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In [1, 2], we proved that small smooth perturbations
of a two-dimensional diffeomorphism with nontrans-
versal Poincaré homoclinic orbit may lead to
homoclinic tangencies of arbitrarily high order and, as
a consequence, to arbitrarily degenerate periodic orbits.
These results show that global bifurcations of codimen-
sion 1 may accumulate bifurcation sets of arbitrarily
high codimension. On this basis, we made the conclu-
sion that it is impossible in principle to obtain a com-
plete description of the dynamics and bifurcations of
systems with homoclinic tangencies.

Recall that systems with homoclinic tangencies are
dense in open regions of the space of dynamical sys-
tems. Moreover, these regions (Newhouse regions)
exist near any system with a homoclinic tangency [3,
41; see [5] for the conservative case. The results on the
density in these regions (with respect to the C"-topol-
ogy with an arbitrary finite r) of systems with infi-
nitely degenerate periodic and homoclinic orbits both
give evidence that the behavior of the trajectories of
systems from Newhouse regions is extremely compli-
cated and make it possible to establish the genericity
of quite unexpected global properties of the dynamics.
Thus, our results were used by the author of [6] to dis-
prove Smale’s conjecture about the genericity of the
exponential growth of the number of periodic trajecto-
ries as a function of the period, and it was proved in
[7] that the generic two-dimensional C’-diffeomor-
phism (for finite r) from a Newhouse region is not
conjugate to any C=-diffeomorphism.
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The fact that systems with homoclinic tangencies of
arbitrarily high orders are dense in Newhouse regions
was proved in [1] for general smooth maps. In the two-
dimensional case, this means, in particular, that Ay # 1,
where A and 'y are the multipliers of a saddle fixed point.
Thus, our genericity condition excluded the case of
area-preserving diffeomorphisms. In this paper, we
show that these results can still be extended to area-pre-
serving diffeomorphisms. Moreover we consider both
the smooth and real-analytic cases in a unified way.

Let f be a two-dimensional area-preserving C’-dif-
feomorphism, where r = 2, 3, ..., o or r = ®; the value
o corresponds to the real-analytic case. We assume that
fhas a saddle periodic trajectory L( f) with a homoclinic
orbit I'(f). Suppose also that W*(L) and W*(L) are qua-
dratically tangent at the points of I'. In general, if the
stable and unstable manifolds W* and W" have a tan-
gency of order m at the points of some trajectory, then
we say that there is a homoclinic tangency of order m (a
quadratic tangency corresponds to m = 1, a cubic tan-
gency corresponds to m = 2, etc.). If m > r, then the
order of tangency is said to be indefinite (or infinite).
Naturally, in the analytic case, the manifolds W* and W*
can have only a finite order of tangency (otherwise,
they coincide).

Let K be a (sufficiently large) compact subset of the
phase space containing the trajectories L(f) and I'(f)
together with their small neighborhoods. We define the
closeness of two diffeomorphisms as follows. If r is
finite, then we say that two C’-diffeomorphisms are
d-close if the C"-distance between them in K is at most d.
Two C=-diffeomorphism are said to be d-close if they

are (rd)-close in the C"-metric on K for each r < ! .In

)
the real-analytic case, we take a sufficiently small com-
plex neighborhood Q of K and say that two C®-diffeo-
morphisms are d-close if their values at each point of Q
differ by at most &. Obviously, any diffeomorphism g
close to f'has a saddle periodic orbit L(g) close to L(f).
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Theorem 1. Any neighborhood of f contains an area-

preserving diffeomorphism ]~‘ that has infinitely many
trajectories of homoclinic tangency of every order
between the stable and unstable manifolds of the peri-

odic orbit L( ).

Suppose that fhas also a nontrivial uniformly hyper-
bolic set A containing L(f). For any diffeomorphism }‘
sufficiently close to f, there exists a hyperbolic set A( } )
such that f,, is topologically conjugate to JN‘|A(}) .

Theorem 2. There exists an area-preserving dif-
feomorphism ]~‘ arbitrarily close to f such that, for

each pair of periodic points P, and P, from A(f), it
has infinitely many orbits of tangency of every orders
between the stable and unstable manifolds of the
points P, and P,.

