small, so we have
essentially independent random walks for each of the chaotic solitons in the lattice.
This makes it impossible for us to ensure that the well-separation condition is
fulfilled for all times and all initial multi-soliton configurations. We, in fact, believe
that the majority of these configurations do break up this condition in a finite time,
so the corresponding solutions cannot be completely described by the weak soliton
interaction paradigm.

However, the weak soliton interaction theory of [28] is the only tool we have
here for the analysis of dynamics of the multi-soliton patterns. As we are unable
to control the soliton’s random walk, we devise a method of keeping track of those
configurations for which the well-separation condition holds eternally (i.e. the LDS
description is applicable). This method allows us to verify (Section 6) that the
number of such solutions is large enough to ensure the positivity of the space-time
entropy. It is worth to emphasize that, instead of fighting with the random walks,
our method exploits them in a crucial way.

Roughly speaking, assume that the hyperbolic set for (1.3) contains two periodic
orbits Γ1 and Γ2 and a number of heteroclinics which connect them. Assume that,
according to equation (1.4), the soliton pair moves to the left if (R,Φ,Ψ) belongs
to Γ1 and to the right when it belong to Γ2. The direction of this motion is

determined by the sign of bj :=
1

Tj

∫ Tj

0

g(Rj(t),Φj(t)) dt, where Tj is the period

of Γj = (Rj,Φj ,Ψj). So, we require b1b2 < 0 (in fact, only b1 6= b2 is enough, as
we show). Then, our orbit selection method works as follows: assume that initially
the j-th soliton is in the interval [L−

j , L
+
j ] with L+

j − L−
j large enough; then until

it remains in that interval, we allow the internal state (R,Φ,Ψ) of the soliton to
jump randomly between Γ1 and Γ2 along the heteroclinic orbits (thus we gain the
complexity which is enough to have the positive entropy); however, when the soliton
reaches the bound (say, L+

j ), we stop allowing jumps and consider only orbits that

stay near Γ1 until the soliton position pj(t) arrives close to (L+
i +L−

i )/2 (when the

bound L−
j is achieved, the orbit must stay near Γ2); after pj(t) is driven to the

middle of the interval, the random motion is allowed again, and so on.
We proved in Section 6 that the above described procedure can be implemented

simultaneously for all chaotic solitons on the grid, and it allows indeed for a selection
of a set of spatially non-walking solitons with positive space-time entropy. In order
to do this, we need a further development of the theorem on normally-hyperbolic
manifolds in the countable product of partially hyperbolic sets which is proved in
Section 4; namely we prove certain “asymptotic phase” results in Section 5.

As the above discussion shows, the theory we build is readily applicable to
any dissipative PDE for which the weak soliton interaction system for some finite
multi-soliton configuration exhibits a chaotic dynamics. In analogy to the finite-
dimensional case, we are now able to analyze localized structures and effectively use
them for the understanding of space-time dynamics generated by PDEs.
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2. Space-time chaos in complex Ginzburg-Landau equation with broken

phase symmetry. Consider the one-dimensional complex Ginzburg-Landau equa-
tion

∂tu = (1 + iβ)∂2
xu− (1 + iδ)u− uH(|u|2) + µG(u) (2.1)

where u = u1 + iu2 is an unknown function of x ∈ R and t ∈ R, the function
H : R → C is smooth, H(0) = 0, and parameters β, δ are real; the symmetry-
breaking parameter µ is assumed to be small, and the function G is smooth.

Let K be a set of solutions of (2.1) which are defined and uniformly bounded
for all (t, x) ∈ R2 (under certain standard dissipativity assumptions, equation (2.1)
will have global attractor; in this case one can choose as the set K the set of all
solutions that lie in the attractor, see more after Theorem 2.1). The complexity of
spatio-temporal behavior of the solutions can be characterized by the space-time
topological entropy defined as

hs−t(K) = lim
ε→0

lim sup
(T,R)→∞

1

4TR
hε(K

∣

∣

|t|≤T,|x|≤R) (2.2)

where K
∣

∣

|t|≤T,|x|≤R stands for the set of functions from K restricted on the space-

time window {|t| ≤ T, |x| ≤ R}, and hε denotes the Kolmogorov ε-entropy of this
set, i.e. the logarithm of a minimal number of ε-balls in the space L∞([−T, T ] ×
[−R,R]) which are necessary to cover 1 the set; see [20]. It is well-known (see,
e.g., [13, 29, 43, 44]) that the space-time topological entropy hs−t(K) is well-defined
and finite in our case. Thus, if hs−t(K) is strictly positive for some set K, then
the number of various spatio-temporal patterns that are supported by the equation
grows exponentially with the volume of the space-time window.

In our construction of spatio-temporal chaos we assume that the nonlinearity
H is such that for some β = β0 and δ = δ0 the Ginzburg-Landau equation (2.1)
possesses at µ = 0 a stationary, spatially localized solution u = U(x):

(1 + iβ0)∂
2
xU − (1 + iδ0)U − UH(|U |2) = 0; (2.3)

for the existence results see [1, 2] and references therein, and Theorem 3.1.
Equation (2.1) is invariant with respect to spatial translations x → x − ξ and,

at µ = 0, with respect to phase shifts u → eiφu. So, along with the given soliton
U(x), equation (2.1) possesses at µ = 0 a family of stationary solitons:

u = Uξ,φ(x) := eiφU(x− ξ), (ξ, φ) ∈ R
1 × S

1. (2.4)

Because of the symmetry with respect to x→ −x, along with the soliton u = U(x),
equation (2.3) also has a localized solution u = U(−x). Equation (2.3) is an ODE
with 4-dimensional phase space. A localized solution corresponds to a homoclinic in-
tersection of the stable and unstable manifolds of the zero equilibrium of this system.
Since these manifolds are 2-dimensional and family (2.4) is 2-parametric, all the lo-
calized solutions of (2.3) are contained in family (2.4). Thus, U(−x) ≡ eiφ0U(x−ξ0)
for some φ0, ξ0, which immediately implies that Uξ/2,0(−x) = ±Uξ/2,0(x). In other
words, we may from the very beginning assume that our soliton is chosen such that
it is either symmetric:

U(−x) ≡ U(x), (2.5)

or antisymmetric (U(−x) ≡ −U(x)). In this paper we consider the symmetric case,
i.e. we assume that (2.5) holds (in the antisymmetric case the soliton interaction

1it follows in a standard way from the parabolic regularity, that K
∣

∣

|t|≤T,|x|≤R
is compact



1720 DIMITRY TURAEV AND SERGEY ZELIK

equations are different; however one can show that a small perturbation of an equa-
tion with antisymmetric soliton creates symmetric solitons - cf. [1, 2], so the results
of our paper can be applied in this way).

Since every function in (2.4) is a stationary solution of (2.3) at µ = 0, it follows
that the functions ϕ1 := −∂ξUξ,0

∣

∣

ξ=0
= ∂xU and ϕ2 := ∂φU0,φ

∣

∣

φ=0
= iU belong to

the kernel of the linearization LU of (2.3) at U : L
U
ϕ1,2 = 0, where

L
U
ϕ := (1+ iβ0)∂

2
xϕ−(1+ iδ0)ϕ−H(|U |2)ϕ−|U |2H ′(|U |2)ϕ−U2H ′(|U |2)ϕ̄ (2.6)

(ϕ̄ is a complex conjugate to ϕ). Thus, zero is a double eigenvalue of LU .
We assume that the soliton U is non-degenerate in the sense that the rest of

the spectrum of LU is bounded away from the imaginary axis; e.g. the algebraic
multiplicity of the zero eigenvalue is two (note that since U(x) → 0 as x→ ±∞, the
operator LU is a compact perturbation of the operator ϕ 7→ (1+iβ0)∂

2
xϕ−(1+iδ0)ϕ,

so the essential spectrum is bounded away from the imaginary axis; however, one
should check that the eigenvalues stay away from the imaginary axis as well).

Under the non-degeneracy assumption, the conjugate operator L†
U , which we

define as

L†
Uψ := (1+iβ0)∂

2
xψ−(1+iδ0)ψ−H(|U |2)ψ−|U |2H ′(|U |2)ψ−Ū2H ′(|U |2)ψ̄, (2.7)

also has a two-dimensional kernel. The corresponding pair of adjoint eigenfunctions
ψ1 and ψ2 can be chosen such that

(ϕi, ψj) := Re

∫ +∞

−∞
ϕi(x)ψj(x)dx = δij , ψ1(−x) = −ψ1(x), ψ2(−x) = ψ2(x).

(2.8)
As x → ±∞, the functions U , ϕi, ψi decay exponentially, with the rate λ given

by

Reλ = −α < 0, Imλ = ω, (−α+ iω)2(1 + iβ0) = (1 + iδ0), (2.9)

see [1, 28] for details. Thus, we have

U ∼ re(−α+iω)|x|, ψ1 ∼ se(−α+iω)|x| sign(x), ψ2 ∼ qe(−α+iω)|x| as |x| → ∞,
(2.10)

where r, s, q are some non-zero complex constants. We introduce the notation

aeiθ1 := 4isr(1 + iβ0)λ, beiθ2 := 4iqr(1 + iβ0)λ, θ := θ2 − θ1. (2.11)

Denote

F (φ) := Re

∫ +∞

−∞
e−iφψ2(x)G(eiφU(x))dx, (2.12)

where G(u) is the symmetry-breaking term in (2.1). Since F (φ) is periodic, the
equation

F ′(φ∗ +
π

4
) + F ′(φ∗ − π

4
) = 0 (2.13)

always has solutions. We assume that there is a solution φ∗ such that

c := 2F ′(φ∗ +
π

4
) 6= 0, (2.14)

F ′′(φ∗ +
π

4
) + F ′′(φ∗ − π

4
) 6= 0. (2.15)

Conditions (2.13)-(2.15) define the constant φ∗. Denote also

γ :=
1

c
[F (φ∗ +

π

4
) − F (φ∗ − π

4
)]. (2.16)
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In the basic case G(u) ≡ 1, we have F (φ) = c̃ cos(φ−ζ), where c̃eiζ =
∫ +∞
−∞ ψ2(x)dx.

It is easy to see that φ∗ = ζ, c = −c̃
√

2 and γ = 0 in this case, and that both

conditions (2.14) and (2.15) are fulfilled provided
∣

∣

∣

∫ +∞
−∞ ψ2(x)dx

∣

∣

∣ 6= 0.

Theorem 2.1. Let, along with (2.14),(2.15), the following conditions be satisfied
for a non-degenerate, symmetric stationary soliton U(x):

a 6= 0, b 6= 0, ω 6= 0, ω 6= 2γα, cos θ 6= 0, α sin θ + ω cos θ 6= 0, (2.17)

4ω
a

b
(cos θ + 2γ sin θ) <

[

1 + 2γ
a

b
(α cos θ + ω sin θ

]2

. (2.18)

Then, arbitrarily close to µ = 0 and δ = δ0 there exist an interval of values of µ and
an interval of values of δ such that the corresponding equation (2.1) has a uniformly
bounded set of globally defined solutions with strictly positive space-time entropy.

Proof. Each of the solutions of equation (2.1) that belong to the large (of positive
entropy) set we are going to construct can be viewed as a slowly evolving multi-
soliton configuration. Namely, we choose a sufficiently large L and consider solutions
u(x, t) which for every t ∈ R stay close, in the space Cb(R) of bounded continuous
functions of x, to the multi-soliton manifold ML defined as the set of all functions
u(x) of the form

u(x) = um :=
∑

Uξj ,φj
:=

∑

j∈Z

eiφjU(x− ξj), (2.19)

where m := {ξj, φj}j=+∞
j=−∞ is any sequence such that

inf
j∈Z

(ξj+1 − ξj) > 2L. (2.20)

For sufficiently large L, the multi-soliton manifold is indeed an infinite-dimensional
submanifold of Cb(R) which is parameterized by the sequences m := {ξj, φj} of the
soliton positions and phases (see [28]). The boundary ∂ML is given by infj∈Z(ξj+1−
ξj) = 2L.

We will seek for solutions of equation (2.1) in the form u(t) := um(t)+w(t) where
m(t) is a slow trajectory in ML and w(t) is a small corrector. Recall a result from
[28].

Theorem 2.2. For all L large enough there exists a Ck-map S : ML → Cb(R) such
that

‖S‖Ck(ML,Cb(R)) ≤ Ce−αL (2.21)

(where α > 0 is defined by (2.9)) and that the manifold S := {u = um +S(um), m ∈
ML} is invariant with respect to equation (2.1). Namely, there exists a Ck-vector
field F on ML such that given any solution of

d

dt
m(t) = F(m(t)) (2.22)

defined on a time interval t ∈ (t−, t+), the function

um(t) + S(um(t)), t ∈ (t−, t+), (2.23)

solves equation (2.1).
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Moreover, system (2.22) has the following form:

d

dt
ξj = 2 Re[sr(1 + iβ0)λ

{

eλ(ξj+1−ξj)+i(φj+1−φj) − eλ(ξj−ξj−1)+i(φj−1−φj)
}

]+ . . .

d

dt
φj = −2 Re[ q r (1 + iβ0)λ

{

eλ(ξj+1−ξj)+i(φj+1−φj) + eλ(ξj−ξj−1)+i(φj−1−φj)
}

]

+ µF (φj) − (δ − δ0) + . . . ,

(2.24)
where α and ω are the same as in (2.9), the constants r, s, q are defined by (2.10), the
function F is defined by (2.12), and the dots stand for terms which are O(e−3αL +
µ2 + (δ − δ0)

2) in Ck(ML,R)-metric, uniformly for all j ∈ Z.

