ON BIFURCATIONS OF A HOMOCLINIC "FIGURE EIGHT" FOR A SADIDLE WITH A NEGATIVE SADDLE VALUE

UDC 517.9

D. V. TURAEV AND L. P. SHIL'NIKOV

Consider a dynamical system X_{0} of class C^{2} given on a C^{2}-smooth m-dimensional manifold. Suppose that X_{0} has an equilibrium state O of saddle type. Let $\lambda_{i}, i=$ $1, \ldots, m$, be the roots of the characteristic equation of the system at O. We suppose that $\lambda_{m}>0$ and $\operatorname{Re} \lambda_{i}<0, i=1, \ldots, m-1$. In this case the stable manifold W^{s} of the saddle is ($m-1$)-dimensional and the unstable manifold W^{u} is one-dimensional. Suppose that both the orbits Γ_{0}^{+}and Γ_{0}^{-}leaving the saddle return to the saddle as $t \rightarrow+\infty$. Suppose also that the saddle value $\sigma=\lambda_{m}+\max _{i=1, \ldots, m-1} \operatorname{Re} \lambda_{i}$ is negative.

THEOREM 1. There is a neighborhood V of the contour $\Gamma_{0}^{+} \cup \Gamma_{0}^{-} \cup O$ such that for any system X sufficiently close to X_{0} in the C^{2}-topology the set of nonwandering orbits of X in V consists of the point O and one of the following:

1) one or two stable limit cycles, or
2) one or two homoclinic saddle curves, or
3) a stable limit cycle and a homoclinic saddle curve, or
4) a quasiminimal set.

In the last case both the separatrices leaving the saddle will be Poisson P^{+}-stable.
Denote by $W^{s}(X)$ and $W^{u}(X)$ the stable and unstable manifolds of the saddle point $O(X)$ for the system X close to X_{0}, and let $\Gamma^{+}(X)$ and $\Gamma^{-}(X)$ be the orbits leaving the saddle point. We introduce local coordinates $x_{i}, i=1, \ldots, m$, in a neighborhood of $O(X)$ so that the equation of $W^{u}(X)$ is $x_{1}=0, \ldots, x_{m-1}=0$, and the equation of $W^{s}(X)$ is $x_{m}=0$.

We shall suppose that $\Gamma^{+}(X)$ exits into the region $x_{m}>0$, and $\Gamma^{-}(X)$ into the region $x_{m}<0$. Clearly, for r and d sufficiently small the surface π : $x_{1}^{2}+\cdots+x_{m-1}^{2}=r^{2},\left|x_{m}\right| \leq d$ will be transverse to the flow. Assume that $\pi_{0}=\left\{M\left(x_{1}, \ldots, x_{m}\right) \in \pi \mid x_{m}=0\right\}$ separates π into two components $\pi_{+}=\left\{M\left(x_{1}, \ldots, x_{m}\right) \in \pi \mid x_{m}>0\right\}$ and $\pi_{-}=\left\{M\left(x_{1}, \ldots, x_{m}\right) \in\right.$ $\left.\pi \mid x_{m}<0\right\}$. According to [1], for X sufficiently close to X_{0} and for $r^{2}+d^{2}$ sufficiently small it is possible to define maps $T_{+}: \pi_{+} \rightarrow \pi$ and $T_{-}: \pi_{-} \rightarrow \pi$ such that $T_{+}(M) \rightarrow M^{+}$as $x_{m} \rightarrow^{+} 0$ and $T_{-}(M) \rightarrow M^{-}$as $x_{m} \rightarrow^{-} 0$. Here $M^{+}\left(a_{1}^{+}, \ldots, a_{m}^{+}\right)$and $M^{-}\left(a_{1}^{-}, \ldots, a_{m}^{-}\right)$ denote the points of first intersection of $\Gamma^{+}(X)$ and $\Gamma^{-}(X)$ with π. In the case of X_{0} the points M^{+}and M^{-}belong to π_{0}, and so $a_{m}^{+}=a_{m}^{-}=0$.

Consider the sequences of points $\left\{M_{i}^{+}\right\}$and $\left\{M_{i}^{-}\right\}$in which $\Gamma^{+}(X)$ and $\Gamma^{-}(X)$ intersect π. Define sequences $S^{+}=\left\{S_{i}^{+}\right\}_{i=0}^{+\infty}$ and $S^{-}=\left\{S_{i}^{-}\right\}_{i=0}^{+\infty}$ of symbols from the alphabet $\{-1,0,1\}$ as follows: $S_{0}^{+}=1, S_{0}^{-}=-1$, while $S_{i}^{*}=1$ if $M_{i}^{*} \in \pi_{+}, S_{i}^{*}=-1$ if $M_{i}^{*} \in \pi_{-}$, and $S_{i}^{*}=0$ if $M_{j}^{*} \in \pi_{0}$ for some $j \leq i$ (where $* \in\{+,-\}$). Clearly if $\Gamma^{*}(X)$ returns to the saddle as $t \rightarrow+\infty$ then there is some j such that $S_{i}^{*}=0$ for all $i \geq j$. We call such a homoclinic orbit an orbit of type $s=\left\{S_{0}^{*} \cdots S_{j-1}^{*}\right\}$. A periodic orbit of X that lies in V and is homotopic in V to a homoclinic orbit of type s is called a cycle of type s, with s being some finite word in the alphabet $\{-1,1\}$.

