ON THE EXISTENCE
 OF NEWHOUSE DOMAINS IN A NEIGHBORHOOD OF SYSTEMS WITH A STRUCTURALLY UNSTABLE POINCARÉ HOMOCLINIC CURVE (THE HIGHER-DIMENSIONAL CASE)

UDC 517.9

S. V. GONCHENKO, D. V. TURAEV, AND L. P. SHIL'NIKOV

In [1] Newhouse established the following remarkable fact: in any neighborhood of a two-dimensional C^{r}-diffeomorphism ($r \geq 2$), having a saddle periodic point with a structurally unstable homoclinic trajectory, there exist domains (so-called Newhouse domains) in which systems with structurally unstable Poincaré homoclinic trajectories are dense. In the present paper we generalize this result to the higher-dimensional case.

Theorem 1. In the space of C^{r}-smooth $(r \geq 2)$ flows on an arbitrary finite-dimensional manifold, in any neighborhood of a flow which has a saddle periodic trajectory whose invariant manifolds are tangent along some structurally unstable homoclinic curve, Newhouse domains exist.

Theorem 1 follows from a more general assertion concerning one-parameter families of flows X_{μ} of class $C^{r} \quad(r \geq 3)$, having a saddle periodic trajectory L_{0} for $\mu=0$ with structurally unstable homoclinic curve Γ_{0}.

Let S be a smooth secant to L_{0}. For small μ a mapping T_{0} is defined on S along the trajectories of X_{μ} close to L_{μ}. The point $O=L_{\mu} \cap S$ is a saddle fixed point, and its invariant manifolds are denoted by $W^{s}(O)$ and $W^{u}(O)$. Let $M^{+} \in W_{\text {loc }}^{s}$ and $M^{-} \in W_{\text {loc }}^{u}$ be any two intersections of Γ_{0} with S. For small μ a mapping T_{1} is defined from a neighborhood Π_{1} of M^{-}to a neighborhood Π_{0} of M^{+}along the trajectories of the flow X_{μ} that lie close to Γ_{0}. By hypothesis $T_{1}\left(W_{\text {loc }}^{u}\right)$ is tangent to $W_{\text {loc }}^{s}$ at M^{+}for $\mu=0$. We write: $E_{M} W$ is the tangent space to W at M. We make the following assumptions:
(A) $\operatorname{dim}\left(E_{M^{+}} W^{s} \cap E_{M^{+}} T_{1} W_{\text {loc }}^{u}\right)=1$.
(B) The tangency of $T_{1}\left(W_{\mathrm{loc}}^{u}\right)$ and $W_{\text {loc }}^{s}$ is quadratic.

Let λ_{i} and γ_{j} be the multipliers of the trajectory $L_{0},\left|\gamma_{n}\right| \geq \cdots \geq\left|\gamma_{1}\right|>1>$ $\left|\lambda_{1}\right| \geq \cdots \geq\left|\lambda_{m}\right|$; here $n=\operatorname{dim} W^{u}$ and $m=\operatorname{dim} W^{s}$. We write $\lambda=\left|\lambda_{1}\right|$ and $\gamma=\left|\gamma_{1}\right|$. We make some more assumptions:
(C) One of the following four cases occurs:
(1.1) λ_{1} and γ_{1} are real, and $\lambda>\left|\lambda_{2}\right|, \gamma<\left|\gamma_{2}\right|$.
(2.1) $\lambda_{1}=\bar{\lambda}_{2}=\lambda e^{i \varphi} \quad(\varphi \neq 0, \pi), \gamma_{1}$ is real, and $\lambda>\left|\lambda_{3}\right|, \gamma<\left|\gamma_{2}\right|$;
(1.2) λ_{1} is real, $\gamma_{1}=\bar{\gamma}_{2}=\gamma e^{i \psi}(\psi \neq 0, \pi)$, and $\lambda>\left|\lambda_{2}\right|, \gamma<\left|\gamma_{3}\right|$;
(2.2) $\lambda_{1}=\bar{\lambda}_{2}=\lambda e^{i \varphi}, \gamma_{1}=\bar{\gamma}_{2}=\gamma e^{i \psi} \quad(\varphi, \psi \neq 0, \pi)$, and $\lambda>\left|\lambda_{3}\right|, \gamma<\left|\gamma_{3}\right|$.
(D) The saddle quantity $\sigma=\lambda \gamma<1$.