The proofs of Theorems 1 and 2 are based on the fol-
lowing fact: For any area-preserving diffeomorphism f
with a homoclinic tangency, there exists an arbitrarily
close area-preserving diffeomorphism which has a het-
eroclinic circle with two saddles, one transverse hetero-
clinic trajectory, and one trajectory of heteroclinic tan-
gency. We speak there of circles of the third class,
which have Q-moduli, i.e., continuous invariants of
local topological conjugacy on the set of nonwandering
trajectories (see [8]). The existence of the Q-moduli
leads to an additional, hidden, degeneracy: the diffeo-
morphisms with heteroclinic contours form a bifurca-
tion surface of codimension one, but any arbitrarily
small perturbation that does not lead out from the bifur-
cation surface (i.e., does not destroy the heteroclinic
circle) necessarily results in bifurcations of nonwander-
ing orbits if it only changes the value of the {-modu-
lus—by the very definition of the latter. Indeed, using
the improved version of our perturbation technique
from [2], which now includes both the conservative and
real-analytic cases, we can show that any finite number
of coexisting heteroclinic tangencies can be obtained
by a small perturbation that does not destroy the given
heteroclinic circle. Then, a small perturbation of n such
tangencies gives a tangency of order n [2], again with-
out destroying the heteroclinic cycle. This procedure
can be repeated arbitrarily many times; in the limit, we
obtain the required infinite set of coexisting tangencies
of all orders.

It is well known (see, e.g., [9]) that bifurcations of a
quadratic homoclinic tangency in the two-dimensional
conservative case lead to the birth of elliptic periodic tra-
jectories. Such a trajectory is considered nondegenerate
if, first, there are no strong resonances, i.e., its multipliers

. T 21
e where 0 < ¢ < T, are such that @ # 23 and sec-
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ondly, the first Birkhoff coefficient B, in the complex
normal form

z = z(1+ B,zz%) + O(lz)

is nonzero (but ReB; = 0 because of conservativity). If (EP

1s irrational, then the normal form can be written as

z = e%2(1+B,zz* + By(zz2*)" + ... + B, (zz%)") W
+o(l2"),

r—17 .. . .
where m = [T] (in the case of infinite r, one can

take any finite m). We say that the elliptic point is
degenerate of order sif B;=0fori=1,2,...,sand B, .,
# 0 (in this case, ReB,, ; = 0 again). If B, , , # 0, then the
degenerate periodic point is stable; this follows from
results of Moser. In the case of finite r, the degeneracy
order is indeterminate (or infinite) if the corresponding
normal form can be written as

z=e’z+0(ld) (@)
(i.e., all of the Birkhoff coefficients vanish).

Note that degenerate elliptic points may be born at
bifurcations of higher order homoclinic tangencies.
Namely, let g be an area-preserving two-dimensional
diffeomorphism with saddle periodic trajectory whose
stable and unstable manifolds have a tangency of order
n at the points of some homoclinic orbit. Consider a
generic n-parameter family g, where (L = (4, W, ..., L,)
and the L, are the splitting parameters of the manifolds
W3(0) and W*(O) at some point M* of the orbit of
homoclinic tangency. Let IT" be a sufficiently small

neighborhood of M*. Suppose that T, = f fl > IT*is

the first-return map (such maps are well defined for suf-
ficiently large k and small u; see [2]).

Lemma 1. The map T, can be reduced to the form

n—1

(X,Y)—» (Y,-X+E,+EY+...+E,_|Y 3)

—oY"*" Y+ 0(1)i e

where |6| = 1, by a canonical change of coordinates of
class C"~' (C" if r = e, W) and a change of parameters
of class C"="~! (of any finite degree of smoothness with
respect to the parameters if r = oo, ®).

Note that the new coordinates (X, Y) and the param-
eters £y, E,, ..., E, _, can take any values, i.e., the range
of their covers balls (in R? and R”, respectively) cen-
tered at zero of radius tending to infinity as k — oo. In
(5), o(1) denotes the terms tending to zero uniformly on
any compact set along with their derivatives up to the
order r — 2 with respect to the coordinates and up to the
order r — n — 2 with respect to the parameters (if 7 = oo,
then they tend to zero together with any finite number
of derivatives; if r = @, then they tend to zero uniformly
on a complex neighborhood of an arbitrary compact set
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in the plane (X, Y) together with any finite number of

derivatives with respect to the parameters).
IfEy=0+...and E, = 2cos® + ..., where the dots

denote terms tending to zero as k — o, then map (3)

has a fixed point with multipliers e*®. If % is irrational,

then the normal form can be written in form (1). Choos-
ing appropriate coefficients E,, F;, ..., E"~!, we can eas-
ily make all of the Birkhoff coefficients B; with j <
n; ! vanish. This implies that bifurcations of single-
round periodic trajectories in the family g, lead to ellip-
tic periodic trajectories of any degeneracy degree up to

[g} — 1. Using Theorem 1, we obtain the following

result.
Theorem 3. Any neighborhood of the diffeomor-

phism f from Theorem 1 contains a diffeomorphism f*
having infinitely many elliptic periodic points of every
degree of degeneracy.