This theorem is a partial case of Theorems 8.5 and 10.1 of [28]; specifically, equa-
tions (2.24) at (µ = 0, δ = δ0) (i.e. without the perturbation terms µF (φj)−(δ−δ0))
are derived in Example 10.8; see equations (10.53) in [28]. In order to recover the
equations at ε = (µ, δ − δ0) 6= 0, we invoke the general formulas (10.13),(10.14) of
[28]. These relate to a system which is invariant with respect to a certain contin-
uous symmetry group, therefore the existence of a stationary soliton U implies the
existence of a family UΓ of stationary solitons, obtained from U by the action of
the group elements Γ. In our case the group consists of spatial translations and
phase rotations, so Γ = (ξ, φ) and UΓ(x) = Uξ,φ(x) = eiφU(x − ξ). In the multi-
soliton configuration, the j-th soliton stays close to UΓj

where Γj may evolve with
time. According to Corollary 10.3 of [28], a perturbation εG(u) added to the right-
hand side of the equation for ∂tu results (in the leading order) in the correction
ε
∫ ∞
−∞ G(UΓj

(x))ψΓj
(x)dx to the right-hand side of the equation for d

dtΓj . Here ψΓ

is the vector (with the values in the corresponding Lie algebra) of the eigenfunctions
of the adjoint operator L† which are related to the eigenfunctions ϕΓ of the lineariza-
tion operator L via normalization conditions (see (2.8)). In our case we have two
eigenfunctions ϕ1,2(x), and the group acts on them as ϕ1,2,ξ,φ = eiφϕ1,2(x− ξ). So
the functions ψ1,2,ξ,φ are given by e−iφψ1,2(x−ξ), and the leading order correction to

dξj/dt is given by εRe
∫ +∞
−∞ e−iφjψ1(x)G(eiφjU(x))dx and the leading order correc-

tion to dφj/dt is given by εRe
∫ +∞
−∞ e−iφjψ2(x)G(eiφjU(x))dx (we shifted x→ x+ξj

in the integrals). In our case εG(u) := µG(u) − i(δ − δ0)u ≡ µG(u) − (δ − δ0)φ2

and this immediately gives us the O(µ, δ− δ0)-correction terms in (2.24) (see (2.8),
(2.12); note also that G(U(x)) is an even function of x, while ψ1(x) is odd, so we get
zero contribution to the ξj -equation; this means, in particular that the fact G(u)
depends only on u, and not on u′(x) is important for our results).

According to Theorem 2.2, the evolution of well-separated multi-soliton con-
figurations in the driven Ginzburg-Landau equation is governed by system (2.24).
Therefore, in order to prove the positivity of space-time entropy in equation (2.1), it
is enough to find a large set of solutions of system (2.24) which satisfy the separation
condition (2.20).2

The corresponding theory for a class of lattice dynamical systems which includes
system (2.24) is built in Sections 4-6. In particular, Theorem 6.1 gives a general

result on the existence of a set K̃ of non-walking trajectories of a lattice dynamical

2recall that system (2.24) is defined on the manifold ML whose boundary is given by (2.20);
outside this boundary the reduction to the invariant manifold S may fail – the so-called strong
soliton interaction, soliton collisions, etc., may take place
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system such that hs−t(K̃) > 0. In what follows we will show that a certain subsystem
of (2.24) indeed satisfies conditions of Theorem 6.1.

For any v and any sufficiently large L we may define a sequence Ln, n ∈ Z, as
follows:

L0 = ve−αLt, L2n+1 = L2n + 4L, L2n+2 = L2n+1 + 2L. (2.25)

We will look for pulse configurations which satisfy ξj(t) = Lj + ηj(t) where

|ηj(t)| ≤ C, t ∈ R, j ∈ Z, (2.26)

where the constant C is independent of L, j and t. In other words, we have a grid
of weakly interacting pulse pairs with the distance between the pulses in the pair
of order 2L and the distance between pairs of order 4L. Assumption (2.26) then
means that we should ensure that this structure is preserved for all t although a
uniform spatial drift of the whole grid is allowed (ve−αL is the velocity of the drift).

Further, we introduce the scaling τ := te−2αL, Ω := (δ− δ0)e
2αL, ν := µe2αL.

We will consider a region of bounded Ω and ν, which corresponds to µ and δ− δ0 of
order O(e−αL). We also assume L = πn

ω , n ∈ N. Equations (2.24) recast as follows
(see (2.11)):

d

dτ
η2j+1 = v − a

2
e−αRj sin(ωRj − Φj + θ1) + O(e−αL),

d

dτ
η2j+2 = v +

a

2
e−αRj sin(ωRj + Φj + θ1) + O(e−αL),

d

dτ
φ2j+1 =

b

2
e−αRj sin(ωRj − Φj + θ2) + νF (φ2j+1) − Ω + O(e−αL),

d

dτ
φ2j+2 =

b

2
e−αRj sin(ωRj + Φj + θ2) + νF (φ2j+2) − Ω + O(e−αL),

(2.27)

where we denote Rj := η2j+2 − η2j+1, Φj := −(φ2j+2 − φ2j+1). As we see, only
interaction inside the soliton pairs gives a contribution into the leading terms of
equations (2.27): since the distance between pairs is, in our configuration, of order
4L, the leading term for the interaction between solitons from different pairs will
be of order O(e−4αL) in the non-rescaled time t, so after the time rescaling it is of
order O(e−2αL), i.e. it is absorbed in the O(e−αL)-terms in (2.27).

Let us rewrite the system in the coordinates Rj , Φj, Ψj := (φ2j+1 + φ2j+2)/2,
and pj := (η2j+1 + η2j+2)/2 (i.e. pj is the center of the soliton pair, Rj is the
distance between the solitons in the pair, Φj and Ψj describe the soliton phases).
We obtain

d

dτ
pj = v +

a

2
e−αRj cos(ωRj + θ1) sin(Φj) + O(e−αL), (2.28)











































dRj
dτ

= ae−αRj sin(ωRj+θ1) cos(Φj) + O(e−αL),

dΦj
dτ

=be−αRjcos(ωRj+θ2)sin(Φj)+ν

[

F (Ψj+
Φj
2

)−F (Ψj−
Φj
2

)

]

+O(e−αL),

dΨj

dτ
=
b

2
e−αRj sin(ωRj+θ2)cos(Φj)+

ν

2

[

F (Ψj+
Φj
2

)+F (Ψj−
Φj
2

)

]

−Ω+O(e−αL)

(2.29)
At large L this system is a lattice dynamical system of form (4.9): at L = +∞ the
subsystems that correspond to different j are independent and identical, and the
equations for variables yj := (Rj ,Φj ,Ψj) (equations (2.29)) are independent of the
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p-equation (2.28). Therefore, in order to prove Theorem 2.1, it is enough to check
that system (2.28),(2.29) satisfies conditions of Theorem 6.1 at some v. According
to that theorem, we will then obtain, for all sufficiently large L, the existence of a set
K̃ of solutions of system (2.28),(2.29) which has a positive space-time entropy and is
uniformly bounded by a constant independent of L (i.e. condition (2.26) is fulfilled
– this, in turn, ensures that the separation condition (2.20) holds, with somewhat

smaller L, for all the solutions from K̃). Now, lifting the set K̃ by formula (2.23),
we obtain a uniformly bounded set K of globally defined solutions of the perturbed
Ginzburg-Landau equation, and the positivity of the space-time entropy of the set
K follows from the smallness of S and the positivity of the space-time entropy of K̃.

Thus, to finish the proof we need the following

Lemma 2.3. Assume (2.13)-(2.18). Then there exists an open region of values of
ν and Ω for which the system

d

dτ
y :=











































d

dτ
R = ae−αR sin(ωR+ θ1) cos(Φ),

d

dτ
Φ = be−αR cos(ωR+ θ2) sin(Φ) + ν

[

F (Ψ+
Φ

2
)−F (Ψ−Φ

2
)

]

,

d

dτ
Ψ =

b

2
e−αR sin(ωR+ θ2) cos(Φ) +

ν

2

[

F (Ψ+
Φ

2
)+F (Ψ−Φ

2
)

]

−Ω

(2.30)
behaves chaotically, i.e. it has a basic (=non-trivial, uniformly-hyperbolic, compact,
locally-maximal, transitive, invariant) set Λ. Moreover, in Λ one can find two
periodic orbits, y = y−(τ) and y = y+(τ), of periods T− and T+, respectively, such
that

1

T−

∫ T−

0

g(y−(τ))dτ 6= 1

T+

∫ T+

0

g(y+(τ))dτ, (2.31)

where g(y) := v + a
2 e

−αR cos(ωR + θ1) sin(Φ).

One may check that condition (2.31) implies that

∫ T−

0

g(y−(τ))dτ ·
∫ T+

0

g(y+(τ))dτ < 0 (2.32)

for an appropriately chosen v. Hence, the lemma indeed establishes the required
fulfilment of conditions of Theorem 6.1: chaotic system (2.30) coincides with the
y-subsystem (2.29) at L = +∞ (for every j), and condition (2.32) coincides with
condition (6.22) (the function g is the right-hand side of the p-equation (2.28)). So,
it remains to prove the lemma.

We note that numerically the existence of chaos in system (2.30) with F (φ) =
cosφ as well as different scenarios of its emergence for various parameter values
were established in [40]. In our analytic proof of chaotic behavior we use one of
the scenarios mentioned in [40]. Namely, we find an equilibrium of system (2.30)
with 3 zero characteristic eigenvalues. It is known [6, 17] that bifurcations of such
equilibrium lead to a Shilnikov saddle-focus homoclinic loop, hence to chaos.

Proof of Lemma 2.3. For Ω = ν
2 [F (φ∗ + π

4 ) + F (φ∗ − π
4 )] and ν such that

cosZ = −γ cν
b
eα(Z−θ2)/ω, (2.33)
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system (2.30) has an equilibrium state at Φ = π
2 , Ψ = φ∗, R = (Z−θ2)/ω, where φ∗

is given by (2.13) (see also (2.14),(2.16)) By (2.13),(2.14), the linearization matrix
at such equilibrium is





0 −ρ1 0
−ρ2 0 cν

0 − b
2e

−α(Z−θ2)/ω sinZ + 1
4cν 0



 ,

where ρ1 := ae−α(Z−θ2)/ω(sinZ cos θ− cosZ sin θ), ρ2 := bωe−α(Z−θ2)/ω(α cosZ+
ω sinZ). This matrix has three zero eigenvalues at ν = ν∗ provided

D(ν∗) := ρ1ρ2 + cν∗(
1

4
cν∗ − b

2
e−α(Z−θ2)/ω sinZ) = 0. (2.34)

At γ 6= 0 system (2.34),(2.33) for Z = Z∗ transforms into

cos2 Z∗[1 − 4γ2α
a

b
sin θ] + 2γ sinZ∗ cosZ∗[1 + 2γ

a

b
(α cos θ − ω sin θ)]+

+ 4γ2a

b
ω cos θ sin2 Z∗ = 0,

and it is easy to check that the solvability of this equation is given by condition
(2.18). Moreover, solutions satisfy

D′(ν∗) 6= 0. (2.35)

If γ = 0, condition (2.33) gives cosZ∗ = 0, and one may check that condition (2.18)
in this case guarantees the solvability of equation (2.34) for ν∗ and the fulfillment
of (2.35). It follows from (2.17) that ρ1,2 6= 0 at the solutions (hence ν∗ 6= 0) and
that

α cos(Z∗ − θ) + ω sin(Z∗ − θ) 6= 0. (2.36)

At ν = ν∗ (the triple zero bifurcation moment) the vectors

v1 =





−cνρ1

0
−ρ1ρ2



 , v2 =





0
cν
0



 , v3 =





0
0
1



 ,

form a Jordan base. At ν close to ν∗, take Z satisfying (2.33) and close to Z∗, and
denote





R− (Z − θ1)/ω
Φ − π

2
Ψ − φ∗



 = y1v1 + y2v2 + y3v3 =





−cνρ1 y1
cν y2

y3 − ρ1ρ2 y1



 . (2.37)

System (2.30) takes the form

ẏ1 = y2 +O(y2),
ẏ2 = y3 +O(y2),
ẏ3 = ε1 + ε2y2 + ρy2

1 +O(|y1|3 + |y1|(|y2| + |y3|) + y2
2 + y2

3),
(2.38)

where ρ = 1
4 (ρ1ρ2)

2ν[F ′′(φ∗ + π
4 ) + F ′′(φ∗ − π

4 )] 6= 0, and ε1 = 1
2ν[F (φ∗ + π

4 ) +
F (φ∗− π

4 )]−Ω, ε2 = D(ν), i.e. (ε1, ε2) are small parameters which are related by a
diffeomorphism to the original parameters ν and Ω near the triple zero bifurcation
moment (see (2.34),(2.35)).