Multipliers λ_{i} and γ_{j} such that $\left|\lambda_{i}\right|<\lambda$ and $\gamma<\left|\gamma_{j}\right|$ are said to be nonleading, while the remainder are termed leading. The eigensubspace of the linear part of T_{0}

[^0]corresponding to the multipliers $\lambda_{1}, \ldots, \lambda_{m}$ is denoted \mathscr{E}^{s}, the one corresponding to the leading λ_{i} is denoted \mathscr{E}^{s+}, and the one corresponding to the nonleading λ_{i} is $\mathscr{E}^{s s}$. The subspaces $\mathscr{E}^{u}, \mathscr{E}^{u+}, \mathscr{E}^{u u}$ are defined analogously; these correspond to the multipliers γ_{j}. On W^{s} there is an invariant C^{r}-manifold $W^{s s}$, tangent to $\mathscr{E}^{s s}$; in just the same way on W^{u} there is a nonleading manifold $W^{u u}$. We assume that
(E) $M^{+} \notin W^{s s}$ and $M^{-} \notin W^{u u}$.

One can show that $W^{s s}$ and $W^{u u}$ are uniquely included in invariant C^{r-1}. foliations $F^{s s}$ and $F^{u u}$ on W^{s} and W^{u} respectively, and that there exist invariant C^{1}-manifolds H_{u} and H_{s}, tangent to $\mathscr{E}^{u} \oplus \mathscr{C}^{s+}$ and $\mathscr{E}^{s} \oplus \mathscr{E}^{u+}$. These manifolds H_{u} and H_{s} are not unique, but $E_{M^{-}} H_{u}$ and $E_{M^{+}} H_{s}$ are uniquely defined. We assume that
(F) $T_{1}\left(H_{u}\right)$ is transversal to $F^{s s}$ at M^{+}and $T_{1}^{-1}\left(H_{s}\right)$ is transversal to $F^{u u}$ at M^{-}.

The flows close to X_{0} with a structurally unstable homoclinic curve close to Γ_{0}, and satisfying (A)-(F), form a surface H of codimension one in the space of dynamical systems.
Theorem 2. Let X_{μ} be transversal to H. Then there exists a sequence of intervals Δ_{i} accumulating to $\mu=0$ such that for $\mu \in \Delta_{i}$ the system X_{μ} lies in a Newhouse domain. Moreover, the values of μ for which L_{μ} has a structurally unstable homoclinic curve are dense on $\Delta_{i} .{ }^{(1)}$

Theorem 1 is an obvious consequence of Theorem 2 (although $X_{\mu} \in C^{3}$, the Newhouse domains are open even in the C^{2}-topology and Theorem 1 remains valid for $r=2$). We shall give a sketch of the proof of Theorem 2. We assume that:
(G) In any neighborhood of $\Gamma_{0} \cup L_{0}$ there exist structurally stable homoclinic curves of the trajectory L_{0}.

Condition (G) is equivalent to conditions ($*$) and ($* *$) (see below), and may not hold in general (for details see [2]-[4]). However the following result is valid.
Lemma 1. For the family X_{μ} of Theorem 1 there exists a sequence $\mu_{j} \rightarrow 0$ such that $L_{\mu j}$ has a homoclinic curve satisfying (A)-(G), and the family X_{μ} is transversal to the corresponding bifurcation surface for $\mu=\mu_{j}$.

According to [5], for some sufficiently large \bar{k}, on Π_{0} there is a sequence of "strips" $\sigma_{k}^{0}, k=\bar{k}, \bar{k}+1, \ldots$, accumulating to W_{loc}^{s}, on which the mappings $T_{k} \equiv T_{1} T_{0}^{k}$ are defined. In order to obtain analytic expressions for T_{k} it is convenient to choose special coordinates on S.
Lemma 2. In some C^{r-1}-coordinates T_{0} has the form

$$
\begin{aligned}
& (\bar{x}, \bar{u})=A(\mu)(x, u)+\left(f_{11}, f_{21}\right) x+\left(f_{12}, f_{22}\right) u, \\
& (\bar{y}, \bar{v})=B(\mu)(y, v)+\left(g_{11}, g_{21}\right) y+\left(g_{12}, g_{22}\right) v,
\end{aligned}
$$

where x, y are leading coordinates, u, v are nonleading coordinates, ${ }^{(}{ }^{2}$) and

$$
\begin{aligned}
& f_{i j}(x, u, y, v, \mu), g_{i j}(x, u, y, v, \mu) \in C^{r-1} \\
& f_{1 j}(x, u, 0,0, \mu) \equiv 0, f_{i 1}(0, u, y, v, \mu) \equiv 0 \\
& g_{1 j}(0,0, y, v, v, \mu) \equiv 0, g_{i 1}(x, u, v, v, \mu) \equiv 0 .
\end{aligned}
$$

