ON HAMILTONIAN SYSTEMS WITH HOMOCLINIC SADDLE CURVES

UDC 517.9

D. V. TURAEV AND L. P. SHIL'NIKOV

As we know, for Hamiltonian systems the existence of a structurally stable homoclinic curve of an equilibrium state of saddle type is a typical phenomenon. This is connected with the fact that since the equilibrium state and its stable $\left(W^{s}\right)$ and unstable (W^{u}) manifolds lie on one energy level then W^{s} and W^{u} may intersect transversally along homoclinic curves. Hence one may expect that the set of all trajectories of a Hamiltonian system lying entirely in a neighborhood of a homoclinic curve or a bouquet of homoclinic curves of an equilibrium state of saddle type has a reasonable, if not complete, description. For the case of a saddle-focus homoclinic curve this case was considered by Devaney [1]. He established that the set of trajectories lying in an energy level of a saddle-focus has a description in terms of symbolic dynamics with countably many symbols. It is interesting (see [2]) that this description is completely analogous to the description of the structure of a neighborhood of a structurally stable Poincare homoclinic curve [3]. ${ }^{1}$) In this note we consider the case when the equilibrium state is a saddle.

Assume that a system X with a Hamiltonian $H \in C^{3}$ in a domain $D \subseteq R^{2 n}$, $n \geq 2$, has an equilibrium state O. Let $\pm \lambda_{1}, \ldots, \pm \lambda_{n}$ be the roots of the characteristic equation of O. Assume that O is a saddle, i.e., $0<\lambda_{1}<\operatorname{Re} \lambda_{i}, i=2, \ldots, n$. Near the saddle the vector field is written in the form $\dot{x}=-\lambda_{1} x+\cdots, \dot{y}=-A y+\cdots$, $\dot{u}=\lambda_{1} u+\cdots, \dot{v}=A^{\mathrm{T}} v+\cdots$, where $x \in R^{1}, y \in R^{n-1}, u \in R^{1}, v \in R^{n-1}$,
$\operatorname{Spec} A=\left\{\lambda_{2}, \ldots, \lambda_{n}\right\}$, and the dots denote terms of order higher than one. W^{u} is tangent at O to the plane $u=0, v=0$, and W^{u} is tangent to the plane $x=0, y=0$. We denote by $W^{s s}\left(W^{u u}\right)$ the stable (unstable) nonleading ($n-1$)-dimensional saddle manifold. $W^{s s}$ is tangent to the y-axis, and $W^{u u}$ is tangent to the v-axis. $W^{s s}$ divides W^{s} into two parts: W_{+}^{s} and W_{-}^{s}. Similarly, we have $W^{u}=W^{u u} \cup W_{+}^{u} \cup W_{-}^{u}$. We shall assume that W_{+}^{u} approaches $W^{u u}$ from the domain $u>0$, and W_{+}^{s} approaches $W^{s s}$ from the domain $x>0$. Let us assume that W^{u} and W^{s} intersect transversally along m homoclinic trajectories $\Gamma_{1}, \ldots, \Gamma_{m}$ not lying in $W^{u u}$ and $W^{s s}$. The latter means that the Γ_{i} enter the saddle and leave it tangentially to the leading directions, the x and u axes respectively. Let us number the Γ_{i} so that

$$
\begin{gathered}
\bigcup_{i=1}^{m_{1}} \Gamma_{i} \subseteq W_{+}^{s} \cap W_{+}^{u}, \quad \bigcup_{i=m_{1}+1}^{m_{1}+m_{2}} \Gamma_{i} \subseteq W_{+}^{s} \cap W_{-}^{u}, \\
\bigcup_{i=m_{1}+m_{2}+1}^{m_{1}+m_{2}+m_{3}} \Gamma_{i} \subseteq W_{-}^{s} \cap W_{-}^{u} ; \quad \bigcup_{i=m_{1}+m_{2}+m_{3}+1}^{m_{1}+m_{2}+m_{3}+m_{4}} \Gamma_{i} \subseteq W_{-}^{s} \cap W_{+}^{u}, \\
m_{1}+m_{2}+m_{3}+m_{4}=m
\end{gathered}
$$

We shall assume that $m_{1} \neq 0$.

[^0]Let $H=0$ be the level containing O. We denote by X_{h} the restriction of the system to the level $H=h$. Let V be a small neighborhood of the bouquet $\Gamma_{1} \cup \cdots \cup \Gamma_{m} \cup O$. We denote by Ω_{h} the set of trajectories of X_{h} lying entirely in V.