Scale the parameters as follows:

ε1 = −1

ρ
s6, ε2 = Es2 (2.39)
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for a sufficiently small s, and for some bounded E. By scaling the time and the
variables:

τ → σ/s, y1 → Y ε1/s
3, y2 → Y2ε1/s

2, y3 → Y3ε1/s,

we bring system (2.38) to the form

Y ′′′ = 1 − Y 2 + EY ′ +O(s) (2.40)

(where ′ denotes the differentiation with respect to the new, slow time σ).
The limit equation

Y ′′′ = 1 − Y 2 + EY ′ (2.41)

has two hyperbolic equilibria: O+ : Y = 1, with a one-dimensional stable manifold
W s

+ and a two-dimensional unstable manifold Wu
+, and O− : Y = −1, with a

two-dimensional stable manifold W s
− and a one-dimensional unstable manifold Wu

−.
At E < 3 these equilibria are saddle-foci, i.e. each of them has a pair of complex
characteristic exponents. By [21], equation (2.41) has, at E = E∗ = − 19

3
√

2475
, a

solution

Y (t) = − 9

2
tanh( 3

√

11/120 t) +
11

2
tanh3( 3

√

11/120 t)

which connects the saddle-focus O− with O+. This solution corresponds to a curve
Γ−+ along which the one-dimensional manifolds Wu

− and W s
+ coincide. By [17],

at the same E there exists another heteroclinic curve, Γ+−, which corresponds
to a transverse intersection of the two-dimensional manifolds Wu

+ and W s
−. By the

transversality, the heteroclinicnic orbit Γ+− persists for all E close to E∗. The other
heteroclinic orbit, Γ−+, splits as E varies, and this results [11, 12] in the sequence of
values Ek → E∗ which correspond to the existence of homoclinic loops to the saddle-
foci O+ and O− (equation (2.41) is time-reversible, so homoclinic loops to the both
saddle-foci appear simultaneously). One can view the one-parameter family (2.41)
as a smooth curve in the space of smooth flows in R3; then the parameter values Ek
correspond to the intersections of this curve with smooth codimension-one surfaces
filled by systems with a homoclinic loop to, say, the saddle-focus O−. Importantly,
these intersections are transverse. Therefore, fixing any arbitrarily large k, we will
have at some E close to Ek a homoclinic loop to a saddle-focus close to O−, for any
one-parameter family which is sufficiently close to (2.41).

Thus, given any sufficiently large k, at E = Ek + O(s) equation (2.40) has, for
every sufficiently small s, a homoclinic loop Γks to the saddle-focus O− at Y =
Y−(k, s) = −1 + O(s). Denote as ξ1,2,3 the characteristic exponents at the saddle-
focus, ξ1 > 0, Re ξ2 = Re ξ3 < 0, Im ξ2 = − Im ξ3 6= 0. As ξ1 + ξ2 + ξ3 ≈ 0 here
(the limit equation (2.41) is volume-preserving), the Shilnikov condition of chaos,
ξ1 + Re ξ2 > 0, is automatically fulfilled. Hence, by [35, 36] we obtain an open
region in the parameter plane which corresponds to a chaotic behavior (i.e. to the
sought basic hyperbolic set Λ) in equation (2.40) and, equivalently, in the original
system (2.30).

To finish the proof we need to show that the set Λ can be chosen in such a way
that it will contain a pair of periodic orbits for which (2.31) is satisfied. According
to Remark 6.6, it is enough to check that the integral of the function g − g|

O−

along the homoclinic loop to the saddle-focus O− is non-zero. In order to verify
this condition, let us rewrite the function g in the new variables (Y, Y ′, Y ′′):

g(Y, Y ′, Y ′′) = v +
a

2
e−α(Z−θ2)/ω cos(Z − θ) + C s3 Y +O(s6),
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where C := − acνρ1
2ρ e−α(Z−θ2)/ω(α cos(Z − θ) + ω sin(Z − θ)) 6= 0 (see (2.36)). Let

Y = Y (σ; k, s) be the solution of (2.40) that corresponds to the homoclinic loop
Γks ; note that Y (σ; k, s) → Y−(k, s) exponentially as σ → ±∞. Note also that
Y (σ; k, s) = Y (σ; k, 0) +O(s), therefore

∫ +∞

−∞
[g(Y (σ; k, s), Y ′(σ; k, s), Y ′′(σ; k, s)) − g(Y−(k, s), 0, 0)] dσ =

= Cs3
∫ +∞

−∞
(Y (σ; k, 0) + 1)dσ +O(s4)

As k → +∞, the homoclinic loops of equation (2.41) approach the heteroclinic cycle
Γ+−∪Γ−+∪O−∪O+ at E = E∗, so the homoclinic loop Γk0 to O− : {Y = −1} spends
at large k a large time in a neighborhood of the other equilibrium, O+ : {Y = +1}.
Therefore, the integral of (Y (σ; k, 0) + 1) tends to +∞ as k → +∞. Thus, for
sufficiently large k and sufficiently small s,

∫ +∞

−∞
[g(Y (σ; k, s), Y ′(σ; k, s), Y ′′(σ; k, s)) − g(Y−(k, s), 0, 0)] dσ 6= 0. (2.42)

By Remark 6.6, this proves the lemma, which finishes the proof of the theorem as
well.

The proof of the following proposition is standard, cf. [7, 42].

Proposition 2.1. Let the non-linearity H satisfy

ReH(z) · z ≥ −C; |H(z)| ≤ C(1 + z2), z ∈ R+ (2.43)

for some constant C independent of z. Then for all sufficiently small µ equation
(2.1) is well-posed in the space Cb(R) of uniformly bounded continuous functions and
generates a dissipative semigroup S(t)t≥0 in Cb(R), and this semigroup possesses a
global attractor A.

The attractor is defined here as follows. Let S(t), t ≥ 0, be a semigroup acting
on the space Cb(R). A set A ⊂ Cb(R) is a global (locally-compact) attractor of this
semigroup if

1) A is bounded in Cb(R) and compact in Cloc(R);
2) A is strictly invariant: S(t)A = A, t ≥ 0;
3) as t → ∞, the set A attracts, in the topology of Cloc(R), the images of

all bounded subsets B ⊂ Cb(R), i.e. for every neighborhood O of A in the local
topology and for every bounded B ⊂ Cb(R) there is a time T = T (O, B) such that
S(t)B ⊂ O(A) for all t ≥ T .

Remark 2.4. It is well-known (see e.g. [29, 43]) that, in contrast to the case of
bounded domains, the global attractor is usually not compact in Cb(R) if the un-
derlying domain is unbounded. However, attractor’s restrictions to every bounded
subdomain remain compact. The attraction property itself holds, too, in this local
topology only.

A characteristic property of the global attractor is that it consists of all initial
conditions which give rise to globally defined solutions. Namely, a function u0(x) ∈
Cb(R) belongs to the attractor if and only if there exists a function u(t, x) ∈ K such
that u0(x) ≡ u(0, x). Note that due to the invariance of the equation with respect
to temporal and spatial translations, the boundedness and local compactness of the
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attractor mean also that the set K of the solutions which are defined and bounded
for all (t, x) ∈ R2 is bounded in Cb(R

2) and compact in Cloc(R
2).

Thus, we may define the space-time entropy of the attractor as the space-time
entropy of the set K: hs−t(A) := hs−t(K) (see (2.2); more discussion and a com-
parison with other definitions can be found e.g. in [29, 43]). As we mentioned (see
[13, 44]), the space-time entropy of the attractor of the Ginzburg-Landau equation
is finite:

hs−t(A) <∞. (2.44)

The next Section gives an explicit example of a scientifically relevant equation with

hs−t(A) > 0. (2.45)

3. Attractor with positive space-time entropy in a perturbed nonlinear

Shrödinger equation. Here we prove the following

Theorem 3.1. Given any sufficiently large β, there exist (continuously depending
on β) intervals of values of δ, ρ, ε1 > 0, ε2 and µ such that the attractor of the
equation

∂tu = (1 + iβ)∂2
xu− (1 + iδ)u+ (i+ ρ)|u|2u− (ε1 + iε2)|u|4u+ µ (3.1)

has strictly positive space-time entropy.

Proof. The global attractor of equation (3.1) exists at ε1 > 0 according to Propo-
sition 2.1. By theorem 2.1, in order to prove (2.45) it is enough to show that the
equation

(1 + iβ)∂2
xU − (1 + iδ)U + (i+ ρ)|U |2U − (ε1 + iε2)|U |4U = 0 (3.2)

has a non-degenerate symmetric localized solution at some δ that depends on the
other parameters β, ρ1,2, ε1,2, and that conditions (2.14),(2.17),(2.18) are satisfied
at γ = 0. The localized solution of the ODE (3.2) corresponds to an intersection of
the two-dimensional stable and unstable manifolds of the hyperbolic equilibrium at
U = 0. Because of the phase-shift symmetry, when these manifolds intersect they
coincide. The soliton non-degeneracy conditions imply (among other things) that
as δ changes the manifolds split with a non-zero velocity. It follows that a non-
degenerate soliton will persist at small perturbation of the nonlinearity, provided a
small adjustment to the value of δ is made (see more in [1, 2]). Thus, it is enough
to consider the cubic equation

(1 + iβ)∂2
xU − (1 + iδ)U + (i+ ρ)|U |2U = 0; (3.3)

once the existence of a non-degenerate soliton is established for this equation, it can
be carried on to the equation (3.2) for all sufficiently small ε1,2, and since conditions
(2.14),(2.17),(2.18) are open, they will persist as well.

Let us choose β =
1

B
, ρ =

B(1 − 2w2) − 3w

1 − 2w2 + 3wB
, δ =

1 − w2 + 2wB

B(1 − w2) − 2w
for some

small B > 0 and w such that B > 2w
1−w2 . Then, if we define

U(x) := d1U(xd2) (3.4)

where d1 =
√

B(1−w2)−2w
1−2w2+3wB , d2 =

√

1 − w2 − 2wB , we obtain the following equation:

(i+B)
[

∂2
xU − (1 + iω)2U + (1 + iω)(2 + iω)|U|2U

]

= 0. (3.5)
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It has a localized stationary solution (see e.g. [1, 2])

U∗ =
1

(ch(x))1+iω
. (3.6)

The linearization operator L is given by

Lϕ := (i+B)
[

∂2
xϕ− (1 + iω)2ϕ+ 2(1 + iω)(2 + iω)|U∗|2ϕ+

+ (1 + iω)(2 + iω)2 U2
∗ ϕ̄

]

.
(3.7)

The localized functions

ϕ1(x) = −∂xU∗(x), ϕ2(x) = iU∗(x) (3.8)

(the odd and, respectively, the even one) belong to the kernel of L.

We introduce a scalar product as (ϕ, ψ) = Re

∫ +∞

−∞
ϕ(x)ψ(x)dx, so the

conjugate to (3.7) operator is

L†ψ := (i+B)
[

∂2
xψ − (1 + iω)2ψ + 2(1 + iω)(2 + iω)|U∗|2ψ

]

+

+(−i+B)(1 − iω)(2 − iω)(Ū∗)
2ψ̄.

(3.9)
As L has two zero modes, one even and one odd, the same holds true for the
conjugate operator L†. At w = B = 0 the equation for zero eigenfunctions of L†

reads as

∂2
xψ − ψ + 4Γ2ψ − 2Γ2ψ̄ = 0, (3.10)

where we denote

Γ(x) =
1

ch(x)
; (3.11)

note that

Γ′′(x) = Γ − 2Γ3, Γ′′′(x) = (1 − 6Γ2)Γ′(x). (3.12)

It is easy to see that the odd and even localized solutions of (3.10) are

ψ1(x) = iΓ′(x), ψ2(x) = Γ(x). (3.13)

We will look for asymptotic expansions of these solutions at small w and B. By
(3.9), the localized zero modes of L† satisfy

ψ′′(x) − ψ + 4Γ2ψ − 2Γ2ψ̄ =

= iω
[

(2 − 6Γ2)ψ − (3Γ2 + 4Γ2 ln Γ)ψ̄
]

+ 4iBΓ2ψ̄ +O(w2 +B2)

(3.14)
(we take into account that U∗ depends on w as well: by (3.6),(3.11) Ū2

∗ = Γ2(1 −
2iw ln Γ +O(w2)), while |U∗|2 = Γ2). By (3.14), we have

ψ = u+ iv +O(w2 +B2), (3.15)

where
{

u′′(x) − u+ 2Γ2u = −wv(2 − 3Γ2 + 4Γ2 ln Γ) + 4BvΓ2,
v′′(x) − v + 6Γ2v = wu(2 − 9Γ2 − 4Γ2 ln Γ) + 4BuΓ2.

(3.16)

By (3.15),(3.16),(3.12) the two sought localized solutions of (3.14) are given by

ψ1 = iΓ′(x) + S(x) +O(w2 +B2), ψ2 = Γ(x) + iQ(x) +O(w2 +B2), (3.17)

where S and Q are real, decaying to zero, as x→ ±∞, functions which satisfy

S′′ − S + 2Γ2S = −w(2 − 3Γ2 + 4Γ2 ln Γ)Γ′(x) + 4BΓ2Γ′(x), (3.18)
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Q′′ −Q+ 6Γ2Q = w(2Γ − 9Γ3 − 4Γ3 ln Γ) + 4BΓ3. (3.19)

To find S(x), we multiply (3.18) to Γ(x). The equation will take the form (see
(3.12)):

ΓS′′ − Γ′′S = −w(Γ2 − Γ4 + Γ4 ln Γ)′ +B(Γ4)′.

By integrating this equation with respect to x, we find

ΓS′ − Γ′S = −w(Γ2 − Γ4 + Γ4 ln Γ) +BΓ4

(there is no integration constant in the right-hand side, since both S and Γ tend to
zero as x→ ±∞). By solving the first-order equation, we finally obtain

S(x) = −wΓ(x)(x −
∫

Γ2dx+

∫

Γ2 ln Γdx) +BΓ(x)

∫

Γ2dx

= − w

ch(x)
(2x− sh(x)

ch(x)
(2 − ln ch(x))) +B

sh(x)

ch2(x)
.

(3.20)

Similarly, by multiplying (3.19) to Γ′(x) and integrating the obtained equation,
we find, with the use of (3.12), that Γ′Q′−Γ′′Q = w(ΓΓ′′ −Γ4 ln Γ)+BΓ4. The
solution is

Q(x) = w(xΓ′(x) − Γ − Γ′(x)

∫

Γ4 ln Γ

(Γ′)2
dx) +BΓ′(x)

∫

Γ4

(Γ′)2
dx

= − w

ch2(x)
(2xsh(x) + ch(x) + ch(x) ln ch(x)) +Bch(x).

(3.21)

It is immediately seen that functions S and Q given by (3.20),(3.21) are localized
indeed. Moreover, S is odd and Q is even, so by plugging (3.20) and (3.21) in (3.17),
we obtain the odd (ψ1) and even (ψ2) zero eigenfunctions of L†.