[^1]Lemma 3. The mapping $T_{0}^{k}:(x, u, y, v) \mapsto(\bar{x}, \bar{u}, \bar{y}, \bar{v})$ for sufficiently small μ and large k can be written in the form

$$
\begin{gather*}
(\bar{x}, \bar{u})=A^{k}(\mu)(x, y)+\left(\varphi_{k 1}, \varphi_{k 2}\right), \\
(y, v)=B^{-k}(\mu)(\bar{y}, \bar{v})+\left(\psi_{k 1}, \psi_{k 2}\right), \tag{1}
\end{gather*}
$$

where

$$
\left\|\partial^{i} \varphi / \partial(x, u, \bar{y}, \bar{v}, \mu)^{i}\right\| \leq \hat{\lambda}^{k}, \quad\left\|\partial^{i} \psi / \partial(x, u, \bar{y}, \bar{v}, \mu)^{i}\right\| \leq \hat{\gamma}^{-k}
$$

for $i=0, \ldots,(r-2)$ and

$$
\begin{gathered}
\left\|\partial^{r-1}(\varphi, \psi) / \partial(x, u, \bar{y}, \bar{v}, \mu)^{r-1}\right\| \leq \varepsilon_{k}, \quad \varepsilon_{k} \rightarrow 0, \\
\lambda>\hat{\lambda}>\max \left\{\left|\lambda_{i}\right|, \lambda / \gamma\right\}, \quad \gamma<\hat{\gamma}<\min \left\{\left|\gamma_{j}\right|, \gamma^{j}\right\} .
\end{gathered}
$$

Thus, in these coordinates the mapping T_{0}^{k} is linear in principal order. Conditions (A), (B), (E), and (F) for the mapping $T_{1}:(x, u, y, v) \mapsto(\bar{x}, \bar{u}, \bar{y}, \bar{v})$ allow us to write down the following expression (here if the multiplier λ_{1} (resp. γ_{1}) is complex, then $x=\left(x_{1}, x_{2}\right)$ (resp. $\left.y=\left(y_{1}, y_{2}\right)\right)$, and if λ_{1} (resp. γ_{1}) is real, then $x \equiv x_{1}$ (resp. $y \equiv y_{1}$) and the terms with x_{2} (resp. y_{2}) are to be omitted):

$$
\begin{gather*}
\bar{x}_{1}=x_{1}^{+}=b_{0}\left(y_{1}-y_{1}^{-}\right)+b_{1}\left(\bar{y}_{2}, \bar{v}\right)+a_{11} x+a_{12} u+\cdots, \tag{2}\\
\bar{y}_{1}-\beta(\mu) \bar{v}=\mu+d_{0}\left(y_{1}-y_{1}^{-}\right)^{2}+c_{1} x_{1}+c_{2} x_{2}+C_{1} u+\cdots, \\
\left(\bar{x}_{2}-x_{2}^{+}, \bar{u}-u^{+}-\alpha(\mu)\left(\bar{x}_{1}-x_{1}^{+}\right)\right)=b_{2}\left(\bar{y}_{2}, \bar{v}\right)+a_{21} x+a_{22} u+\cdots, \\
\left(y_{2}-y_{2}^{-}-D\left(y_{1}-y^{-}\right), v-v^{-}-D\left(y_{1}-y_{1}^{-}\right)\right)=D_{2} \bar{y}_{2}+D_{3} \bar{v}+C_{2} x+C_{3} u+\cdots .
\end{gather*}
$$

By (E) and (F) the coefficients $b_{0} \neq 0$ and $c_{1}^{2}+c_{2}^{2} \neq 0$; by (B) we have $d_{0} \neq 0$.
We see from (1) and (2) that by translating the origin and normalizing $(X, Y)=$ $\left(x_{1}, y_{1}\right)$ by γ^{-k} and $\xi=\left(x_{2}, u\right)$ and $\eta=\left(y_{2}, v\right)$ by $\delta_{k} \gamma^{-k}$, where δ_{k} tends exponentially to zero as $k \rightarrow \infty$, the mapping T_{k} can be reduced to the form