Theorem 1. For a sufficiently small V and a sufficiently small $h_{0}>0$ depending on V, the following assertions are true:

1) $\Omega_{0}=\left\{\Gamma_{1}, \ldots, \Gamma_{m}, O\right\}$.
2) If $m_{3}=m_{4}=0$, then $\left.X_{h}\right|_{\Omega_{h}}$ for $h \in\left(0, h_{0}\right)$ is topologically equivalent to a suspension of a Bernoulli scheme of m_{1} symbols (if $m_{1}=1$ then Ω_{h} consists of one saddle cycle); and for $h \in\left(-h_{0}, 0\right)$, if $m_{2}>0$ it is equivalent to a suspension of a Bernoulli scheme of m_{2} symbols, while if $m_{2}=0 \quad$ then $\Omega_{h}=\varnothing$.
3) If $m_{3} \neq 0$ or $m_{4} \neq 0$ then $\left.X_{h}\right|_{\Omega_{h}}$ for $h \in\left(-h_{0}, h_{0}\right) \backslash\{0\}$ is topologically equivalent to a suspension of a topological Markov chain (TMC) given in the case $h>0$ by the transition matrix

$$
\left(\begin{array}{cc}
m_{1} & m_{2} \\
m_{4} & m_{3}
\end{array}\right)
$$

and in the case $h<0$ by

$$
\left(\begin{array}{ll}
m_{2} & m_{1} \\
m_{3} & m_{4}
\end{array}\right) \cdot\left({ }^{2}\right)
$$

Remark 1. Clearly, for $m \geq 3$ at least one of the graphs given by the matrices has a vertex belonging to at least two cycles. Therefore, for $m \geq 3$ the system X has a complicated structure.

Remark 2. It is possible to number the edges of the graphs so that a periodic trajectory of the TMC $\left\{\left[i_{1}, \ldots, i_{k}\right]\right\}, i_{j} \in\{1, \ldots, m\}$, corresponds to a periodic trajectory of the system X_{h} homotopic in V to the product $\Gamma_{i_{1}} \cdots \Gamma_{i_{k}}$.

We consider below a simple case of a bouquet of countably many homoclinic curves. Assume that X has a saddle periodic motion L in the energy level of a saddle. Then, as we know, X has a one-parameter family L_{k} of saddle periodic motions, with $L_{0}=L$. Let us assume that $W^{u}(O)$ and $W^{s}(L)$ intersect transversally along a trajectory Γ_{1}, and $W^{u}(L)$ and $W^{s}(O)$ also intersect transversally along a trajectory Γ_{2}. Assume that $\Gamma_{1} \nsubseteq W^{u u}(O)$ and $\Gamma_{2} \nsubseteq W^{s s}(O)\left(\Gamma_{1} \subset W_{+}^{u}\right.$ and $\left.\Gamma_{2} \subset W_{+}^{s}\right)$. Let us take a small neighborhood V of the contour $\Gamma_{1} \cup \Gamma_{2} \cup L \cup O$. Its fundamental group has two generators: we choose L as one of the generators, and we choose the second arbitrarily and denote it by S. Let us denote by Ω_{h} the set of trajectories of X_{h} lying entirely in V.

Theorem 2. For a sufficiently small V and a small $h_{0}>0$ depending on V, the following assertions are true:

1) $\Omega_{0}=\left\{\Gamma_{1}, \Gamma_{2}, L, O\right\} \cup\left(\bigcup_{i \geq i_{0}}\left\{\gamma_{i}\right\}\right)$, where i_{0} is an integer and γ_{i} is a trajectory homoclinic to O, homotopic to $\bar{S} L^{i}$ in V.
2) If $h \in\left(-h_{0}, 0\right)$, then $\Omega_{h}=\left\{L_{h}\right\}$.
3) If $h \in\left(0, h_{0}\right)$, then $\left.X_{h}\right|_{\Omega_{h}}$ is topologically equivalent to a suspension of a Bernoulli scheme of two symbols L and S; moreover, a periodic trajectory of the Bernoulli scheme $\left\{\left[i_{1} \cdots i_{k}\right]\right\}$ corresponds to a periodic trajectory of the system X_{h} homotopic in V to the product $i_{1} \cdots i_{k}$.