One can also compute (see (3.8)) that

Re

∫ +∞

−∞
ψ1(x)ϕ1(x)dx =

= −
∫ +∞

−∞
SΓ′dx + w

∫ +∞

−∞
(Γ′)2(1 + ln Γ)dx+O(w2 +B2) =

2

3
B +O(w2 +B2),

(3.22)

Re

∫ +∞

−∞
ψ2(x)ϕ2(x)dx =

= −w
∫ +∞

−∞
Γ2 ln Γdx−

∫ +∞

−∞
QΓdx+O(w2 +B2) = 2(2w −B) +O(w2 +B2).

(3.23)
As we see, these inner products are non-zero for the values of B and w that we
consider here (small B,w such that B > 0 and B > 2w

1−w2 ). This shows that there

are no adjoint functions to the eigenfunctions (3.8). The absence (at small B,w) of
eigenvalues on the imaginary axis follows from [19]. Thus, the pulse U = U∗(x) is
non-degenerate.

Returning to the non-rescaled variables, we find that the soliton U = d−1
1 U∗(x/d2)

of equation (3.3) is non-degenerate. The corresponding eigenfunctions of L†
U are

given by

ψ1(x) =
3d1

2B +O(w2 +B2)
(iΓ′(x/d2) + S(x/d2) +O(w2 +B2)),

ψ2(x) =
d1

2d2((2w −B) +O(w2 +B2))
(Γ(x/d2) + iQ(x/d2) +O(w2 +B2))



SPACE-TIME CHAOS IN GINZBURG-LANDAU EQUATIONS 1731

(we normalize them so that (2.8) is fulfilled, see (3.22),(3.23)). By (3.20), (3.21),
we find

ψ1(x) ∼ − 3d1(i− w(2 − ln 2) −B +O(w2 + B2))

B +O(w2 +B2)
e−(1+iw)|x|/d2 sign(x),

ψ2(x) ∼
d1(1 + iB − iw(1 + ln 2) +O(w2 +B2))

d2(2w −B +O(w2 +B2))
e−(1+iw)|x|/d2

as x → ±∞, so ω = −w/d2, α = 1/d2, and the coefficients s and q in (2.10),(2.11)
are

s = −3d1(i− w(2 − ln 2) −B +O(w2 +B2))

B +O(w2 +B2)
,

q =
d1d2(1 + iB − iw(1 + ln 2) +O(w2 +B2))

2w −B +O(w2 +B2)
.

It is easy to see that all conditions (2.14),(2.17),(2.18)γ=0 hold at small w 6= 0,
B > 0.

4. Normally-hyperbolic manifolds for lattice dynamical systems. In this
and the the next Sections we study a class of lattice dynamical systems which in-
cludes systems describing weak interaction of solitons localized in space and chaotic
in time, e.g. system (2.28),(2.29). We start with a skew-product system of ODE’s

y′(t) = f(y), p′(t) = g(y), (4.1)

where f, g are Cr, r ≥ 1. We assume that y ∈ Rn, p ∈ Rm; for more clarity we
will denote the space of y variables as Y and the space of p variables as P . We will
further assume that the y-part of our system:

y′ = f(y), (4.2)

possesses a bounded, uniformly-hyperbolic invariant set Λ.
Recall that the hyperbolicity means that for every point of Λ there are two sub-

spaces, Ns(y) and Nu(y), such that the following holds:
1) Ns(y) and Nu(y) depend continuously on y ∈ Λ,
2) the direct sum of Ns(y), Nu(y) and N c(y) := Span(ẏ) := {λf(y)|λ ∈ R} consti-
tutes the whole of Rn,
3) given any orbit y(t) from Λ, each of the families of subspaces Ns(y(t)) and
Nu(y(t)) is invariant with respect to the flow of system (4.2) linearized about the
orbit y(t),
4) the linearized flow is exponentially contracting in restriction onto Ns(y(t)) as
t→ +∞ and in restriction onto Nu(y(t)) as t → −∞ (the flow, then, is expanding
on Ns(y(t)) as t→ −∞ and on Nu(y(t)) as t→ +∞).

The linearized system is
d

dt
v = f ′(y(t))v. (4.3)

Since v(t) = ẏ(t) = f(y(t)) is a uniformly bounded solution of it, there exists a
uniformly bounded non-zero solution y∗(t) for the conjugate system

d

dt
v = −f ′(y(t))⊤v. (4.4)

As y∗(t) solves (4.4), it follows that d
dt 〈y∗(t) · v(t)〉 = 0 for every solution v(t) of

(4.3), i.e. 〈y∗(t) · v(t)〉 stays constant. Thus, since the solutions of (4.3) which lie
in Ns(y(t)) ⊕ Nu(y(t)) tend to zero either as t → +∞ or as t → −∞ and y∗(t)
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is bounded, we find that this constant is zero for every v ∈ Ns(y(t)) ⊕ Nu(y(t)),
i.e. the vector y∗(t) is orthogonal to Ns(y(t)) ⊕ Nu(y(t)) for all t. This condition
defines y∗ up to a scalar factor; we fix it by normalizing y∗ in such a way that

〈y∗(t) · ẏ(t)〉 ≡ 1. (4.5)

The exponential dichotomy for system (4.3) restricted to v(t) ∈ Ns(y(t)) ⊕
Nu(y(t)) implies that the equation

d

dt
v(t) − f ′(y(t))v = h(t)

has a unique uniformly bounded solution v(t) ∈ Ns(y(t)) ⊕ Nu(y(t)) for any uni-
formly bounded function h(t) ∈ Ns(y(t)) ⊕ Nu(y(t)). It is more convenient for us
to express this property in the following equivalent way: the equation

d

dt
v(t) − f ′(y(t))v + 〈y∗(t) · v〉 ẏ(t) = h(t) (4.6)

has a unique uniformly bounded solution v(t) given any uniformly bounded function
h(t). More precisely, equation (4.6) defines a linear operator Ly : h 7→ v such that

‖v‖ ≤ CΛ‖h‖. (4.7)

The assumed uniform hyperbolicity of the set Λ means that the constant CΛ in
(4.7) can be taken the same for all orbits y ∈ Λ.

Take a countable set of equations of type (4.1). This produces an uncoupled LDS
(lattice dynamical system):

y′k(t) = fk(yk), p′k(t) = gk(yk), k ∈ Z (4.8)

We assume that the derivatives of fk and gk up to the order r are uniformly con-
tinuous and bounded for all k, and that for each k the k-th individual ODE’s in the
LDS has a hyperbolic set Λk, all these sets are uniformly bounded and uniformly
hyperbolic for all k (the uniform hyperbolicity means in our approach that the con-
stant CΛ in (4.7) can be taken the same for all k). In the example considered in
Section 2, the individual ODE’s are identical to each other, so the uniformity with
respect to k holds trivially.

By introducing Banach spaces

Y := l∞(Y ), ‖y‖Y := supk∈Z
‖yk‖Y , y := {yk}k∈Z,

P := l∞(P ), ‖p‖P := supk∈Z
‖pk‖P , p := {pk}k∈Z,

we may write the LDS as

y′(t) = f(y), p′(t) = g(y),

where f := {fk}k∈Z, g := {gk}k∈Z.
The subject of our study will be a coupled LDS, obtained by a small smooth

perturbation of this system. Namely, we consider
{

y′(t) = f(y) + εFε(y,p),

p′(t) = g(y) + εGε(y,p),
(4.9)

where ε is a small parameter, and Fε and Gε are Cr-functions Y × P → Y and,
respectively, Y×P → P; by “Cr” we mean, here and below, that all the derivatives
up to the order r exist, are uniformly continuous and uniformly bounded. We also
assume continuity (in Cr) with respect to ε, so

‖Fε‖Cr + ‖Gε‖Cr ≤ C (4.10)
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where C is independent of ε.

Let y0(t) := {y0
k(t)}k∈Z be a sequence of arbitrary orbits y0

k(t) ∈ Λk; we will say
that y0(t) is an orbit from Λ∞. Each orbit y0

k(t) defines a curve in the Y -space.
The direct product of these curves, times the space P, is a Cr-submanifold of Y×P,
we will denote is as W0

y0 . Given an orbit y0, the corresponding manifold W0
y0 is

given by the equation

yk = y0
k(φk), k ∈ Z, (4.11)

where the “phases” φk run all real values, independently for different k. If we
introduce a Banach space Ψ of the bounded sequences Φ := {φk}k∈Z with the
uniform norm ‖Φ‖ := supk∈Z

|φk|, then W0
y0 is a Cr-embedding of Ψ × P into

Y × P. Obviously, W0
y0 is invariant with respect to the non-coupled LDS (4.8).

Moreover, this manifold is normally-hyperbolic (as each of the orbits y0
k is uniformly-

hyperbolic). It is a well-known general principle that normally-hyperbolic invariant
manifolds persist at small smooth perturbations (see [14, 16]). The next theorem
shows that this principle holds true in our setting.

Theorem 4.1. For all sufficiently small ε, given any orbit y0 ∈ Λ∞ there exists
a uniquely defined Cr-manifold Wy0,ε ⊂ Y × P, which is invariant with respect to
system (4.9), depends continuously on ε (in Cr, uniformly with respect to y0), and
coincides with W0

y0 at ε = 0. Namely, Wy0,ε is given by

yk = Uk(Φ,p, ε) := y0
k(φk) + Vk(Φ,p, ε), (4.12)

where

‖Vk‖Cr−1 = O(ε), ‖Vk‖Cr = o(1)ε→0, (4.13)

uniformly for all k ∈ Z and all y0 ∈ Λ∞.

Proof. We start with some preliminary constructions. Define the exponential α-
norm ‖h‖α := supt∈R

e−α|t|‖h(t)‖ on the space of continuous, uniformly bounded
functions h; e.g. ‖ · ‖0 is just the C0-norm.

Lemma 4.2. For all small α ≥ 0 and ν ≥ 0, for all functions φ(t) such that

|φ′(t) − 1| ≤ ν for all t ∈ R, (4.14)

and for any A(t) and b(t) sufficiently close (in C0) to f ′(y(t)) and, respectively, to
y∗(t), the equation

d

dt
v(t) −A(φ(t))v(t) + 〈b(φ(t)) · v(t)〉 f(y(φ(t))) = h(t) (4.15)

is uniquely solvable for any uniformly bounded function h(t), and the corresponding
linear operator Lφ : h 7→ v satisfies

‖v‖α ≤ CΛ‖h‖α. (4.16)

Moreover, the operator Lφ is Lipshitz with respect to φ: if v1(t) and v2(t) are the
solutions of equation (4.15) which correspond to two different functions φ1(t) and
φ2(t) (and to the same right-hand side h), then

‖v2 − v1‖α ≤ K‖h‖0‖φ2 − φ1‖α (4.17)

for some constant K, proportional to the C1-norms of A, b and f .
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Proof. A uniformly small continuous perturbation of the time-dependent coefficients
in the left-hand side of (4.6) does not destroy its unique solvability property. Hence,
equation

d

dt
v(t) −A(t)v + 〈b(t) · v〉 f(y(t)) = h(t) (4.18)

has a unique uniformly bounded solution v(t) given any uniformly bounded function
h(t); moreover, for the corresponding operator L : h 7→ v estimate (4.7) holds (we
assume that the constant CΛ in (4.7) was taken with a margin of safety, so all
our small perturbations of the equation do not change CΛ). Note also, that given
any function φ(t) that satisfies (4.14), if we introduce a new time τ = φ(t) in the
equation (4.15) and a new function vnew by the rule vnew(φ(t)) ≡ v(t), then the
left-hand side of equation will be O(ν)-close to the left-hand side of (4.18). For
sufficiently small ν this gives us the unique solvability of (4.15) and estimate (4.16)
with α = 0.

Next, we note that a multiplication of the functions v and h in (4.15) to any
smooth function of t with uniformly small derivative just results in a uniformly small
correction to A(φ(t)). This immediately shows the unique solvability of equation
(4.15) in any weighted space with a sufficiently slowly growing weight; e.g. we
obtain (4.16) for all small α.

In order to show the Lipshitz property of Lφ with respect to φ, we note that

v2 − v1 = Lφ2
{(A(φ2) −A(φ1))v1 − [〈b(φ2) · v1〉 f(y(φ2)) − 〈b(φ1) · v1〉 f(y(φ1))]} .

Now, since A(φ), b(φ), f(y(φ)) are smooth - hence, Lipshitz - with respect to φ, and
since v1(t) is uniformly bounded by (4.7), we immediately get (4.17) from (4.16).