$$
\begin{gather*}
\bar{Y}=a-d y^{2}+b(\lambda y)^{k} X+\chi_{k}^{2}(X, Y, \xi, \bar{\eta}, \mu), \\
\bar{X}=Y+\chi_{k}^{1}(X, Y, \xi, \bar{\eta}, \mu), \tag{3}\\
\eta=\chi_{k}^{3}(X, Y, \xi, \bar{\eta}, \mu), \quad \xi=\chi_{k}^{4}(X, Y, \xi, \bar{\eta}, \mu),
\end{gather*}
$$

where $\chi_{k}^{1}=O\left(\gamma^{-k}\right), \quad \chi_{k}^{2}=O\left(\hat{\lambda}^{k}{ }^{k}\|(X, \xi)\|+\gamma^{-k}\|(Y, \bar{\eta})\|\right), \quad \chi_{k}^{3}=O\left(\gamma^{\prime-k}\right), \chi_{k}^{4}=$ $O\left(\lambda^{\prime k}\|(X, \xi)\|+\gamma^{\prime-k}\|(Y, \bar{\eta})\|\right), \lambda^{\prime}$ is close to λ, γ^{\prime} is close to γ, and

$$
\begin{align*}
& a= \gamma^{2 k}\left(\mu-\gamma^{-k} y_{1}^{-} \cos (k \psi)+y_{2}^{-} \sin (k \psi)\right) \tag{4}\\
&+\lambda^{k}\left(\left(c_{1} x_{1}^{+}+c_{2} x_{2}^{+}\right) \cos (k \varphi)+\left(c_{1} x_{2}^{+}-c_{2} x_{1}^{+}\right) \sin (k \varphi)+\cdots\right), \\
& b \sim b_{0}\left(c_{1} \cos (k \varphi)+c_{2} \sin (k \varphi)\right) /(\cos (k \psi)+D \sin (k \psi)) . \tag{5}\\
& d=-d_{0} /(\cos (k \psi)+D \sin (k \psi))^{2} . \tag{6}
\end{align*}
$$

For real positive γ_{1} (resp. λ_{1}) the formulas for a, b, d are obtained if we set $\psi=0$ (resp. $\varphi=0$) in (4)-(6), and for negative γ_{1} (resp. λ_{1}) we set $\psi=\pi$ (resp. $\varphi=\pi$).
Lemma 4. There exists an arbitrarily large k such that T_{k} for all small μ has a hyperbolic set Ω_{u} equivalent to the Bernoulli scheme \mathfrak{B}_{2} on two symbols. $W^{u}\left(\Omega_{u}\right)$ lies in an invariant $C^{1+\varepsilon}$-manifold \mathfrak{M}^{u} of the form $\xi=\rho_{k}^{u}(X, Y, \eta, \mu)$, where $\rho_{k}^{u} \rightarrow 0$ as $k \rightarrow \infty$. Here $W^{u}\left(\Omega_{u}\right)$ is included in an invariant C^{1}-foliation \mathfrak{F}_{u} of codimension one on \mathfrak{M}^{u}.

The following two conditions are necessary and sufficient for (G) to hold:
(*) Either γ_{1} is complex, or $\gamma_{1}<0$, or $\gamma_{1}>0$ and $d_{0} y_{1}^{-}>0$
${ }_{(* *)}$ Either λ_{1} is complex, or $\lambda_{1}<0$, or $\lambda_{1}>0$ and $c_{1} x_{1}^{+}<0$
It follows from (4)-(6) and (*) that for $\mu=0$ there exists a countable set of values k for which b and d in (3) are different from zero and infinity, ad <0 and $a \sim \gamma^{k}$. We fix a sufficiently large such k and in (3) we set $\xi=0, \bar{\eta}=0$. We obtain a mapping $\widehat{T}_{k}:(x, y) \mapsto(\bar{x}, \bar{y})$, close to the Hénon mapping with Jacobian $J_{k} \sim(\lambda \gamma)^{k}$. Since a is large, \widehat{T}_{k} has a hyperbolic nonwandering set $\widehat{\Omega}$ equivalent to \mathfrak{B}_{2}. The expansion on $\widehat{\Omega}$ has order $\sqrt{a} \sim \gamma^{k / 2}$, and contraction has order $J_{k} / \sqrt{a} \sim \lambda^{k} \gamma^{k / 2}$. For the original mapping (3) the contraction in ξ is stronger (of order not greater than $\lambda^{\prime k}$), which via the standard technique connected with normal hyperbolicity [6] yields the lemma.