Next we construct a binary tree as follows: at the first vertex we place the symbol pair $(1,-1)$; from this two arrows go to the vertices $(1,-1,1)$ and $(1,-1,-1)$, and so

[^0]on by the rule that from a vertex (p, s) there are arrows going to the vertices $(p, s p)$ and ($p s, s$), where p and s denote finite words in the alphabet $\{-1,1\}$. We call a finite word-pair (p, s) in the alphabet $\{-1,1\}$ admissible if it is at one of the vertices of the tree so constructed. An infinite word-pair (p, s) is called admissible if there is a sequence of admissible finite pairs $\left(p_{i}, s_{i}\right)$ such that each p_{i} is a prefix of p, each s_{i} is a prefix of s, the lengths of p_{i} and s_{i} approach infinity as $i \rightarrow \infty$, and for every i the pair (p_{i+1}, s_{i+1}) belongs to the subtree with initial vertex (p_{i}, s_{i}). A word s is admissible if it is an element of an admissible pair.

Let us note some properties of the tree of admissible pairs:

1) Each finite admissible pair is encountered in the tree only once.
2) If a finite admissible word appears as an element of two admissible pairs, then one of these pairs belongs to the subtree starting at the other pair.
3) Each infinite admissible word appears as an element of only one admissible pair.

THEOREM 2. There exists a neighborhood V of the contour $\Gamma_{0}^{+} \cup \Gamma_{0}^{-} \cup O$ such that for any system X sufficiently close to X_{0} in the C^{2}-topology the limit cycles and homoclinic orbits that lie in V can have only admissible types. In the case of two limit cycles or two homoclinic saddle curves or a pair consisting of a limit cycle and a homoclinic saddle curve the types of these orbits are an admissible pair. If $\Gamma^{+}(X)$ and $\Gamma^{-}(X)$ are P^{+}-stable, then the pair $\left(S^{+}, S^{-}\right)$is admissible.

In the general case systems with two homoclinic saddle curves constitute sets of codimension two, distinguished by the following conditions: 1^{\prime}) λ_{1} is complex and $\operatorname{Re} \lambda_{1}=$ $\operatorname{Re} \lambda_{2}>\operatorname{Re} \lambda_{i}, i=3,4, \ldots, m-1$, or $\left.\mathbb{1}^{\prime \prime}\right) \lambda_{1}$ is real and $\lambda_{1}>\operatorname{Re} \lambda_{i}, i=2,3, \ldots, m-1$; 2) Γ_{0}^{+}and Γ_{0}^{-}do not lie in a lower-dimensional submanifold of W^{s}; and 3) the separatrix parameters (the quantity δ in the notation of [2] and A in the notation of [3]) are different from zero. In view of this we shall now consider two-parameter families X_{μ} of C^{2}-smooth dynamical systems that contain X_{0} and depend smoothly on $\mu=\left(\mu_{+}, \mu_{-}\right)$. The coordinates a_{m}^{+}and a_{m}^{-}of the points M^{+}and M^{-}will be smooth functions of μ with $a_{m}^{+}(0)=a_{m}^{-}(0)=0$. We shall suppose that $\mu_{+}=a_{m}^{+}(\mu)$ and $\mu_{-}=a_{m}^{-}(\mu)$.

Let C_{s} denote the bifurcation set in the $\left(\mu_{+}, \mu_{-}\right)$-plane that corresponds to the existence of a homoclinic orbit of type s. This C_{s} is a curve, given either by an equation $\mu_{+}=h_{s}\left(\mu_{-}\right)$or by $\mu_{-}=h_{s}\left(\mu_{+}\right)$, where h_{s} is a function with Lipschitz constant less than 1 , defined on some open subset of R^{1}.

In the case when λ_{1} is complex all possibilities for the family X_{μ} allowed by Theorems 1 and 2 are realized. The bifurcation diagram for this case is shown in Figure 1. The configuration of bifurcation curves along which homoclinic saddle curves exist is as follows: $\mu_{+}=0$ is the curve $C_{1}, \mu_{-}=0$ is the curve C_{-1}, while two further curves C_{1-1} and C_{-11} also leave the point $(0,0)$; the curves C_{1-1} and C_{-11} intersect C_{-1} and C_{1} respectively at infinitely many points. Continue according to this rule: let $(p, s) \neq(1,-1)$ be an admissible pair; then C_{p} and C_{s} intersect at infinitely many points, and if P and Q are neighboring points of intersection of C_{p} and C_{s} such that $h_{p}>h_{s}$ on the interval between P and Q, then P and Q are further connected by curves $C_{p s}$ and $C_{s p}$. The region bounded by $C_{p s}$ and $C_{s p}$ corresponds to the existence of a cycle of type $p s$; if $h_{p}<h_{s}$ on the interval between P and Q then the region bounded by the segments of the curves C_{p} and C_{s} from P to Q corresponds to the existence of a pair of cycles of types p and s. To the points of the set $F=\operatorname{cl}\left(\bigcup_{s} C_{s}\right) \backslash \bigcup_{s} C_{s}$ (the union taken over all finite admissible words s) correspond quasiminimal sets.