Further we will use

b(t) =

∫ +∞

−∞
y∗(t+ sµ)ξ(s)ds, A(t) =

∫ +∞

−∞
f ′(y(t+ sµ))ξ(s)ds, (4.19)

where µ is a small constant and ξ ≥ 0 is such that
∫ +∞
−∞ ξ(s)ds = 1. At µ = 0

we have b ≡ y∗ and A ≡ f ′(y); at small µ the functions A(t) and b(t) are close,
respectively, to f ′(y(t)) in Cr−1 and to y∗(t) in Cr (we have y∗(t) ∈ Cr as it satisfies
equation (4.4)). Thus, uniformly for all t, we have

〈b(t) · f(y(t))〉 − 1 := c(t) = O(µ),

b′(t) + f ′(y(t))⊤b(t) = o(1)µ→0, A(t) − f ′(y(t)) = o(1)µ→0

(4.20)

(see (4.5),(4.4)). By taking ξ ∈ C∞ and such that
∫ +∞
−∞ |ξ′(s)|ds <∞, we will make

A(t) and b(t) at µ 6= 0 more smooth then f ′(y(t)) and, respectively, y∗(t), namely
we will use A which is at least Cr and b which is at least Cr+1; the price is that
the last derivatives do not stay bounded as µ→ 0, however we have en estimate

‖A(t)‖Cr = O(µ−1), ‖b(t)‖Cr+1 = O(µ−1). (4.21)

The next proposition describes the way we coordinatize a small neighborhood of
the curve w0

k : y = y0
k(t) in the Y -space (y0

k(t) is an orbit from the hyperbolic set Λk
of the k-th subsystem of the uncoupled LDS (4.8)). Let wk : y = yk(t) be a curve,
γ-close to w0

k on some, finite or infinite, interval I of t, i.e. there exists a smooth
time-reparametrization ψ(t) such that ‖y0

k(ψ(t)) − yk(t)‖Y < γ at t ∈ I.
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Lemma 4.3. There exists γ̄ > 0 (independent of the choice of the orbit y0
k ∈ Λk

and independent of k) such that if γ < γ̄, then there exists a uniquely defined on I

function φ(t) such that φ = ψ +O(γ), dφ
dψ = 1 + o(1)γ→0, and

〈

bk(φ) · (yk(t) − y0
k(φ))

〉

≡ 0, (4.22)

where bk is given by (4.19) at some small µ.

Proof. The derivative of the left-hand side of (4.22) with respect to φ at constant
yk is

〈

b′k(φ) · (yk − y0
k(φ))

〉

−
〈

bk(φ) · ẏ0
k(φ)

〉

= O(yk − y0
k(φ)) −

〈

bk(φ) · fk(y0
k(φ))

〉

.

By (4.20), it is bounded away from zero, provided yk − y0
k(φ) is sufficiently small.

Thus, by the implicit function theorem, for any point yk from the (sufficiently small)
γ-neighborhood of the point y0

k(ϕ), we have a uniquely defined φ(yk) which satisfies
(4.22) and condition φ(y0

k(ψ)) = ψ. Moreover, φ depends smoothly on y and the
derivatives are uniformly bounded. So, as ‖y0

k(ψ(t)) − yk(t)‖Y < γ, we also have
‖ψ(t) − φ(t)‖Y = O(γ), as required (we denote φ(t) := φ(yk(t))).

Let us now proceed to the proof of the theorem. Let y0(t) be an orbit from
Λ∞. The sought invariant manifold Wy0,ε consists of all solutions of the LDS (4.9)
which stay for all times in a small neighborhood of the manifold W0

y0 . This means

that, for every k ∈ Z, the k-th component of y(t) stays uniformly close to the
corresponding curve w0

k : y = y0
k(φ) in the Y -space. In other words every trajectory

(y(t),p(t)) ∈ Wy0,ε satisfies

yk(t) = y0
k(φk(t)) + vk(t), k ∈ Z, (4.23)

where the functions vk(t) are uniformly small. By Lemma 4.3, we may always
assume that the parametrization φk(t) is chosen so that (4.22) is fulfilled. By
differentiating (4.22) with respect to t we get

〈bk(φk(t)) · v′k(t)〉 ≡ −φ′k(t) 〈b′k(φk(t)) · vk(t)〉 . (4.24)

Now, plugging (4.23) into the first equation of (4.9) gives

v′k(t) + φ′k(t)fk(zk(t)) = fk(zk(t) + vk(t)) + εFε,k(z + v(t),p(t)), (4.25)

where we denote zk(t) := y0
k(φk(t)). By multiplying both sides of this equation to

b(φk(t)), and taking (4.22),(4.24) and (4.20) into account, we obtain the following
equation for the evolution of φk:

φ′k(t) = 1 + qk(v,Φ,p), (4.26)

where

qk :=
〈[fk(zk + vk) − fk(zk)] · bk(φk)〉 + 〈b′k(φk) · vk〉 + ε 〈Fε,k(z + v,p) · bk(φk)〉

1 + ck(φk) − 〈b′k(φk), vk〉
.

(4.27)
Equation for the v-components can now be obtained by plugging (4.26) into (4.25):

v′k(t) −Ak(φk)vk + 〈bk(φk) · vk〉 fk(zk) = Qk(v,Φ,p) − qk(v,Φ,p)fk(zk), (4.28)

where

Qk := fk(zk + vk) − fk(zk) −Ak(φk)vk + εFε,k(z + v,p). (4.29)

Equation for the evolution of p(t) is given by the second equation of (4.9):

p′k(t) = gk(zk + vk) + εGε,k(z + v,p). (4.30)
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We remark that if we choose µ = 0 in (4.19), equations (4.27) and (4.29) are
simplified and reduce to

qk =
〈Qk · bk(φk)〉

1 + 〈y∗k(φk), f ′
k(zk)vk〉

, Qk = fk(zk+vk)−fk(zk)−f ′
k(zk)vk+εFε,k(z+v,p)

(4.31)
(see (4.20)). However, the functions qk and Qk will be only Cr−1 with respect to
Φ, therefore we use small non-zero µ – in order not to lose the last derivative (and
to be able to treat the case r = 1).

By multiplying both sides of (4.28) to bk(φk(t)) and using (4.26),(4.20) we find
that

d

dt
〈bk(φk(t)) · vk(t)〉 + 〈bk(φk(t)) · vk(t)〉 (1 +O(µ)) = 0.

This equation has only one bounded solution: 〈bk(φk(t)) · vk(t)〉 ≡ 0; therefore,
since b is uniformly bounded, we find that every uniformly bounded solution v(t)
of the system (4.26),(4.28),(4.30) (with k running all integer values) satisfies (4.22).
Hence, it satisfies (4.25). Thus, the solutions of system (4.26),(4.28),(4.30) whose
v(t)-component is uniformly small give us all the solutions of system (4.9) which
stay uniformly close to the manifold W0

y0 (i.e. all the solutions which comprise

the sought invariant manifold Wy0,ε). We show below that for all small δ > 0 the
solution of (4.26),(4.28),(4.30) for which

‖vk(t)‖Y ≤ δ (k ∈ Z, t ∈ R) (4.32)

exists and is defined uniquely for any given initial condition Φ(0) and p(0).
In order to prove the existence and uniqueness of the (small v) solution, we

will show that it can be obtained as a fixed point of a contracting operator on an
appropriate space. Namely, we consider the set Xδ,ν of all functions (v(t),Φ(t),p(t))
belonging to space Cloc(R,Y×Ψ×P) such that (4.32) and (4.14) hold for all k and
t for which the following norm is finite:

‖v,Φ,p‖α = sup
k∈Z,t∈R

e−α|t| max{‖vk(t)‖, |φk(t)|, κ‖pk(t)‖}, (4.33)

where α > 0, and κ > 0 is assumed to be sufficiently small. Obviously, the set Xδ,ν
is a complete metric space with respect to that norm.

Note that in the limit limε→0,v→0 the functions qk, Qk given by (4.27),(4.29)
tend uniformly to zero for all k ∈ Z, and in the limit limµ→+0 limε→0,v→0 their first
derivatives with respect to v, Φ and p tend uniformly to zero too (see (4.10),(4.20)
and (4.21); the order of the limits is important: ε and v first, then µ). The first
derivative of the right-hand side of (4.30) with respect to p is also uniformly small.
Thus, if we rewrite system (4.26),(4.28),(4.30) as







































vk = Lφk
[Qk(v,Φ,p) − qk(v,Φ,p)fk(zk)] ,

φk = φ0
k + t+

∫ t

0

qk(v,Φ,p)dt,

(k ∈ Z)

pk = p0
k +

∫ t

0

gk(zk + vk)dt+ ε

∫ t

0

Gε,k(z + v,p)dt,

(4.34)

where (Φ0,p0) ∈ P×Ψ is arbitrary and the operator L is defined by equation (4.15),
then it is easy to check that the right-hand side of (4.34) (for every fixed Φ0 and
p0) defines a contracting operator T : Xδ,ν → Xδ,ν for every exponential norm with
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a sufficiently small weight α0. Namely, we first fix small ν and α0 such that the
operators Lφk

will all be defined and Lipshitz with respect to φ (see (4.17), actually,

we may fix ν of order ε); the operator of integration
∫ t

0 (·)dt is also Lipshitz in the

α0-norm, with the Lipshitz constant 1
α0

; then we choose a sufficiently small µ for
which the Lipshitz constants of qk and Qk can become small enough as ε and v

tend to zero; then we see that one may choose κ sufficiently small such that for
all sufficiently small ε and δ the Lipshitz constant of the right-hand side of (4.34)
on the space Xδ,ν is less than 1, which means the operator T is contracting indeed
(we need to introduce the small factor κ in the definition of norm on Xδ,ν because
the derivative of gk with respect to vk and φk, though bounded, is not necessarily
small). As at ε = 0 and v = 0 the v-component of the image by T vanishes, the
contractivity of T implies that given any small δ the condition (4.32) is invariant
with respect to T for all sufficiently small ε; i.e., the T Xδ,ν ⊂ Xδ,ν .

By the Banach principle, the iterations by T of any initial element from Xδ,ν
converge to a uniquely defined limit in Xδ,ν , the fixed point of T . Thus, we have
shown that every solution which stays sufficiently close to the manifold W0

y0 for

all times can be found as the uniquely defined solution of (4.34). Therefore, the
union of all such solutions comprises the sought invariant manifold Wy0,ε given by
(4.12) where the function Vk is defined by the map (Φ(0),p(0)) 7→ vk(0). Note that
this map (hence the manifold Wy0,ε) is Lipshitz continuous, since the contracting
operator T is Lipshitz continuous with respect to (Φ0,p0). We omit the proof of the
smoothness of this map, as it is completely standard (yet laborious): one may show
that the operator T is smooth on a scale of Banach spaces corresponding to different
weighted α-norms on Xδ,ν (cf. [15, 38]) or, alternatively, check by fiber-contraction
arguments that the iterations by T of an initial element from Xδ,ν converge to the
fixed point of T uniformly along with the derivatives with respect to (Φ0,p0) (cf.
[24, 25]).

In order to finish the proof of the theorem, it remains to show estimate (4.13).
The Cr-part is obvious, as v = 0 solves (4.34) at ε = 0, and the fixed point of a
contracting operator which depends on a parameter continuously must depend on
the same parameter continuously. To show the Cr−1-estimate, we note that when
the right-hand side of (4.34) depends smoothly on some parameter, the solution
must also be smooth with respect to the same parameter. In particular, if we
rewrite system (4.9) as

y′(t) = f(y) + σFε(y,p), p′(t) = g(y) + σGε(y,p),

then v(t) will depend Cr-smoothly on σ as well, which immediately gives (4.13) if
we note that v(t) = 0 at σ = 0 and plug σ = ε back.

Remark 4.4. The theorem also remains true if the number of systems coupled in
the LDS is finite, i.e. if the index k runs a finite set instead of Z. Then the range of
ε values for which the corresponding invariant manifolds exist will be independent
on the number N of systems in the LDS – provided the constant C in the bound
(4.10) on the norm of the coupling terms is independent of N . Note that condition
(4.10) does not requires that the coupling is local, it just means that the “total
coupling strength” for each subsystem in the LDS is bounded independently of the
total number N of subsystems involved.

Remark 4.5. Given any symmetry in system (4.9), if the set Λ∞ obeys the same
symmetry, then system of invariant manifolds Wy0,ε inherits the symmetry for all
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small ε – by uniqueness. A basic example of such symmetry is invariance with
respect to spatial translation k → k + 1 (in this case, the coupling terms F,G are
shift-invariant, the individual ODE’s (4.8) are the same for all k, and the sets Λk
should be chosen the same).

Theorem 4.1 allows us to construct a huge number of special solutions of the
weakly coupled LDS (4.9). Indeed, for every y0 ∈ Λ∞, one can construct the
associated manifold Wy0,ε and then, for every (Φ0,p0) ∈ Ψ × P, there exists a
solution (y(t),p(t)) in the form

y(t) = y0(Φ(t)) + Vy0(Φ(t),p(t)) (4.35)

where the functions (Φ(t),p(t)) solve the reduced problem on the center manifold
(see (4.26),(4.30)):











Φ′(t) = 1 + q(Vy0(Φ,p),Φ,p),

p′ = g(y0(φ) + Vy0(Φ,p)) + εGε(y
0(Φ) + Vy0(Φ,p),p),

Φ(0) = Φ0, p(0) = p0.

(4.36)

It is interesting to have an expansion in powers of ε for the system on the invariant
manifold. In order to do this we need a sufficient smoothness of the right-hand
sides: for instance, to find the first order in ε approximation to (4.36) we assume
the original system to be at least C2 with respect to all variables and ε. In this case
we may take µ = 0 in formulas (4.19), so the function q will be given by (4.31). As
V = O(ε) by (4.13), we immediately obtain the first-order in ε approximation to
the φ-equation:

φ′k(t) = 1 + ε
〈

Fk,0(y
0(Φ),p) · y∗k(φk)

〉

, (4.37)

where y∗k(s) is the uniquely defined bounded solution of

d

ds
y∗k(s) = −f ′

k(y
∗
k(s))

⊤y∗k(s),
〈

y∗k(s) · fk(y0
k(s))

〉

≡ 1.

Formula (4.37) describes the evolution of phases on the invariant manifolds W and
can be useful in the study of phase synchronization in coupled chaotic systems (see
e.g. [33]).

To obtain the approximate p-equation, we need the first-order approximation to
v. By expanding the first equation in (4.34) in ε, we find that

vk = εuk(0) + o(ε),

where the function uk(t) is given by

uk = Lφk(t)

[

Fk,0(y
0(Φ(t)),p(t)) −

〈

Fk,0(y
0(Φ(t)),p(t)) · y∗k(φk(t))

〉

fk(y
0
k(φk(t)))

]

.