We take sequences $\mu_{i} \rightarrow 0$ and $k_{i} \rightarrow \infty$ such that $a d=2$ and b and d are different from zero and infinity in (3). The change of variables $Y=-2 \cos (\zeta) / d$, $X=X, \xi=\xi, \eta=\eta$ brings the mapping $T_{k_{i}}$ to the form $\bar{\zeta}=2 \min (\zeta, \pi-\zeta)+\Phi_{k}$, $\bar{X}=-2 \cos (\zeta) / d+\chi_{k}^{1}, \eta=\chi_{k}^{3}, \bar{\xi}=\chi_{k}^{4}$, where $\Phi_{k} \sim\left[(\lambda \gamma)^{k} X+\chi_{k}^{2}\right] / \sin (2 \zeta)$. In the limit $k_{i}=\infty$ the mapping $T_{k_{i}}$ degenerates to the one-dimensional mapping $T_{\infty}: \bar{\zeta}=2 \min (\zeta, \pi-\zeta)$. We consider a hyperbolic set Ω_{N} consisting of trajectories of the mapping T_{∞} that lie entirely within $\left[4 \nu_{N}, \pi / 2-\nu_{N}\right] \cup\left[\pi / 2+\nu_{N}, \pi-2 \nu_{N}\right]$, where $4 \nu_{N}=2 \pi\left(2^{N+2}-1\right)^{-1}$ is a point of period $N+2$ for T_{∞}. For large k_{i} the mapping $T_{k_{i}}$ close to Ω_{N} has an expansion of order 2 in the ζ-coordinate, and is significantly stronger in the η-coordinate, of order not less than $\gamma^{\prime k}$, which allows us to obtain the following result.

Lemma 5. Close to $\Omega_{N}, T_{k_{i}}$ has an invariant hyperbolic set Ω_{s} such that $W^{s}\left(\Omega_{s}\right)$ lies in a smooth $\left({ }^{3}\right)$ invariant manifold \mathfrak{M}_{s} of the form $\eta=\rho_{k}^{s}(X, Y, \xi, \mu), \rho_{k}^{s} \rightarrow 0$ as $k_{i} \rightarrow \infty$. Here $W^{s}\left(\Omega_{s}\right)$ is included in a smooth invariant foliation \mathscr{F}_{s} of codimension one on \mathfrak{M}_{s}.

For large k_{i} close to μ there exist values of μ for which the invariant manifolds W_{k}^{s} and W_{k}^{u} of the saddle fixed point O_{k} of the mapping $T_{k_{i}}$ have a quadratic tangency, and the family X_{μ} is transversal to the corresponding bifurcation surface. One can show that here W_{k}^{s} transversally intersects $W^{u}\left(\Omega_{u}\right)$, and W_{k}^{u} transversally intersects $W^{s}\left(\Omega_{s}\right)$ (see Figure 1 on the next page). From this it follows that by an additional small change of μ we can add a nondegenerate heteroclinic tangency of $W^{u}\left(\Omega_{u}\right)$ with $W^{s}\left(\Omega_{s}\right)$.

Lemma 6. The manifolds \mathfrak{M}_{u} and \mathfrak{M}_{s} intersect transversally close to a point of tangency along a smooth two-dimensional manifold on which the foliations \mathfrak{F}_{u} and \mathfrak{F}_{s} are tangent at the points of some smooth curve h transversal to the leaves.

The Cantor sets $K_{u}=W^{u}\left(\Omega_{u}\right) \cap h$ and $K_{s}=W^{s}\left(\Omega_{s}\right) \cap h$ intersect at the points of tangency of $W^{u}\left(\Omega_{u}\right)$ and $W^{s}\left(\Omega_{s}\right)$. It is known [1] that if the product of the thicknesses $\tau\left(K_{u}\right) \tau\left(K_{s}\right)>1$, then the intersection of K_{u} and K_{s} cannot be removed by a small perturbation. One can show that the factorization of the mapping $T_{k_{i}} \mid \mathbb{M}_{s}$ along the leaves of the foliation \mathfrak{F}_{s} is an expanding mapping and satisfies the "bounded distortion" property [7], from which it follows analogously [1], [7] that the thickness of the intersection of $W^{s}\left(\Omega_{s}\right)$ with any transversal smooth curve does not depend on the curve, on the point on $W^{s}\left(\Omega_{s}\right)$, is different from zero and infinity, and depends continuously on the mapping $T_{k_{i}}$ in the C^{2}-topology. The very same result is valid

[^2]

