$\mathbf{MATHEMATICS} =$

Attractors and Repellers Near Generic Elliptic Points of Reversible Maps[¶]

S. V. Gonchenko^a*, J. S. W. Lamb^b**, I. Rios^c****, and D. Turaev^b***

Presented by Academician V.V. Kozlov March 25, 2013

Received September 18, 2013

DOI: 10.1134/S1064562414010207

Let *M* be a two-dimensional manifold. Let *g*: $M \rightarrow M$ be an involution, so $g \circ g = \text{id}$. A map $f: M \rightarrow M$ is called reversible if it is conjugate by the involution *g* to its own inverse, i.e. $f^{-1} = g \circ f \circ g$.

Let \Re_g^r denote the set of the reversible maps, endowed with the *C*^{*r*}-topology, $r = 1, 2, ..., \infty, \omega$. In the analytic case, $r = \omega$, we choose, first, some fixed complex neighbourhood *Q* of *M*, and $\Re_g^{\omega} = \Re_{g,Q}^{\omega}$ is then the space of reversible maps which are real on *M* and analytic on *Q*, with the topology of uniform convergence on compacta in *Q*. We also assume that the involution *g* itself is *C*^{*r*}-smooth or, in the case of \Re_g^{ω} , real analytic.

A subset of \Re is called residual if it is an intersection of a countable sequence of open and dense sets; a property is called generic if it holds for maps which comprise a residual set.

An orbit of a reversible map f is called symmetric if it is invariant with respect to g; namely, $g(x_0) = f^j(x_0)$ for some j (then $gf(x_0) = f^{j-1}(x_0)$, $gf^2(x_0) = f^{j-2}(x_0)$, ...). It is easy to see that for a symmetric periodic orbit at least one of its points is either a fixed point of the involution g, or a fixed point of $f \circ g$. Such point will be called a symmetric periodic point.

Dynamics in a small neighbourhood of a non-symmetric periodic orbit can be arbitrary. However, the image gL of such orbit by the involution g is also a periodic orbit, and if L has multipliers λ and γ , then the multipliers of gL will be λ^{-1} and γ^{-1} . Therefore, in

reversible maps, asymptotically stable periodic orbits (sinks) and completely unstable ones (sources) always exist in pairs.

For a symmetric periodic orbit, if λ is a multiplier, then λ^{-1} is also a multiplier. Therefore, elliptic symmetric periodic orbits (i.e., those with multipliers $e^{\pm i\psi}$ where $\psi \neq 0, \pi$) persist at C^1 -small perturbations within the space of reversible maps. It is well-known that the dynamics near a generic elliptic orbit of a reversible map appears pretty much conservative. Namely, every point of such orbit is surrounded by invariant KAMcurves. Moreover, the KAM-curves occupy most of the neighbourhood of the elliptic point [1].

However, between the KAM-curves there exist resonant zones. We show here that the generic dynamics in the resonant zones is not conservative and has a mixed nature (in the sense of [2, 3]). Namely, our main result is the following

Theorem 1. In the space \Re_g^r , $r = 1, 2, ..., \infty, \omega$, there is a residual subset \Re^* such that for every $f \in \Re^*$ every point of each symmetric elliptic periodic orbit is a limit of periodic sinks, sources, saddles, and other elliptic points.

Let Λ be a non-trivial, transitive, zero-dimensional, compact, locally-maximal uniformly-hyperbolic set. Following [4], we simply call such sets basic.¹ A basic set Λ is called a wild hyperbolic set if its stable and unstable manifolds $W^s(\Lambda)$ and $W^u(\Lambda)$ have a nondegenerate tangency and if this property persists at all perturbations sufficiently small in C^2 . According to [4], if a C^r -map ($r = 2, 3, ..., \omega$) has a basic set Λ such that $W^s(\Lambda)$ and $W^u(\Lambda)$ have a tangency, then an arbitrarily small C^r -neighborhood of this map intersects a C^2 -open set \mathcal{N} (the Newhouse region) such that for every map from \mathcal{N} the hyperbolic set Λ is wild. A basic set Λ of a reversible map is called symmetric if $g\Lambda = \Lambda$.

Lemma 1. Let f be a reversible map with a symmetric wild hyperbolic set Λ . Let \mathcal{N} be the corresponding Newhouse region, and let \mathfrak{A}_{rev} be a neighbourhood of f in the

 $^{\[}$ The article was translated by the authors.