In the case of real λ_{1} the bifurcation diagram depends on the separatrix parameters A_{+}and A_{-}and on the relative position of the orbits Γ_{0}^{+}and Γ_{0}^{-}.

Below we consider the case where Γ_{0}^{+}and Γ_{0}^{-}arrive at the saddle tangent to each other. Note that this case was considered in [4], where sufficient conditions were given for the existence of cycles of types $\{1\},\{-1\}$, and $\{1-1\}$.

Figure 1

Figure 2

In the case $A_{+}>0, A_{-}>0$ (see Figure 2) the region $\mu_{+}>0, \mu_{-}<0$ corresponds to the existence of a pair of cycles of types $\{1\}$ and $\{-1\}$, the region $\mu_{+}>0, \mu_{-}>0$ to the existence of a unique cycle of type $\{1\}$, and the region $\mu_{+}<0, \mu_{-}<0$ to the existence of

Figure 3

Figure 4
a cycle of type $\{-1\}$. In the region $\mu_{+}<0, \mu_{-}>0$ the bifurcation set is a Cantor pencil of curves consisting of a countable number of curves of existence of homoclinic saddle curves and a continuum of curves of existence of quasiminimal sets. The region has the following structure: for any admissible pair of finite words (p, s) there exist curves C_{p} and C_{s}; in the region bounded by these curves lies the curve $C_{p s}$, and between C_{p} and $C_{p s}$ lies $C_{s p}$; the region bounded by $C_{p s}$ and $C_{s p}$ corresponds to the existence of cycles of type $p s$. For an arbitrary admissible pair of infinite words (p, s) there exists a curve $C(p, s)$ corresponding to the existence of a quasiminimal set, and such that if $\mu \in C(p, s)$ then $S^{+}\left(X_{\mu}\right)=p$ and $S^{-}\left(X_{\mu}\right)=s$. The curve $C(p, s)$ can be constructed as

$$
\lim _{i \rightarrow \infty} C_{s_{i}}=\lim _{i \rightarrow \infty} C_{p_{i}}
$$

where (p_{i}, s_{i}) is a sequence of admissible pairs approximating (p, s).
In the case $A_{+}>0, A_{-}<0$ (see Figure 3) there exist cycles only of types $\{1\}$, $\{-1\}$, and $\left\{-11^{n}\right\}, n=1,2, \ldots$ (here 1^{n} means the word consisting of n ones), and
the parameter plane is partitioned into a countable number of regions by the curves C_{1}, $C_{-1}, C_{1-1}, C_{-11^{n}}$, and $C_{1-11^{n}}, n=1, \ldots, \infty$.

In the case $A_{+}<0, A_{-}<0$ (see Figure 4) there exist cycles only of types $\{1\},\{-1\}$, and $\{1-1\}$; the parameter plane here is partitioned into 6 regions.

The case when Γ_{0}^{+}and Γ_{0}^{-}arrive at the saddle from opposite directions has been studied in [5]. In this case the system X_{μ} has no Poisson stable nonclosed orbits, and the cycles are only of types $\{1\},\{-1\},\{1-1\},\left\{1(-11)^{n}\right\}$, and $\left\{-1(1-1)^{n}\right\}$, $n=1, \ldots, \infty$. In the cases $A_{+}>0, A_{-}>0$ and $A_{+}<0, A_{-}>0$ the bifurcation set consists of a finite number of curves, and in the case $A_{+}<0, A_{-}<0$ it consists of countably many curves.

Scientific Research Institute for Applied Mathematics and Cybernetics, Received 06/JUNE/85 Gorki State University

BIBLIOGRAPHY

1. L. P. Shil'nikov, Mat. Sb. 61(103) (1963), 443-466. (Russian)
2. _-, Mat. Sb. 81(123) (1970), 92-103; English transl. in Math. USSR Sb. 10 (1970).
3. _, Appendix II to the Russian transl. of J. Marsden et al., The Hopf bifurcation and its applications, "Mir," Moscow, 1980, pp. 317-335. (Russian)
4. Pierre Coullet, Jean-Marc Gambaudo, and Charles Tresser, C. R. Acad. Sci. Paris Sér, I Math. 299 (1984), 253-256.
5. D. V. Turaev, Methods of the Qualitative Theory of Differential Equations, Gor'kov. Gos. Univ., Gorki, 1984, pp. 162-175. (Russian)

Translated by D. R. CHILLINGWORTH

[^0]: 1980 Mathematics Subject Classification (1985 Revision). Primary 34C35; Secondary 58F14.