Let us consider now the case when there are two saddles O_{1} and O_{2} in the level $H=0$. We assume that $W^{u}\left(O_{1}\right) \cup W^{u}\left(O_{2}\right)$ intersects transversally in the level $H=0$ with $W^{s}\left(O_{1}\right) \cup W^{s}\left(O_{2}\right)$ along m trajectories $\Gamma_{1}, \ldots, \Gamma_{m}$ not lying in $W^{s s}\left(O_{1}\right) \cup$ $W^{s s}\left(O_{2}\right) \cup W^{u u}\left(O_{1}\right) \cup W^{u u}\left(O_{2}\right)$. We set $W_{1}^{s(u)}=W_{+}^{s(u)}\left(O_{1}\right), W_{2}^{s(u)}=W_{-}^{s(u)}\left(O_{1}\right)$,

[^1]$W_{3}^{s(u)}=W_{+}^{s(u)}\left(O_{2}\right)$, and $W_{4}^{s(u)}=W_{-}^{s(u)}\left(O_{2}\right)$. Let $m_{i, j}$ be the number of trajectories from the array $\Gamma_{1}, \ldots, \Gamma_{m}$ lying in $W_{i}^{u} \cap W_{j}^{s}, i, j \in\{1,2,3,4\}$, and put $\sum_{i, j} m_{i, j}=m$. We denote by Ω_{h} the set of trajectories of the system X_{h} lying entirely in a small neighborhood V of the contour $\Gamma_{1} \cup \cdots \cup \Gamma_{m} \cup O_{1} \cup O_{2}$.

Let us consider an arbitrary integer square matrix Q. If all the entries of some row of the matrix are zero we remove from Q this row and the column with the same index. We repeat this process until we obtain a matrix having a nonzero element in each row. We denote this matrix by \tilde{Q}.

Theorem 3. For a sufficiently small V and a small $h_{0}>0$ depending on V, the following assertions are true:

1) $\Omega_{0}=\left\{\Gamma_{1}, \ldots, \Gamma_{m}, O_{1}, O_{2}\right\}$.
2) If $h \in\left(-h_{0}, h_{0}\right) \backslash\{0\}$, then $\left.X_{h}\right|_{\Omega_{h}}$ is topologically equivalent to a suspension of a TMC given for $h>0$ by the matrix \tilde{Q}_{1}, and for $h<0$ by the matrix \tilde{Q}_{2}, where Q_{1} and Q_{2} are respectively

$$
\left(\begin{array}{llll}
m_{11} & m_{21} & m_{31} & m_{41} \\
m_{12} & m_{22} & m_{32} & m_{42} \\
m_{13} & m_{23} & m_{33} & m_{43} \\
m_{14} & m_{24} & m_{34} & m_{44}
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{llll}
m_{21} & m_{11} & m_{41} & m_{31} \\
m_{22} & m_{12} & m_{42} & m_{32} \\
m_{23} & m_{13} & m_{43} & m_{33} \\
m_{24} & m_{14} & m_{44} & m_{34}
\end{array}\right)
$$

This situation is not structurally stable. In this connection we consider a oneparameter family X_{μ} of dynamical systems with Hamiltonian $H_{\mu} \in C^{3}$. We assume that $H_{\mu}\left(O_{1}\right)=\mu$ and $H_{\mu}\left(O_{2}\right)=-\mu$. Let us denote by $\Omega_{h \mu}$ the set of trajectories of $\left.X_{\mu}\right|_{H_{\mu}=h}$ lying entirely in V. By the symmetry of the problem we may restrict ourselves to the case $\mu>0$.

Theorem 4. For a sufficiently small V and small $h_{0}>0$ and $\mu_{0} \in\left(0, h_{0}\right)$, depending on V, if $\mu \in\left(0, \mu_{0}\right),|h|<h_{0}$, and $|h| \neq \mu$, then $X_{h} \mid \Omega_{h} \mu$ is topologically equivalent to a suspension of a TMC given for $h \in\left(\mu, h_{0}\right)$ by the matrix \tilde{Q}_{1}, for $h \in\left(-h_{0},-\mu\right)$ by the matrix \tilde{Q}_{2}, and for $h \in(-\mu, \mu)$ by the matrix \tilde{Q}_{3}, where

$$
Q_{3}=\left(\begin{array}{llll}
m_{21} & m_{11} & m_{31} & m_{41} \\
m_{22} & m_{12} & m_{32} & m_{42} \\
m_{23} & m_{13} & m_{33} & m_{43} \\
m_{24} & m_{14} & m_{34} & m_{44}
\end{array}\right) .
$$