^a Institute for Applied Mathematics and Cybernetics, Nizhni Novgorod University, Nizhni Novgorod, Russia

^b Mathematics Department, Imperial College, London ^c Instituto de Matenmática e Estatística, Universidade

Federal Fluminense

e-mail: *gonchenko@pochta.ru;

^{**} jeroen.lamb@imperial.ac.uk;

^{***}d.turaev@imperial.ac.uk; ****rios@mat.uff.br

¹ The restriction of the map on a basic set is topologically conjugate to a finite Markov chain. Main examples are given by the Smale horseshoe, the Shilnikov hyperbolic set in a neighbourhood of a transverse homoclinic [5], etc.

space of reversible maps. Then, for any map from $\mathcal{N}_{rev} = \mathcal{N} \cap \mathcal{U}_{rev}$ the manifolds $W^s(\Lambda)$ and $W^u(\Lambda)$ have a pair of non-symmetric quadratic tangencies. Moreover, in \mathcal{N}_{rev} , for each $k \ge 2$ there exists a dense subset $\mathcal{N}_{sym, k}$ such that every map from $\mathcal{N}_{sym, k}$ has a symmetric orbit at the points of which $W^s(\Lambda)$ and $W^u(\Lambda)$ have a tangency of the order k.²

The proof is based on the fact that near non-symmetric orbits of tangency of the stable and unstable manifolds the dynamic behaviour of a reversible map does not differ from that for the general case, therefore the original Newhouse arguments [4] are applicable. The part concerning symmetric orbits is proven by showing, using the methods of [6-8], that the symmetric tangencies (of any order) can be obtained by a perturbation of a pair of non-symmetric ones.

Since periodic orbits are dense in Λ and their stable and unstable manifolds are dense, respectively, in $W^{s}(\Lambda)$ and $W^{u}(\Lambda)$, we derive the following result from Lemma 1.

Lemma 2. In \mathcal{N}_{rev} , reversible maps which possess the following properties are dense:

1. The set Λ contains a pair of saddle periodic orbits P_1 and P_2 such that $P_2 = gP_1$, and $W^u(P_1)$ has a transverse intersection with $W^s(P_2)$ while $W^u(P_2)$ has a quadratic tangency with $W^s(P_1)$ at the points of symmetric heteroclinic orbits Γ_{12} and, respectively, Γ_{21} .

2. The set Λ contains a pair of symmetric periodic orbits Q_1 and Q_2 such that the manifold $W^u(Q_1)$ has a quadratic tangency with $W^s(Q_2)$ while $W^u(Q_2)$ has a quadratic tangency with $W^s(Q_1)$ at the points of heteroclinic orbits Γ_{12} and, respectively, Γ_{21} , where $\Gamma_{21} = g\Gamma_{12}$.

Since the orbit P_1 is not symmetric, the Jacobian $J(P_1)$ of the Poincare map for this orbit does not need to be equal to ± 1 , and in any case one can always apply an arbitrarily small perturbation and make $|J(P_1)| \neq 1$. Then, due to the reversibility, $J(P_2) = J(P_1)^{-1} \neq \pm 1$. It was shown in [9] that under this condition arbitrarily small (and not leading out of the class of reversible maps) perturbations of the heteroclinic cvcle described in item 1 of Lemma 2 lead to the birth of non-symmetric periodic sinks and sources along with symmetric elliptic periodic orbits (see also [2]). By [10], the same conclusion holds for perturbations of the heteroclinic cycle from item 2 of Lemma 2 (eventhough the bifurcation scenario is different here as $|J(Q_1)| = |J(Q_2)| = 1$ for all small perturbations within the class of reversible maps). Using these results, we infer the following theorem from Lemma 2.

Theorem 2. In the Newhouse domain \mathcal{N}_{rev} a residual subset \mathfrak{B} is comprised by reversible maps each having infinitely many sinks, sources and symmetric elliptic points. Moreover, within \mathfrak{B} there is a residual subset \mathfrak{B}^* which is comprised by the maps such that for each of them the closure of sinks, the closure of sources and the

closure of elliptic points have a non-empty intersection that contains the wild set Λ .

Theorem 2 is, in a sense, analogous to Newhouse theorem [11] on the existence of open regions (in the space of dissipative systems) where systems with infinitely many periodic sinks are generic. This result was generalized to the non-dissipative case in [2]: in the space of two-dimensional maps that have periodic saddles with Jacobians both greater and less that 1 there exist Newhouse regions where a generic map has infinitely many sinks and sources.³

It is well known that the dynamics in resonant zones near elliptic periodic points is typically chaotic. In the conservative case the existence of transverse and non-transverse homoclinic orbits near elliptic points was shown in [12-14]. In the reversible case an analogous statement holds true.

