Attractors and Repellers Near Generic Elliptic Points of Reversible Maps ${ }^{\text {| }}$

S. V. Gonchenko ${ }^{a}$ *, J. S. W. Lamb ${ }^{b}$ **, I. Rios ${ }^{c * * * * *}$, and D. Turaev ${ }^{b}$ ***
Presented by Academician V.V. Kozlov March 25, 2013

Received September 18, 2013

DOI: 10.1134/S1064562414010207

Let M be a two-dimensional manifold. Let $g: M \rightarrow$ M be an involution, so $g \circ g=\mathrm{id}$. A map $f: M \rightarrow M$ is called reversible if it is conjugate by the involution g to its own inverse, i.e. $f^{-1}=g \circ f \circ g$.

Let \mathscr{R}_{g}^{r} denote the set of the reversible maps, endowed with the C^{r}-topology, $r=1,2, \ldots, \infty, \omega$. In the analytic case, $r=\omega$, we choose, first, some fixed complex neighbourhood Q of M, and $\mathscr{R}_{g}^{\omega}=\mathscr{R}_{g, Q}^{\omega}$ is then the space of reversible maps which are real on M and analytic on Q, with the topology of uniform convergence on compacta in Q. We also assume that the involution g itself is C^{r}-smooth or, in the case of \mathscr{R}_{g}^{ω}, real analytic.

A subset of \mathscr{R} is called residual if it is an intersection of a countable sequence of open and dense sets; a property is called generic if it holds for maps which comprise a residual set.

An orbit of a reversible map f is called symmetric if it is invariant with respect to g; namely, $g\left(x_{0}\right)=f^{j}\left(x_{0}\right)$ for some j (then $g f\left(x_{0}\right)=f^{j-1}\left(x_{0}\right), g f^{2}\left(x_{0}\right)=f^{j-2}\left(x_{0}\right)$, ...). It is easy to see that for a symmetric periodic orbit at least one of its points is either a fixed point of the involution g, or a fixed point of $f \circ g$. Such point will be called a symmetric periodic point.

Dynamics in a small neighbourhood of a non-symmetric periodic orbit can be arbitrary. However, the image $g L$ of such orbit by the involution g is also a periodic orbit, and if L has multipliers λ and γ, then the multipliers of $g L$ will be λ^{-1} and γ^{-1}. Therefore, in

[^0]reversible maps, asymptotically stable periodic orbits (sinks) and completely unstable ones (sources) always exist in pairs.

For a symmetric periodic orbit, if λ is a multiplier, then λ^{-1} is also a multiplier. Therefore, elliptic symmetric periodic orbits (i.e., those with multipliers $e^{ \pm i \psi}$ where $\psi \neq 0, \pi$) persist at C^{1}-small perturbations within the space of reversible maps. It is well-known that the dynamics near a generic elliptic orbit of a reversible map appears pretty much conservative. Namely, every point of such orbit is surrounded by invariant KAMcurves. Moreover, the KAM-curves occupy most of the neighbourhood of the elliptic point [1].

However, between the KAM-curves there exist resonant zones. We show here that the generic dynamics in the resonant zones is not conservative and has a mixed nature (in the sense of [2, 3]). Namely, our main result is the following

Theorem 1. In the space $\mathscr{R}_{g}^{r}, r=1,2, \ldots, \infty, \omega$, there is a residual subset \mathscr{R}^{*} such that for every $f \in \mathscr{R}^{*}$ every point of each symmetric elliptic periodic orbit is a limit of periodic sinks, sources, saddles, and other elliptic points.

Let Λ be a non-trivial, transitive, zero-dimensional, compact, locally-maximal uniformly-hyperbolic set. Following [4], we simply call such sets basic. ${ }^{1}$ A basic set Λ is called a wild hyperbolic set if its stable and unstable manifolds $W^{s}(\Lambda)$ and $W^{u}(\Lambda)$ have a nondegenerate tangency and if this property persists at all perturbations sufficiently small in C^{2}. According to [4], if a C^{r}-map $(r=2,3, \ldots, \omega)$ has a basic set Λ such that $W^{s}(\Lambda)$ and $W^{u}(\Lambda)$ have a tangency, then an arbitrarily small C^{r}-neighborhood of this map intersects a C^{2}-open set \mathcal{N} (the Newhouse region) such that for every map from \mathcal{N} the hyperbolic set Λ is wild. A basic set Λ of a reversible map is called symmetric if $g \Lambda=\Lambda$.