Recall that near any diffeomorphism with
homoclinic tangency Newhouse regions exist in the
space of area-preserving two-dimensional C” diffeo-
morphisms for r = 2, 3, ..., oo, ® [5]. As in the general
two-dimensional case, the dynamical properties of the
conservative diffeomorphisms from these regions are
extremely complicated. Thus, Theorems 1 and 3 imply
the following assertion.

Theorem 4. Diffeomorphisms having infinitely
many homoclinic tangencies of arbitrary orders and
elliptic periodic points of every degree of degeneracy
are dense in the Newhouse regions in the space of area-
preserving two-dimensional C" diffeomorphisms, where
r=2,3,...,00, 0.

In the smooth case (r < o), this theorem can be
strengthened. If the stable and unstable manifolds of
some periodic orbit locally coincide along some curve,
then we call such a pencil of homoclinic orbits a
homoclinic band. If all points of some region in the
phase space are periodic with the same period, then we
call such a region a periodic spot.

Theorem 5. Diffeomorphisms with homoclinic
bands and periodic spots are dense in the Newhouse
regions in the space of area-preserving two-dimen-
sional diffeomorphisms of class C" (r < o).

As we see, bifurcations of homoclinic tangencies
and elliptic points may lead to dynamical phenomena
of arbitrarily high complexity. To give a precise mean-
ing to this assertion, we use the scheme suggested in
[10]. Consider an area-preserving C” diffeomorphism
fir=1,2, ..., 00, ®) of a 2-manifold Jl. Let U denote
the closed unit disk in R2. Take an arbitrary C" diffeo-
morphism y: U — Jl with constant Jacobian and any
positive integer n for which the map £, \, =y o f' o y
is well defined on U (i.e., f* o Wy(U) < y(V), where V is
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a disk such that V 2 U and y can be extended to a C”
diffeomorphism with constant Jacobian on this disk).
The map f, ,, is an area-preserving C" diffeomorphism
U — R?. We refer to the maps f, ,, obtained by such a
procedure as renormalized iterations of f. The set of all
renormalized iterations of f is called the dynamical
class of this map.

Note that the transformations (changes of coordi-
nates)  are not generally area-preserving: they pre-
serve the standard symplectic form up to constant fac-
tors. Therefore, the image Wy(U) can be a disk of an arbi-
trarily small radius situated anywhere. Thus, the
dynamical class of f contains an information about the
behavior of arbitrarily long iterations of this map on
arbitrarily small scales.

Definition 1. An area-preserving C" diffeomor-
phismf(r=1,2, ..., e, ®) is said to be universal (or C"
universal) if its dynamical class is dense in the space of
all area-preserving orientation-preserving C” diffeo-
morphisms from the unit disk U to R>.

According to this definition, the dynamics of any
given universal map is not simpler than that of all sym-
plectic diffeomorphisms together. Nevertheless, as the
following theorem shows, universality is a generic
property.

Theorem 6. For any r =2, 3, ..., oo, ®, the C" uni-
versal maps form residual subsets in the Newhouse
regions in the space of area-preserving two-dimen-
sional C" diffeomorphisms.

In the real-analytic case (r = ®), the notion of a
residual set is not defined uniquely. We use the follow-
ing definition: A set A is residual in some subset B of
the space of real-analytic diffeomorphisms if, for any f
from B and any compact subset K of the phase space, K
has a complex neighborhood Q such that the intersec-
tion of A with some open neighborhood X of the diffeo-
morphism fin the space of holomorphic maps on Q is a
countable intersection of open dense subsets of X.

The proof of Theorem 6 is based on Theorem 1,
Lemma 1, and the results on symplectic polynomial
approximations obtained in [10]. Theorem 6 implies, in
particular, that any symplectic diffeomorphism of the
2-disk can be approximated by a diffeomorphism ana-
lytically conjugate to a small perturbation of any given
area-preserving map with a homoclinic tangency (this
map must be restricted to a suitable region in the phase
space). Moreover, the following stronger assertion is
valid. Consider the space D, , (r =2, 3, ..., >, ®) of all
k-parameter families of area-preserving orientation-
preserving diffeomorphisms f; from the unit disk U to
R? of class C” with respect to the phase variables and
the parameters € [the parameters € = (g, €, ..., &)
range over the closed unit ball in R¥].

Theorem 7. The space D, , contains a residual set %
such that, for any g, € 9 and any area-preserving two-

dimensional C" map f with homoclinic tangency, arbi-
trarily close to f in the space of area-preserving two-
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dimensional C" maps there is a f-parameter family f. of
maps such that some renormalized iteration of the map

fe coincides with g for each €.

Thus, any dynamical phenomenon that is generic for
some open set in the space of area-preserving diffeo-
morphisms of the 2-disk or that occurs in a generic
finite-parameter family of such diffeomorphisms can
be encountered arbitrarily close to any area-preserving
diffeomorphism from a Newhouse region.
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