Theorem 3. For a generic map from \Re_g^r ($r = 2, 3, ..., \omega$) each symmetric elliptic periodic orbit is a limit of symmetric wild-hyperbolic sets.

Obviously, Theorem 3 implies Theorem 1 by virtue of Theorem 2.

In fact, Theorem 1 implies another instance of coexistence of conservative and dissipative dynamics, as given by Theorem 4 below. Let C be a closed invariant curve of a reversible C^r -map $f(r = 4, 5, ..., \infty, \omega)$. In analogy with the conservative case we will call the invariant curve C a KAM-curve if the following conditions hold: (1) gC = C (i.e., C is a symmetric invariant curve); (2) there exist C⁴-coordinates (ρ , θ) near C (where θ is an angular variable and ρ runs a small interval around zero) such that C is given by the equation $\rho = 0$, and the map f takes the form $\rho = q(\rho, \theta)$, $\theta = \theta + \psi(\rho, \theta)$, where q, ψ are functions, 1-periodic in θ , such that $q(0, \theta) \equiv 0$ and $\psi(\rho, \theta) = \psi_0 + \psi_1 \rho + \psi_1 \rho$ $O(\rho^2)$, where ψ_0 and ψ_1 are some constants; (3) the twist condition is satisfied: $\psi_1 \neq 0$; (4) the rotation number ψ_0 is Diophantine: $|k\psi_0 + p| \ge K|k|^{-\alpha}$ for all integer $k \neq 0$ and p, and for some fixed K > 0 and $\alpha > 0$.

Theorem 4. In the space \Re_g^r there is a residual subset \Re^{**} such that for every $f \in \Re^{**}$ every point of each KAM-curve is a limit of sinks and sources.⁴

In the final part of this letter we describe one more mechanism of the destruction of conservativity near elliptic points, which is not related to homoclinic tangencies. As we show, a degenerate resonant elliptic

² Quadratic and cubic tangencies (k = 2, 3) appear in generic oneparameter families of systems from \mathcal{N}_{rev} .

³ This type of the Newhouse phenomenon was later called *mixed dynamics* [3]. It is characterized by the coexistence of infinitely many periodic orbits of all possible structurally-stable topological types, and by their inseparability from each other (the closures of the sets of the periodic orbits of different topological types have a non-empty intersection).

⁴ In the analytic case we were unable to prove that every KAMcurve is a limit of elliptic points. In the C^{∞} -case this claim is easily proved by reducing the map to an integrable normal form, similar to that discussed below.

point can itself undergo a symmetry-breaking bifurcation that produces a sink and a source. Let us have a symmetric elliptic periodic orbit with the multipliers

$$e^{\pm i\psi}$$
 where $\psi = \frac{2\pi p}{q} + \mu$, where μ is a small parameter

Then for all small μ the Poincare map *T* near this orbit can be brought to the normal form: $T = R_{2\pi p/q} \circ F + o(\rho^{q+1})$ where *F* is the time-1 map of the flow defined by

$$\dot{z} = i\mu z + i \sum_{1 \le j \le \frac{q}{2}} \Psi_j |z|^{2j} z + iA(z^*)^{q-1} + iBz^{q+1} + iCz(z^*)^q,$$
(1)

where $z = \rho e^{i\varphi}$, $z^* = \rho e^{-i\varphi}$. Note that the reversibility requires the coefficients *A*, *B*, *C*, and Ψ_j in (1) to be real. Importantly, for conservative maps the coefficients *B* and *C* must be zero. However, they can take arbitrary real values in the case of reversible systems if we do not a priori require the conservativity. We rewrite (1) as

$$\dot{\phi} = \rho^{q-1} (A + (C - B)\rho^2) \sin \phi,$$

$$\dot{\phi} = q\mu + \sum_{1 \le j \le \frac{q}{2}} q \Psi_j \rho^{2j} + q \rho^{q-2} (A + (C + B)\rho^2) \cos \phi,$$

(2)

where $\phi = q\phi$. Assume $\Psi_1 \neq 0$. If $A \neq 0$, then the behavior of system (2) at small ρ is essentially conservative: there are only two equilibrium states at $\mu \Psi_1 < 0$ and they both are symmetric (i.e., $\sin \phi = 0$), so one is a saddle and one is a center. However, if A = 0, then by changing μ and A non-symmetric equilibria can be created in system (2). Namely, if $C \neq B$, then system (2) has a pair of equilibria $\rho^2 = \frac{A}{B-C}$ with $\sin \phi \neq 0$ for

 μ running a small interval that lies near the point $\mu = A\Psi_1$

 $\frac{A\Psi_1}{C-B}$. One checks that the non-symmetric equilibria

are a sink and a source if B(B - C) > 0. They correspond to *q*-periodic sink and source for the Poincare map *T*.