Since, by (4.36), φk(t) is for all k uniformly O(ε)-close to φk(0)+t in the exponential

α-norm with α > 0, and pk(t) is for all k uniformly O(ε)-close to pk(0)+
∫ t

0
gk(y

0
k(s+

φk(0)))ds, also in the exponential α-norm, it follows from the Lipshitz property of
the operator Lφ (see (4.17),(4.16)) that

vk = εwk(Φ,p) + o(ε),

where, given any constant Φ and p, we denote as wk(Φ,p) the value at t = 0 of the
uniquely defined bounded solution w(t) of the equation

d
dtw(t) − f ′

k(y
0
k(t+ φk))w + 〈y∗k(t+ φk) · v〉 fk(yk(t+ φk)) =

= Fk − 〈Fk · y∗k(t+ φk)〉 fk(y0
k(t+ φk))), where

Fk := Fk,0(y
0(t+ Φ),p +

∫ t

0
g(y0(s+ Φ))ds).
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By plugging the above formula for vk into the p-equation of (4.36) and dropping
all o(ε)-terms, we find that the first-order approximation to the p-equation is

p′k(t) = gk(y
0
k(φk) + εwk(Φ,p)) + εGk,0(y

0(Φ),p). (4.38)

Remark 4.6. Let the uniformly-hyperbolic sets Λk be compact and also locally-
maximal, i.e. there exists γ0 > 0 (independent of k) such that for each k every
orbit of (4.8), which stays in the γ0-neighborhood of Λk for all t, belongs to Λk
itself. Then, for ε sufficiently small, every solution of the coupled LDS (4.9) whose
y-component stays for all times in a small neighborhood of Λ∞ belongs to one of
the manifolds Wy0,ε. Indeed, given any k the k-th component yk(t) of such solution
must be close, after some reparametrization of time, to a γ-orbit ỹ(ϕ(t)), which is
a countable union of consecutive pieces ỹ(ϕ)|φ∈[φj ,φj+1) of orbits from the set Λk
such that ‖ỹ(ϕj) − ỹ(ϕj − 0)‖ ≤ γ, for some small γ. It is known that when Λk is
locally-maximal, any γ-orbit is shadowed by a true orbit, i.e. there exists an orbit
in Λk which is O(γ)-close to ỹ(ϕ) (after a reparametrization of time). Thus, our
solution y(t) of the coupled LDS stays for all times close to a (time-reparametrized)
orbit y0 ∈ Λ∞, i.e. we can write it in the form (4.23), and we showed in Theorem
4.1 that every such solution belongs to the invariant manifold Wy0,ε.

5. A theorem on asymptotic phase. In this Section we compare the behav-
ior of orbits of the LDS (4.9) which belong to different invariant manifolds Wy0,ε.
We start with the analysis of the dependence of the invariant manifold Wy0,ε on
the choice of the trajectory y0 ∈ Λ∞. Clearly, Wy0,ε depends on y0 continuously:
namely, the function Vy0,ε(Φ,p) (hence - the function Uy0,ε(Φ,p)) in (4.12) is found
via an application of the contraction mapping principle, and the corresponding con-
tracting operator (the operator T defined by the right-hand side of (4.34)) depends
continuously on y0 in some exponential weighted norm, so on any bounded set of
values of Φ and p the functions Uy0,1,ε and Uy0,2,ε will be uniformly close provided
the trajectories y0,1 and y0,2 are sufficiently close in the weighted norm. We need,
however, a different statement about the closeness of Uy0,1,ε and Uy0,2,ε. Note that
though the manifold Wy0,ε is defined uniquely (as the set of all solutions that for all
t stay uniformly close to the manifold W0

y0 defined by (4.11)), the function Uy0,ε in

(4.12) is defined up to an (arbitrary) reparametrization of the space Ψ of phases φk.
Therefore, when comparing functions U corresponding to two different trajectories
y0 (as we do it below), we should describe how the corresponding parametrization
choices agree with each other.

In order to do so we recall the construction used in the proof of Theorem 4.1.
Take any orbit {y = y0(t)} ∈ Λ∞; its k-th component y0

k(t) defines a smooth
curve w0

k in the space Y . Take any other curve w : {y = yk(t)} in Y . By Lemma
4.3, there exists γ̄ > 0 (independent of the choice of the curves) such that if w
stays in the γ̄-neighbourhood of w0

k for a certain interval of time, then, for every
t from this interval, condition (4.22) defines the projection y0

k(φk(t)) of the point
yk(t) ∈ w onto the curve w0

k uniquely. We will call φk(t) the phase relative to
y0. If we have two orbits, y0,1 and y0,2, from Λ∞, and these orbits are γ-close
(γ < γ̄) on some time interval, then for every curve y = yk(t) which stays at the

distance less than γ from both w0,1
k and w0,2

k on this time interval we have two
phases, φ1

k(t) and φ2
k(t), relative to y0,1 and y0,2 respectively. By Lemma 4.3 (with

ψ standing for φ2
k and φ for φ1

k), these two phases are related by a close to identity
diffeomorphism: φ2

k(t) = ηk(φ
1
k(t)) where η′k(φ) = 1 + o(1)γ→0. For a solution in
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the invariant manifold Wy0,ε the canonical phases φk (which we used before) are
the phases relative to y0. However, if two orbits y0,1 and y0,2 are γ-close (γ < γ̄)
on some time interval, then for solutions in, say, Wy0,j ,ε the phase ϕk relative to
y0,1 is also defined on this interval, along with the canonical phase φk relative to
y0,2.

Lemma 5.1. Let the assumptions of Theorem 4.1 hold. Then there exists γ̄ > 0,
α > 0 and C > 0 such that, for all small ε, given any T > T0 > 0, if any two orbits
y0,1 and y0,2 from Λ∞ satisfy

sup
t∈[−T,T ]

‖y0,1(t) − y0,2(t)‖Y < γ, (5.1)

for some γ < γ̄, then there exists a uniformly close to identity diffeomorphism η
such that

‖Uy0,1(Φ0,p0) − Uy0,2(η(Φ0),p0)‖Y ≤ Ce−α(T−T0) (5.2)

for all p0 ∈ P and Φ0 such that

‖Φ0‖Ψ ≤ T0. (5.3)

Proof. Let (y1(t),p1(t)) and (y2(t),p2(t)) be the orbits on the invariant manifolds,
respectively, Wy0,1 and Wy0,2 such that (y1(t),p1(t)) corresponds to the initial
condition Φ(0) = Φ0 and p(0) = p0, and (y2(t),p2(t)) corresponds to the initial
condition Φ(0) = η(Φ0) and p(0) = p0, where ηk : ϕk 7→ φk is the close to identity
diffeomorphism which sends the phases relative to y0,1 to the phases relative to
y0,2.

Let φk(t) be canonical phases of y1(t) and let v(t) := y1(t) − y0,1(Φ(t)), so

v(0) = Uy0,1(Φ0,p0) − y0,1(Φ0) (5.4)

(see (4.35)). Let ϕk(t) denote the phase of y2
k(t) relative to y0,1, and let u(t) :=

{uk(t)}k∈Z, where uk(t) = y2
k(t) − y0,1

k (ϕk(t)). By construction, ϕk(0) = φk(0) for
all k, so

u(0) = Uy0,2(η(Φ0),p0) − y0,1(Φ0). (5.5)

Denote x1
k(t) := (vk(t), φk(t), p

1
k(t)) and x2

k(t) := (uk(t), ϕk(t), p
2
k(t)); as we

showed in the proof of Theorem (4.1) the functions xjk(t) satisfy the same system
(4.26),(4.28),(4.30): x1

k(t) satisfies this system for all t, while x2
k(t) satisfies it for all

t for which u(t) remains small. As the orbit y2(t) belongs to the invariant manifold
Wy0,2,ε, it stays close to y2,0(Φ2(t)) for all times (where Φ2 is the canonical phase
of y2), so by (5.1) the distance ‖u(t)‖ between y2(t) and its projection to W0

y0,1

will remain small for all times such that ‖Φ2(t)‖ ≤ T . Since the time derivative of
Φ is bounded (see (4.35)), we have from(5.3) the required smallness of u(t) for all
|t| ≤ S where

S = O(T − T0 + 1). (5.6)

Outside this time-interval we cannot guarantee that the phases ϕk(t) are well-
defined, therefore we modify x2

k(t) at |t| ≥ S−1. Namely, we consider the functions
x3
k(t) = (v3

k(t), φ
3
k(t), p

3
k(t)) defined by the following rule:

v3
k(t) = θ0(t))uk(t), p3

k(t) = θ0(t)p
2
k(t),

φ3
k(t) = θ0(t)ϕk(t) + θ−(t)[ϕk(−S + 1) + ϕ′

k(−S + 1)(t+ S − 1)]+
+ θ+(t)[ϕk(S − 1) + ϕ′

k(S − 1)(t− S + 1)],

(5.7)
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where θ±(t) are smooth functions R1 → [0, 1] such that θ−(t) equals to 1 at t ≤ −S
and to 0 at t ≥ −S + 1, while θ+(t) equals to 1 at t ≥ S and to 0 at t ≤ S − 1, and
θ0 := 1 − θ+ − θ−. Note that it follows from (5.7) that v3

k(t) is uniformly small for
all t ∈ R since u(t) is uniformly small for all |t| ≤ S.

Since both x1(t) and x2(t) satisfy system (4.26),(4.28),(4.30) at t ∈ [t1+S, t2−S],
the function x3(t) satisfies the same system with a uniformly bounded correction
to the right-hand sides which is localized at |t| ∈ [S − 1, S] (and which is denoted
below as ρ). Since the initial conditions in Φ and p coincide for x1 and x2 by
construction (recall that we choose y1(t) and y2(t) such that ϕk(0) = φk(0)), we
find that x3(t)t∈[−∞,∞] satisfy the following equation (a perturbation of (4.34))






































v3
k = Lφ3

k

[

Qk(v
3,Φ3,p3) − qk(v

3,Φj ,p3)fk(z
3
k) + ρk1

]

,

φ3
k = φk(0) + t+

∫ t

0

[

qk(v
3,Φ3,p3) + ρk2

]

dt,

(k ∈ Z)

p3
k = pk(0) +

∫ t

0

[

gk(z
3
k + v3

k) + ρk3
]

dt+ ε

∫ t

0

Gε,k(z
3 + v3,p3)dt,

(5.8)

where z3
k := y0,1

k (φ3
k) and the perturbations ρk(t) satisfy ‖ρ‖α0

= O(e−α0S).
Recall that x2

k(t) = (uk(t), ϕk(t), p
2
k(t)) satisfies system (4.26),(4.28),(4.30) at

|t| ≤ S, and u(t) is uniformly small on this interval (provided γ and ε are small
enough). The smallness of u and ε implies the smallness of the functions qk in the
right-hand side of the equation (4.26) for the phases ϕk, therefore sup|t|≤S |ϕ′

k(t)−1|
is uniformly small for all k. By (5.7), we find then that supt∈R

|φ3′
k (t) − 1| is also

uniformly small. This guarantees that the operator Lφ3
k

is defined and Lipshitz in

the α0-norm (see comments after (4.34) in the proof of Theorem 4.1). Since operator
Lφ is Lipshitz in the exponential α0-norm, and so is the operator of integration
∫ t

0 (·)dt, we may rewrite (5.8) as

x3 = T x3 +O(e−α0S)α0
,

where T is the operator defined by the right-hand side of (4.34), i.e. x1 = T x1,
and we immediately get that

‖x3 − x1‖α0
= O(e−α0S),

since the operator T is contracting (in the norm given by (4.33); note that, as we
have shown in the proof of Theorem (4.1), in order to have contraction, both v1

and v3 must be uniformly small, i.e. must satisfy (4.32) with a sufficiently small δ,
and this property indeed holds true when ε and γ are sufficiently small).

In particular (since v3(0) = u(0)), we have ‖v(0)− u(0)‖Y = O(e−α0S), and the
lemma follows from (5.4),(5.5),(5.6).

Remark 5.2. By a shift of time, we obtain that if

sup
t∈[T1,T2]

‖y0,1(t) − y0,2(t)‖Y < γ, (5.9)

then
‖Uy0,1(Φ0,p0) − Uy0,2(η(Φ0),p0)‖Y ≤ Ce−αT ) (5.10)

for all p0 ∈ P and Φ0 such that for all k the components φk of Φ0 satisfy

T1 + T ≤ φk ≤ T2 − T. (5.11)
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We may now prove the following theorem, crucial for the next Section.

Theorem 5.3. Let the assumptions of Theorem 4.1 hold. Then there exists α > 0
and γ̄ > 0 such that for all sufficiently small ε and all γ ∈ (0, γ̄), for every two
trajectories y0,1 and y0,2 from Λ∞ satisfying the condition

sup
t≥t0

‖y0,1(t) − y0,2(t)‖Y ≤ γ, (5.12)

given any solution (y1(t),p1(t)) from the invariant manifold Wy0,1,ε, there exists a
unique solution (y2(t),p2(t)) from the invariant manifold Wy0,2,ε such that

‖y1(t) − y2(t)‖Y + ‖p1(t) − p2(t)‖P ≤ C(γ)e−α(t−t0), t ≥ t0. (5.13)

The factor C(γ) tends to zero as γ → 0.