For $h=\mu(h=-\mu), \Omega_{h \mu}$ contains a bouquet of homoclinic curves of the saddle O_{1} $\left(O_{2}\right) . X_{h} \mid \Omega_{h \mu}$ is equivalent to a suspension of a TMC given for $h=\mu$ by the matrix \tilde{Q}_{4}, and for $h=-\mu$ by the matrix \tilde{Q}_{5}, where we have identified two trajectories:

$$
\cdots(m+1)(m+1)(m+1) \cdots \quad \text { and } \quad(m+2)(\dot{m}+2)(m+2) \cdots .
$$

Here Q_{4} and Q_{5} are respectively

$$
\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & m_{31}+m_{32} & m_{41}+m_{42} \\
m_{13}+m_{23} & 0 & m_{33} & m_{43} \\
m_{14}+m_{24} & 0 & m_{34} & m_{44}
\end{array}\right)
$$

and

$$
\left(\begin{array}{cccc}
m_{21} & m_{11} & 0 & m_{31}+m_{41} \\
m_{22} & m_{12} & 0 & m_{32}+m_{42} \\
m_{23}+m_{24} & m_{23}+m_{14} & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right),
$$

in the case $h=\mu(h=-\mu)$ we have denoted by $(m+1)$ and $(m+2)$ the edges from the vertex 1 (the vertex 4) into itself and from the vertex 2 (the vertex 3) into itself.

To the pair of identified trajectories in the suspension there correspond the saddle O_{1} for $h=\mu$ and the saddle O_{2} for $h=-\mu .\left(^{3}\right)$ To the trajectory $\left\{i_{j}\right\}_{-\infty}^{+\infty}$ of the TMC, where $i_{j}=m+1$ for $j<0, i_{j} \in\{1, \ldots, m\}$ for $j=1, \ldots, k$, and $i_{j}=m+2$ for $j>k$, there corresponds a homoclinic trajectory to the saddle, homotopic in V to the product $\Gamma_{i_{1}} \cdots \Gamma_{i_{k}}$.

Scientific Research Institute of Applied Mathematics and Cybernetics Received 22/JULY/87
 Gorki State University

BIBLIOGRAPHY

1. Robert L. Devaney, J. Differential Equations 21 (1976), 431-438.
2. L. A. Beljakov [Belyakov] and L. P. Šil'nikov [Shil'nikov], a) Self-organization. Autowaves and Structures Far from Equilibrium (Proc. Internat. Sympos. Pushchino, 1983; V. I. Krinsky [Krinskiī], editor), Springer-Verlag, 1964, pp. 106-110.
b) Methods of the Qualitative Theory of Differential Equations (E. A. Leontovich-Andronova, editor), Gor'kov. Gos. Univ., Gorki, 1985, pp. 22-35. (Russian)
3. L. P. Shil'nikov, Mat. Sb. 74(116) (1967), 378-397; English transl. in Math. USSR Sb. 3 (1967).
4. \qquad , Mat. Sb. 81(123) (1970), 92-103; English transl. in Math. USSR Sb. 10 (1970).
5. I. M. Ovsyannikov and L. P. Shil'nikov, Mat. Sb. 130(172) (1986), 552-569; English transl. in Math. USSR Sb. 58 (1987).
6. V. S. Afraimovich and L. P. Shil'nikov, Trudy Moscov. Mat. Obshch. 28 (1973), 181-214; English transl. in Trans. Moscow Math. Soc. 28 (1973).
7. __, Izv. Akad. Nauk SSSR Ser. Mat. 38 (1974), 1248-1288; English transl. in Math. USSR Izv. 8 (1974).
8. V. M. Alekseev, Symbolic dynamics, Eleventh Math. School (Kolomyya, 1973), Izdanie Inst. Mat. Akad. Nauk Ukrain. SSR, Kiev, 1976. (Russian)
[^2]
[^0]: 1980 Mathematics Subject Classification (1985 Revision). Primary 58F05, 58F15; Secondary 54H20.
 ${ }^{1}{ }^{1}$ In the case of general smooth dynamical systems with a homoclinic saddle-focus curve we have also a complicated structure in the behavior of the trajectories [4], and on the bifurcation surface of such systems there is a dense structural instability.

[^1]: $\left(^{2}\right)$ See [6]-[8] for representation of a TMC by a multigraph and a transition matrix.

[^2]: ${ }^{(3)}$ See [6] for suspensions including an equilibrium state.