Now we make the following

Proposition. Given an elliptic point with the multipliers $e^{\pm i\psi}$, an arbitrarily small C^r-perturbation can be added such that it does not lead the map out of the class of reversible maps and makes the elliptic point resonant

 $(i.e., \psi = \frac{2\pi p}{q})$ with any given real values of the coeffi-

cients A, B, and C in the normal form (1).

We do not prove this claim when $r = \omega$, i.e. it has to be considered as a conjecture in the analytic case. For small C^{∞} -perturbations the proof of the proposition is

achieved as follows. When $\frac{\Psi}{\pi}$ is irrational, the normal

form for the Poincare map T times the rotation $R_{-\psi}$ coincides, up to flat terms, with the time-1 shift by the

orbits of the equation $\dot{z} = i\Psi(zz^*)z$ for some real function Ψ where $\Psi(0) = 0$. Therefore, by a C^{∞} -small perturbation of the original map one can make the map $R_{-\psi} \circ T$ coincide exactly with the time 1 shift by this flow in a sufficiently small neighborhood of z = 0 (in the analytic case, $r = \omega$, this is, in general, impossible to do). Now, take a sufficiently large q such that $\frac{2\pi p}{q}$ is close to ψ , change the equation $\dot{z} = i\Psi(zz^*)z$ to $\dot{z} = i\Psi(zz^*)z + iA(z^*)^{q-1} + iBz^{q+1} + iCz(z^*)^q$ (in a sufficiently small neighbourhood of zero this perturbation

is small in C^{q-2}), and change the value of ψ to $\frac{2\pi p}{q}$.

Thus, there exist arbitrarily small perturbations of elliptic points which produce sinks and sources, and, at least in the C^{∞} -case, these perturbations do not need to be related to "unpredictable subtleties" of homoclinic tangles [7].

ACKNOWLEDGMENTS

The work was supported by the Russian Foundation for Basic Research (project nos. 11-01-00001, 13-01-00589, and 13-01-97028-povolzh'e (Gonchenko), by UK EPSRC, CAPES, CNPq, and Faperj (Lamb, Rios), and by the Leverhulme Trust grant no. RPG-279 and the RF FCP "Kadry" grant no. 14.B37.21.0862 (Turaev).

REFERENCES

- 1. M. B. Sevryuk, *Reversible Systems*, Lect. Notes Math. (Springer-Verlag, Berlin, 1986), Vol. 1211.
- S. V. Gonchenko, D. V. Turaev, and L. P. Shil'nikov, Proc. Steklov Inst. Math. 216, 70–118 (1997).
- S. V. Gonchenko, L. P. Shilnikov, and O. V. Stenkin, Proceedings of International Conference on Progress in Nonlinear Science (Nizhni Novgorod, 2002), Vol. 1, pp. 80–102.
- S. E. Newhouse, Publ. Math. Inst. Hautes Etudes Sci. 50, 101–151 (1979).
- 5. L. P. Shil'nikov, Mat. Sb. 74 (116), 378-397 (1967).
- S. V. Gonchenko, L. P. Shilnikov, and D. Turaev, Phys. D 62 (1–4), 1–14 (1993).
- S. V. Gonchenko, D. V. Turaev, and L. P. Shil'nikov, J. Math. Sci. 105 (1), 1738–1778 (New York) (2001).
- S. V. Gonchenko, L. P. Shilnikov, and D. Turaev, Nonlinearity 20, 241–275 (2007).
- 9. J. S. W. Lamb and O. V. Stenkin, Nonlinearity 17, 1217–1244 (2004).
- A. Delshams, S. V. Gonchenko, V. S. Gonchenko, J. T. Lázaro, and O. Stenkin, Nonlinearity 26, 1–33 (2013).
- 11. S. E. Newhouse, Topology 13, 9–18 (1974).
- 12. E. Zehnder, Commun. Pure Appl. Math. **26**, 131–182 (1973).
- L. Mora and N. Romero, Ann. Fact. Sci. Toulouse 6, 711–725 (1997).
- V. Gelfreich and D. Turaev, Regular Chaotic Dyn. 15 (2-3), 159–164 (2010).