Remark 5.4. Absolutely analogously, for every two trajectories y0,1 and y0,2 from
Λ∞ satisfying the condition

sup
t≤t0

‖y0,1(t) − y0,2(t)‖Y ≤ γ, (5.14)

given any solution (y1(t),p1(t)) from the manifold Wy0,1,ε, there exists a unique
solution (y2(t),p2(t)) from Wy0,2,ε such that

‖y1(t) − y2(t)‖Y + ‖p1(t) − p2(t)‖P ≤ C(γ)e−α|t−t0|, t ≤ t0. (5.15)

Proof. As we explained in Lemma 5.1, condition (5.12) (which is an analogue of
condition (5.1) for the case of infinite time interval) implies that for all sufficiently
small ε, for any two solutions (y1(t),p1(t)) and (y2(t),p2(t)) from the invariant
manifolds, respectively, Wy0,1,ε and Wy0,2,ε, for all t ≥ t0 and every k ∈ Z we have

well-defined projections of the points y1
k(t) and y2

k(t) onto the curve y = y0,1
k (ϕk)

in the space Y . The position of the projection point is defined by its phase ϕk, so
we have two phases (relative to the same orbit y0,1) defined for all t ≥ t0: ϕ

1
k(t) for

the point y1
k(t) and ϕ2

k(t) for y2
k(t). Thus,

yik(t) = y0,1
k (ϕik(t)) + vik(t), where

〈

bk(ϕ
i
k(t)) · vik(t)

〉

≡ 0 t ≥ t0; (5.16)

here bk is given by (4.19) with y∗ = y∗,1k .
As the solution (y1(t),p1(t)) belongs to the invariant manifold Wy0,1,ε associated

with the orbit y0,1 relative to which the phase is defined, the phases ϕ1
k are just

the canonical phases φ1
k. For the solution (y2(t),p2(t)), as we explained in the

introduction to Lemma 5.1, the phases ϕ2
k are related to the canonical phases φ2

k

by a close to identity diffeomorphism ηk : ϕ2
k 7→ φ2

k at t ≥ t0; so, φ2
k(t) − ϕ2

k(t) is
uniformly small for all t ≥ t0.

Formula (5.16) is identical to (4.23),(4.22), hence (see the proof of Theorem 4.1)
the functions (vi(t), ϕi(t),pi(t)), both for i = 1 and i = 2, solve the same system

(4.26),(4.28),(4.30) (where one should replace φ with ϕ and zk with y0,1
k (ϕk)), for

all t for which vi(t) remains small. As the solution (y1(t),p1(t)) belongs to the
invariant manifold Wy0,1,ε, we have that y1(t) stays close to y1,0(Φ1(t)) for all
times, which guarantees the smallness of v1. The smallness of v2(t) at all t ≥ t0
follows from the fact that (y2(t),p2(t)) belongs to the invariant manifold Wy0,2,ε,

hence y2
k(t) stays close to y2,0

k (φ2
k(t)) for all times, and because of the uniform

closeness of φ2
k(t) to ϕ2

k(t) and y2,0
k to y1,0

k at t ≥ t0 we obtain the uniform closeness

of y2
k(t) to y1,0

k (ϕ2
k(t)) at t ≥ t0.
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Thus, we have

d

dt
ϕik = 1 + qk(v

i, ϕi,pi),
d

dt
pik = hk(v

i, ϕi,pi) (k ∈ Z), (5.17)

where qk is given by (4.27) (the only important thing for us is that qk is uniformly
small along with its first derivatives), and

hk(v, ϕ,p) := gk(y
0,1
k (ϕk) + vk) + εGε,k(y

0,1(ϕ) + v,p). (5.18)

By Theorem (4.1), since the solutions (yi(t),pi(t)) belong to the respective invariant
manifolds Wy0,i,ε, we may put

vi(t) = V
i(ϕi(t),pi(t)), (5.19)

in equations (5.17), where Ṽi are certain functions of (ϕ,p) with the Lipshitz con-

stant uniformly small. Namely, the function Ṽ1 is just the function V1 that de-
fines the manifold Wy0,1,ε by (4.12), while the function Ṽ2 is given by Ṽ(ϕ,p) =
V2(η(ϕ),p) + y0,2(η(ϕ)) − y0,1(ϕ), where η is the diffeomorphism which sends the
phase relative to y0,1 to the phase relative to y0,2; the required Lipshitz property
of Ṽ2 follows from the Lipshitz property of V and η. Note that by (4.12)

Ṽ
1(ϕ,p) = U

1(ϕ,p) − y0,1(ϕ), Ṽ
2(ϕ,p) = U

2(η(ϕ),p) − y0,1(ϕ), (5.20)

hence, by Remark 5.2, when ϕk → +∞ uniformly for all k, we have

Ṽ
2(ϕ,p) − Ṽ

1(ϕ,p) = O(e−α
′‖ϕ‖Ψ) (5.21)

for some α′ > 0.
It follows from (5.21),(5.19),(5.16) that we will have the required exponential

decay of ‖y1(t) − y2(t)‖ if the difference between the corresponding two solu-
tions (ϕ2(t),p2(t)) and (ϕ1(t),p1(t)) of (5.17),(5.19) tends exponentially to zero
as t → +∞. Given (ϕ1(t),p1(t)), the sought, tending to it solution (ϕ2(t),p2(t))
corresponds to the fixed point of the operator (φ(t),p(t))t≥0 7→ (φ̄(t), p̄(t))t≥0 de-
fined by the following equation:

φ̄(t) =

∫ ∞

t

[

q(Ṽ1(ϕ1,p1), ϕ1,p1) − q(Ṽ2(ϕ1 + φ,p1 + p), ϕ1 + φ,p1 + p)
]

dt,

p̄(t) =

∫ ∞

t

[

h(Ṽ1(ϕ1,p1), ϕ1,p1) − h(Ṽ2(ϕ1 + φ,p1 + p), ϕ1 + φ,p1 + p)
]

dt,

(5.22)
where we denote φ(t) := ϕ2(t) − ϕ1(t), p(t) := p2(t) − p1(t). Thus, it remains to
prove the existence and uniqueness of the fixed point of this operator in the space
of exponentially decreasing functions, and also to show that this fixed point tends
to zero as γ → 0.

In order to do this, we first note that because ϕ1(t) and ϕ2(t) grow within linear
bounds with time, estimate (5.21) along with the boundedness of the Lipshitz con-
stants of the functions q and h implies that for some α > 0 the operator (5.22) takes
exponentially decreasing functions (φ(t),p(t)) = O(e−αt) into functions (φ̄(t), p̄(t))
which are exponentially decreasing as well, with the same exponent α.

Recall also that the Lipshitz constant of q is uniformly small (and tends to

zero as ε → 0 and γ → 0). The Lipshitz constant of Ṽ with respect to ϕ is uni-
formly bounded and the Lipshitz constant with respect to p is uniformly small
(and tends to zero as ε → 0; see (5.20),(4.12),(4.13)). The Lipshitz constant
of h with respect to p is of order ε and the Lipshitz constants with respect to
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ϕ and v are bounded (see(5.18),(4.10)). Thus, for the functions under the inte-
grals in (5.22), the Lipshitz constants with respect to both ϕ and p in the first
equation of (5.22) and with respect to p in the second equation are uniformly
small, while the Lipshitz constant with respect to ϕ in the second equation is uni-
formly bounded. This immediately implies that operator (5.22) is contracting on the
space of exponentially decreasing functions (φ(t),p(t))t≥0 endowed with the norm
‖φ,p‖ = sup

t≥0
eαt(‖ϕ(t)‖Ψ + κ‖p(t)‖P), for all sufficiently small κ, ε and γ. This

gives us the required existence and uniqueness of the fixed point (φ(t),p(t))t≥0.
Being the fixed point of a contracting operator, it depends continuously on every
parameter on which the operator depends continuously, so it depends continuously

on the function Ṽ2. Note that Ṽ2 → Ṽ1 as γ → 0 (by (5.20), this just means that
the manifold Wy0,ε depends on y0 continuously). Hence, in the same limit we have

(φ(t),p(t)) → 0 (which is the trivial fixed point of (5.22) when Ṽ2 ≡ Ṽ1).

6. Spatially non-walking solutions and their entropy. In our application
to Ginzburg-Landau equation, the p-component of the LDS (4.9) describes the
temporal evolution of the centers of soliton pairs, namely the deviations of the pair
centers from the points of a given spatial lattice. This description is valid only if
the distances between the soliton pairs are large enough, i.e. the deviations of the
soliton pairs from the lattice points stay uniformly bounded for arbitrarily large
lattice sizes, see Section 2. Thus, it is crucial to be able to control the norm of
p(t) = {pk(t)}+∞

k=−∞, i.e. to keep all pk bounded.
On the other hand, according to (4.38),(4.37), in the zero order approximation

with respect to ε we have

pk(t) ≈ pk(0) +

∫ t

0

g(y0
k(s)) ds, (6.1)

where y0
k is a trajectory from the given hyperbolic set Λ. Thus, an independent

diffusive-like behavior of the coordinates pk(t) should be expected [40] in the case
Λ is non-trivial (chaotic), i.e. the quantities pk(t) are out of control in this case.

The main aim of the Section is to show, however, that under some natural as-
sumptions on the set Λ there exists a set of solutions for which at all t ∈ R

‖p(t)‖
P
≤ R0 (6.2)

for some constant R0 >> 1. Moreover, this set is large enough, so that it has
positive space-time entropy. In what follows, in order to simplify notations, we
assume that all individual ODE’s in the uncoupled LDS (4.8) are identical, i.e.
fk ≡ f , gk ≡ g for all k.

Theorem 6.1. Let the assumptions of Theorem 4.1 hold and let N := dimP . Let
us also assume that the hyperbolic set Λ of system (4.2) is transitive and locally-
maximal and contains N + 1 periodic orbits Z1 : y = z1(t), Z2 : y = z2(t),. . . ,
ZN+1 : y = zN+1(t) with periods T1,. . . , TN+1 respectively. Define the vectors
~bi ∈ P , i = 1, . . . , N + 1, as follows:

~bi :=
1

Ti

∫ Ti

0

g(zi(t)) dt, (6.3)

and require the following properties to be satisfied:
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1. linear combinations of vectors ~bi generate the whole space P :

P = span{~b1, . . . ,~bN+1}; (6.4)

2. there exist strictly positive numbers Ai such that

A1
~b1 +A2

~b2 + · · · +AN+1
~bN+1 = 0. (6.5)

Then, for all sufficiently small ε > 0, there exists a uniformly bounded set K of
solutions of system (4.9) which has strictly positive space-time entropy:

h(K) > 0. (6.6)

Proof. We start with the following observation.

Lemma 6.2. Let (6.4) and (6.5) hold. Then, for every vector p ∈ P , p 6= 0, there
exists j = J(p) ∈ {1, · · · , N + 1} such that

p ·~bJ(p) < 0 (6.7)

and, consequently, there exists δ > 0 such that, for every p 6= 0,

cos(p,~bJ(p)) ≤ −δ. (6.8)

Indeed, suppose there exists p such that (6.7) is wrong, i.e. p · ~bi ≥ 0 for all
i = 1, . . . , N + 1. Multiplying then equality (6.5) by this p and using that Ai > 0,

we conclude that p ·~bi = 0 for all i. By (6.4), this contradicts the assumption p 6= 0.
Thus, (6.7) is verified and (6.8) follows immediately from (6.7) by compactness
arguments.

The idea of the proof of the theorem is as follows. As the set Λ is transitive and
locally-maximal, for every two of the periodic orbits Zi and Zj we may choose two
different heteroclinic orbits Zijm : y = zijm(t), m = 1, 2, that connect them, i.e.

lim
t→−∞

(zijm(t) − zi(t+ θ−ijm)) = 0, lim
t→+∞

(zijm(t) − zj(t+ θ+ijm)) = 0

for some constant θ±ijm. The orbits Zijm also belong to Λ; in fact, the number of
different heteroclinics is infinite for each pair of periodic orbits in Λ, but we need
only two of them for each i and j. The existence of the heteroclinics mean that
we may build orbits in Λ which stay for some time near the orbit Zi, then “jump”
along any two of the heteroclinics Zij1,2 into a neighborhood of Zj, stay there, then
jump again into a neighborhood of another periodic orbit, etc.. We will see that
for sufficiently small ε one can build orbits y = {yk(t)}k=+∞

k=−∞ of system (4.9) with
a similar behavior for every component yk(t): the component stays close to zi(t)
for some time then jumps to zj(t), etc., moreover the choice of the sequence of the
periodic orbits the component shadows can be made independently for different k.
When the component yk is close to zi(t) for sufficiently long time, the pk-component

of the associated solution will move in the direction close to ~bi as time grows (see
(6.1),(6.3)). By (6.8), if the norm of pk becomes large enough we can always find a

vector ~bj such that moving in its direction will lead to a decrease in the norm of pk.
Thus, by jumping each time to a properly chosen periodic orbit Zj we may keep the
norm of all pk bounded. As each jump can be made by at least two different ways
(along the first or the second heteroclinic) the set of different solutions of system
(4.9) we obtain in this way will have positive entropy.

As the first step in implementing this construction we recall the following stan-
dard result on the “shadowing” in hyperbolic sets.
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Lemma 6.3. There exist γ̄ > 0 and α > 0 such that for any two orbits y−(t) and
y+(t) from the hyperbolic set Λ which satisfy

‖y−(t0) − y+(t0)‖ ≤ γ, (6.9)

where γ̄ > γ > 0, there exists an orbit y(t) ∈ Λ and a phase shift θ such that

‖y(t) − y−(t)‖ ≤ Cγe
αt for t ≤ t0,

‖y(t) − y+(t+ θ)‖ ≤ Cγe
−αt for t ≥ t0, |θ| ≤ Cγ ,

(6.10)

where Cγ > 0 depends only on γ and tends to zero as γ → 0.

A proof can be found e.g. in [18]. The orbit y(t) corresponds simply to the
intersection of the local unstable manifold of y−(t) with the local stable manifold
of y+(t); this intersection belongs to Λ because this set is locally-maximal.

Combining Lemma 6.3 with Theorem 5.3, we obtain an analogous result for the
lattice dynamical system (4.9).