Figure 1
for $W^{u}\left(\Omega_{u}\right)$, and so $\tau\left(K_{u}\right)$ is different from zero, and $\tau\left(K_{s}\right)$ for large k_{i} can be made arbitrarily close to $\tau\left(\Omega_{N}\right)$.
Lemma 7. Ω_{N} is a Cantor set of thickness $\tau\left(\Omega_{N}\right)=2^{N}-1$.
It follows from the lemma that, by increasing N, we can always arrange it so that $\tau\left(K_{u}\right) \tau\left(K_{s}\right)>1$, and so $W^{s}\left(\Omega_{s}\right)$ and $W^{u}\left(\Omega_{u}\right)$ have an unremovable tangency for the indicated values of $\mu=\mu_{i}^{k}$.

From (G) it follows that the closure of $W^{u}(O)$ contains $W^{s}\left(\Omega_{s}\right)$ and the closure of $W^{s}(O)$ contains $W^{u}\left(\Omega_{u}\right)$ (see Figure 1). Therefore the flows that have structurally unstable curves of the trajectory L are dense in the space of smooth flows in a small neighborhood of $X_{\mu_{i}^{*}}$. Moreover, since the tangencies of $W^{s}(O)$ and $W^{u}(O)$ corresponding to these curves lie close to the tangency of the manifolds W_{k}^{s} and W_{k}^{u}, the family X_{μ} is transversal to the corresponding bifurcation surfaces and, hence, the values of μ corresponding to homoclinic tangencies are dense in a small interval Δ_{i} containing μ_{i}^{*}, which completes the proof of Theorem 2.

After this paper was completed we learned that the case $\operatorname{dim} W^{u}=1$ has been considered by J. Palis and M. Viana [8]. Palis also informed us that a closely related problem was considered by N. Romero. We thank Ya. G. Sinaĭ, K. M. Khanin and J. Palis for having attracted our attention to these results.

Bibliography

1. S. E Newhouse, Inst. Hautes Études Sci. Publ. Math. No. 50 (1979), 101-151.
2. N. K. Gavrilov and L. P. Shil'nikov, Mat. Sb. 88 (130) (1972), 475-492; English transl. in Math. USSR Sb. 17 (1972).
3. \qquad , Mat. Sb. 90 (132) (1973), 139-137; English transl. in Math. USSR Sb. 19 (1973).
4. C. V. Gonchenko and L. P. Shil'nikov, Dokl. Akad. Nauk SSSR 286 (1986), 1049-1053; English transl. in Soviet Math. Dokl. 33 (1986).
5. L. P. Shil'nikov, Mat. Sb. 74 (116) (1967), 378-397; English transl. in Math. USSR Sb. 3 (1967).
6. M. W. Hirsch, C. C. Pugh, and M. Shub, Invariant manifolds, Lecture Notes in Math., vol. 583, Springer-Verlag, Berlin, 1977.
7. Jacob Palis, Jr., and Floris Takens, Homoclinic birfurcations and hyperbolic dynamics, Monographs Sixteenth Brazilian Math. Colloq., Inst. Mat. Pura Apl., Rio de Janeiro, 1987.
8. Jacob Palis, Jr., and Marcelo Viana, Preprint, Inst. Mat. Pura Apl., Rio de Janeiro, 1992.

Scientific Research Institute of Applied Mathematics and Cybernetics, Nizhnil Novgorod State University

Received 15/SEPT/92
Translated by J. S. JOEL

[^0]: 1991 Mathematics Subject Classification. Primary 58F14; Secondary 58F15.

[^1]: ${ }^{1}$)In case (1.1) this theorem for $\ln \lambda_{2} / \ln \lambda_{1}>3$ and $\ln \gamma_{2} / \ln \gamma_{1}>3$ can be reduced to [1] by reduction to a two-dimensional invariant C^{3}-manifold tangent to $\mathscr{E}^{s+} \oplus \mathscr{E}^{u+}$.
 $\left.{ }^{(}{ }^{2}\right)$ It would be very convenient to have coordinates in which T_{0} is linear, but in order for a smooth linearization to be possible it is necessary to impose some additional restrictions on the system, such as the absence of principal resonances, which is not related to the essence of the problem.

[^2]: $\left.{ }^{(}{ }^{3}\right)$ The smoothness of \mathfrak{M}_{s} is estimated by the ratio of the logarithms of the exponents of expansion in η and ζ, and has order $k_{i} \ln \gamma / \ln 2$.