Lemma 6.4. There exist α > 0 and γ̄ > 0 such that for all ε > 0 small enough,
for any two orbits y0

± ∈ Λ∞ such that

‖y0
−(t0) − y0

+(t0)‖Y
≤ γ, (6.11)

where γ̄ > γ > 0 and t0 ∈ R, and for any solution (y−(t),p−(t)) of (4.9) be-
longing to the invariant manifold Wy0

−
,ε, there exist an orbit y0 ∈ Λ∞, a solution

(y(t),p(t)) ∈ Wy0,ε of the lattice system (4.9), and the set of constant phase shifts
θk, k ∈ Z, such that

supk∈Z
‖y0
k(t) − y0

k+(t+ θk)‖Y ≤ Cγe
−α(t−t0), for t ≥ t0,

supk∈Z
‖y0
k(t) − y0

k−(t)‖Y ≤ Cγe
α(t−t0) for t ≤ t0, supk∈Z

‖θk‖ ≤ Cγ
(6.12)

and
‖y(t) − y−(t)‖

Y
+ ‖p(t) − p−(t)‖

P
≤ Cγ e

α(t−t0), t ≤ t0, (6.13)

where Cγ → +0 as γ → 0.

Proof. Indeed, in order to find the required solution (y(t),p(t)), we first construct a
trajectory y0 ∈ Λ∞, each component yk(t) of which is defined by y0

k−(t) and y0
k+(t)

by virtue of Lemma 6.3 such that (6.12) is satisfied (since the unperturbed system
(4.8) is a Cartesian product of systems (4.2), we only need to apply Lemma 6.3 to
every component in this product). Applying after that Remark 5.4, we find (in a
unique way) the solution (y(t),p(t)) of the perturbed system (4.9), satisfying (6.13)
for t ≤ t0.

We are now ready to complete the proof of the theorem. We will choose suf-
ficiently large constants T and R and sufficiently small constants ν and µ and
construct a sequence of sets Kl of solutions of (4.9) and a sequence of sets K0

l of
orbits from Λ∞ such that:
1) for each of the solutions from Kl there exists an otbit y0 ∈ K0

l such that the
solution belongs to the invariant manifold Wy0,ε;

2) for every trajectory y0 = {yk(t)}+∞
k=−∞ ∈ K0

l , for every k ∈ Z there are periodic
orbits Zik+

: y = zik+
(t) and Zik−

: y = zik−
(t) (from the set of periodic orbits

Z1, . . . , ZN+1 under consideration) such that

‖y0
k(lT )− zik+

(τkl)‖ < ν, ‖y0
k(−lT )− zik−

(τk,−l)‖ < ν (6.14)
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for some (irrelevant) constants τ ∈ [0, T ], where T = maxi=1,...,N+1 Ti (the periods
of Zi);
3) at t0 = ±lT

‖p(t0)‖P
≤ R; (6.15)

4) for every solution (ỹ(t), p̃(t)) ∈ Kl+1 there exists a solution (y(t),p(t)) ∈ Kl such
that

‖ỹ(t) − y(t)‖
Y

+ ‖p̃(t) − p(t)‖
P
≤ µe−α(lT−|t|) (6.16)

for all |t| ≤ lT (the constant α > 0 depends on the set Λ only).
By condition 4, the sequence of the sets Kl converges, as l → +∞, to a certain

set K of solutions of the LDS (4.9) (convergence is uniform on any bounded time
interval). Moreover, conditions 2, 3 and 4 imply that solutions in the set K are
uniformly bounded, in particular ‖p(t)‖ is uniformly bounded for all of the solutions.
Thus, to prove the theorem, we need to actually construct the sequence Kl and to
do it in such a way that the sets Kl would contain “sufficiently many” solutions –
this would warrant the positivity of the space-time entropy of the limit set K.

As K0
0 we choose the set that consists of one orbit y0(t) = {y0

k = z1(t)}∞k=−∞; the
set K0 will consist of one solution in the invariant manifold Wy0,ε which satisfies
p(0) = 0.

Now assume we have built the sets K0
l , Kl for some l, and let us construct the sets

K0
l+1, Kl+1. Take any pair

{

y0 ∈ K0
l , (y,p) ∈ Kl ∩ Wy0,ε

}

. Let ik± (k ∈ Z) be the
sequences of indices defined by (6.14) and jk± := J(pk(±lT )), where the integer-
valued function J(p) is defined by (6.8). Choose any two sequences mk± (mk± = 1
or 2). Choose an orbit y0

+ ∈ Λ∞ as follows: y0
k+(t) = zi

k+
j
k+
m

k+
(t−lT+τkl), where

y = zijm(t) is one of the two (chosen above) heteroclinic orbits Zij1,2 which connect
the periodic orbits Zi and Zj. We assume here that the time parametrization on
the heteroclinic orbits is chosen such that ‖zijm(t) − zi(t)‖ = ν at t = T , and
‖zijm(t) − zi(t)‖ < ν at all t < T . Hence, ‖zijm(τkl) − zi(τkl)‖ ≤ ν (recall that
the numbers τkl are bounded by T ), so ‖y0 − y0

+‖Y
< 2ν by (6.14). Therefore, if

ν is small enough, we may apply Lemma 6.3 (with y0 taken as the orbit y0
− of the

lemma) and obtain a solution (ŷ(t), p̂(t)) such that

‖ŷ(t) − y(t)‖
Y

+ ‖p̂(t) − p(t)‖
P
≤ µe−α(lT−t) (6.17)

at t ≤ t0 = lT ; moreover this solution belongs to the invariant manifold Wŷ0,ε

associated with the orbit ŷ
0 ∈ Λ∞ such that, as t → +∞, the components ŷ0

k(t)
tend exponentially to the heteroclinic orbits Zi

k+
j
k+
m

k+
– hence to the periodic

orbits Zjk+
.

Absolutely analogously (by applying the version of Lemma 6.3 obtained by in-
version of time) we obtain the existence of a solution (ỹ(t), p̃(t)) such that

‖ỹ(t) − ŷ(t)‖
Y

+ ‖p̃(t) − p̂(t)‖
P
≤ µe−α(t+lT ) (6.18)

at t ≥ t0 = −lT ; moreover this solution belongs to the manifold Wỹ0,ε associated

with the orbit ỹ0 ∈ Λ∞ such that at each k the component ỹ0
k(t) tends exponentially

to the heteroclinic orbit Zj
k−
i
k−
m

k−
as t → −∞ (and it still tends to Zi

k+
j
k+
m

k+

as t→ +∞).
By (6.18), (6.17), condition (6.16) is fulfilled by the newly constructed solution

(ỹ, p̃). Since each component ỹ0
k(t) tends to the corresponding periodic orbit Zjk+

as t → +∞ and to Zjk−
as t → −∞, and the convergence is, by construction,

uniform for all k, l and for all possible initial solutions (y(t),p(t)) ∈ Kl, it follows
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that condition (6.14) will be satisfied for the orbit ỹ0 at t = ±(l+ 1)T , provided T
was chosen large enough.

It follows, furthermore, that if T is sufficiently large and ε is sufficiently small,
then the change in p̃k along the orbit (ỹ(t), p̃(t)) for the time from t = lT to

t = (l+1)T equals to T~b′jk+
where ~b′jk+

is uniformly close to the vector ~bjk+
defined

by (6.3). As jk+ = J(pk(lT )) and p̃k(lT ) is close to pk(lT ) (see (6.16)), it follows
that

cos(p̃k(lT ),~b′jk+
) < −δ/2, k ∈ Z

(see (6.8)). Therefore,

p̃2
k((l + 1)T ) = (p̃k(lT ) + T~b′jk+

)2 ≤ p̃2
k(lT ) + T ‖~b′jk+

‖(T ‖~b′jk+
‖ − δ‖p̃k‖). (6.19)

By (6.16) and (6.15) ‖p̃k(lT )‖ ≤ R+ µ, and we see now from (6.19) that

p̃2
k((l + 1)T ) < R2,

provided T is taken sufficiently large with respect to µ and R is sufficiently large

with respect to T (note that ‖~bj‖ is bounded away from zero by virtue of (6.4),
(6.5)). Analogously, one checks that

p̃2
k(−(l + 1)T ) < R2.

As we see, condition (6.15) is satisfied by the solution (ỹ, p̃) at t0 = ±(l + 1)T .
Thus, we have shown that given any solution from the set Kl0 and any pair of

sequences mk± (these sequences define which of the two heteroclinic connections
is used to jump from the periodic orbit Zik±

to Zjk±
) we obtain a solution which

satisfies above conditions 1-3 with l = l0 + 1, i.e. the newly built solution can
be included into the set Kl0+1; we have also checked condition 4 that ensures the
convergence of the sequence of sets Kl as l → +∞. As we may choose the sequences
mk± in an arbitrary way at each step of the procedure, the number of solutions
in the set Kl which stay at a bounded away from zero distance from each other at
|t| ≤ lT and |k| ≤ n equals to 4l(2n+1). This immediately shows that the space-time
entropy of the limit set K is strictly positive.

Note that the assumption that the set Λ is locally-maximal and transitive can
be formulated in a more constructive way. Indeed, assume that we have a set
of hyperbolic periodic orbits Z1, . . . , ZN+1, which satisfy conditions 1 and 2 of the
theorem. Build an oriented graph with N+1 vertexes: the edge connects the vertex
i with vertex j if we know there exists a heteroclinic orbit Zij which corresponds
to a transverse intersection of the unstable manifold of Zi with the stable manifold
of Zj. If this graph is transitive, then the set Λ of all orbits which stay for all times
in a sufficiently small neighborhood of the union of the hyperbolic periodic orbits
Zi and the transverse heteroclinic orbits Zij is uniformly-hyperbolic, transitive and
locally-maximal [3], so Theorem 6.1 holds.

Note also that assumption (6.5) is really important for the proof of the theorem.

Indeed, consider the case dimP = 1 for example. Here the integrals ~b1 and ~b2
are real numbers, and if condition (6.5) is violated, they both have the same sign,
positive, say. In this case, when the component yk stays close to either of the
periodic orbits Z1,2, the component pk will increase with time, so we cannot keep
pk(t) bounded by mere switching between Z1 and Z2. However, assumption (6.5)
can be relaxed if we allow for a uniform drift, common for all pk(t). Namely, the
following statement holds true.
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Corollary 6.5. Let all of the assumptions of Theorem 6.1 be fulfilled except of

(6.5). Assume the convex hull Ib of vectors ~b1, · · · ~bN+1 have a non-empty interior:

Ib := int{conv{~b1, · · · ,~bN+1}} 6= . (6.20)

Let ~p ⊂ Ib. Then, for every sufficiently small ε, there exists a set K~p of solutions
(y(t),p(t)) of system (4.9) such that K~p has positive space-time entropy and each
solution from K~p satisfies

‖y(t)‖
Y

+ ‖p(t) − ~pt‖
P
≤ R0 <∞, t ∈ R, (6.21)

where the constant R0 depends on ~p, but is independent of t and the choice of the
solution.

Indeed, for every ~p ∈ Ib conditions (6.4),(6.5) hold for the vectors ~b1 − ~p, ~b2 − ~p,

. . . , ~bN+1 − ~p. Then, applying Theorem 6.1 to the system obtained from (4.9) by
substracting ~p from the function g, we immediately obtain the corollary.

Remark 6.6. In the one-dimensional case (dimP = 1), we only need two hyper-
bolic periodic orbits, Z+ and Z−, connected by transverse heteroclinics. Conditions
(6.4), (6.5) read now

∫ T−

0

g(z−(t)) dt ·
∫ T+

0

g(z+(t)) dt < 0; (6.22)

conditions (6.4), (6.20) read as

1

T−

∫ T−

0

g(z−(t)) dt 6= 1

T+

∫ T+

0

g(z+(t)) dt. (6.23)

In order to establish the existence of the heteroclinic cycle with two hyperbolic
periodic orbits one may use Shilnikov criterion. Namely, it is enough to show the
existence of a saddle-focus equilibrium state y = z0 with a homoclinic loop y = zh(t),
zh(t) → z0 as t→ ±∞, and to check that the so-called Shilnikov conditions of chaos
are satisfied (we will not discuss a higher-dimensional case as in the application we
consider in this paper we have y ∈ R3; in the three-dimensional case the Shilnikov
condition is that the nearest to the imaginary axis characteristic exponent is not
real; the equilibrium state must be hyperbolic, i.e. it has characteristic exponents
on both sides of the imaginary axis and no characteristic exponents on the axis).
Then there exists a sequence Zn of hyperbolic periodic orbits which converge to
the homoclinic loop as n → +∞, any two of them are connected by transverse
heteroclinics [35, 36]. The periods Tm of Zm tend to infinity. One can always
choose time parametrization such that supt∈[−Tm

2
,Tm

2
] |zm(t) − zh(t) − z0| → 0 as

m → +∞. It follows that one can always choose among the orbits Zm a pair
satisfying conition (6.23), provided

∫ +∞

−∞
(g(zh(t)) − g(z0)) dt 6= 0 (6.24)

(the integral converges since zh(t) tends to z0 exponentially - because of the hy-
perbolicity of z0). Note that the homoclinic loop to a saddle-focus may split as we
perturb the system, however the two hyperbolic periodic orbits that we find near
the loop do not disappear, nor the transverse heteroclinics that connect them do,
so by checking condition (6.24) for one parameter value we establish the existence
of spatio-temporal chaos for an open set of parameter values; see Lemma 2.3 in
Section 2 for an example.
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Remark 6.7. In the case of LDS with n spatial dimensions, i.e. those parameter-
ized by multiindices k ∈ Zn instead of k ∈ Z, the result of Theorem 6.1, obviously,
remains true under the properly modified definition of the space-time topological
entropy. In fact, this case is just formally reduced to k ∈ Z by an appropriate
reparameterization of the grid Zn by the points from Z.
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