Lemma 1. Letf be a reversible map with a symmetric wild hyperbolic set Λ. Let \mathcal{N} be the corresponding Newhouse region, and let ϑ_{rev} be a neighbourhood of f in the

[^1]space of reversible maps. Then, for any map from $\mathcal{N}_{\text {rev }}=$ $\mathcal{N} \cap U_{\mathrm{rev}}$ the manifolds $W^{s}(\Lambda)$ and $W^{\prime \prime}(\Lambda)$ have a pair of non-symmetric quadratic tangencies. Moreover, in $\mathcal{N}_{\text {rev }}$, for each $k \geq 2$ there exists a dense subset $\mathcal{N}_{\text {sym, } k}$ such that every map from $\mathcal{N}_{\text {sym, } k}$ has a symmetric orbit at the points of which $W^{s}(\Lambda)$ and $W^{u}(\Lambda)$ have a tangency of the order k. ${ }^{2}$

The proof is based on the fact that near non-symmetric orbits of tangency of the stable and unstable manifolds the dynamic behaviour of a reversible map does not differ from that for the general case, therefore the original Newhouse arguments [4] are applicable. The part concerning symmetric orbits is proven by showing, using the methods of [6-8], that the symmetric tangencies (of any order) can be obtained by a perturbation of a pair of non-symmetric ones.

Since periodic orbits are dense in Λ and their stable and unstable manifolds are dense, respectively, in $W^{s}(\Lambda)$ and $W^{u}(\Lambda)$, we derive the following result from Lemma 1.

Lemma 2. In $\mathcal{N}_{\text {rev }}$, reversible maps which possess the following properties are dense:

1. The set Λ contains a pair of saddle periodic orbits P_{1} and P_{2} such that $P_{2}=g P_{1}$, and $W^{u}\left(P_{1}\right)$ has a transverse intersection with $W^{s}\left(P_{2}\right)$ while $W^{u}\left(P_{2}\right)$ has a quadratic tangency with $W^{s}\left(P_{1}\right)$ at the points of symmetric heteroclinic orbits Γ_{12} and, respectively, Γ_{21}.
2. The set Λ contains a pair of symmetric periodic orbits Q_{1} and Q_{2} such that the manifold $W^{u}\left(Q_{1}\right)$ has a quadratic tangency with $W^{s}\left(Q_{2}\right)$ while $W^{u}\left(Q_{2}\right)$ has a quadratic tangency with $W^{s}\left(Q_{1}\right)$ at the points of heteroclinic orbits Γ_{12} and, respectively, Γ_{21}, where $\Gamma_{21}=g \Gamma_{12}$.

Since the orbit P_{1} is not symmetric, the Jacobian $J\left(P_{1}\right)$ of the Poincare map for this orbit does not need to be equal to ± 1, and in any case one can always apply an arbitrarily small perturbation and make $\left|J\left(P_{1}\right)\right| \neq 1$. Then, due to the reversibility, $J\left(P_{2}\right)=J\left(P_{1}\right)^{-1} \neq \pm 1$. It was shown in [9] that under this condition arbitrarily small (and not leading out of the class of reversible maps) perturbations of the heteroclinic cycle described in item 1 of Lemma 2 lead to the birth of non-symmetric periodic sinks and sources along with symmetric elliptic periodic orbits (see also [2]). By [10], the same conclusion holds for perturbations of the heteroclinic cycle from item 2 of Lemma 2 (eventhough the bifurcation scenario is different here as $\left|J\left(Q_{1}\right)\right|=\left|J\left(Q_{2}\right)\right| \equiv 1$ for all small perturbations within the class of reversible maps). Using these results, we infer the following theorem from Lemma 2.

Theorem 2. In the Newhouse domain $\mathcal{N}_{\text {rev }}$ a residual subset \mathfrak{B} is comprised by reversible maps each having infinitely many sinks, sources and symmetric elliptic points. Moreover, within \mathfrak{B} there is a residual subset \mathfrak{B} * which is comprised by the maps such that for each of them the closure of sinks, the closure of sources and the

[^2]closure of elliptic points have a non-empty intersection that contains the wild set Λ.

Theorem 2 is, in a sense, analogous to Newhouse theorem [11] on the existence of open regions (in the space of dissipative systems) where systems with infinitely many periodic sinks are generic. This result was generalized to the non-dissipative case in [2]: in the space of two-dimensional maps that have periodic saddles with Jacobians both greater and less that 1 there exist Newhouse regions where a generic map has infinitely many sinks and sources. ${ }^{3}$

It is well known that the dynamics in resonant zones near elliptic periodic points is typically chaotic. In the conservative case the existence of transverse and non-transverse homoclinic orbits near elliptic points was shown in [12-14]. In the reversible case an analogous statement holds true.

Theorem 3. For a generic map from $\mathscr{R}_{g}^{r}(r=2,3, \ldots$, $\omega)$ each symmetric elliptic periodic orbit is a limit of symmetric wild-hyperbolic sets.

Obviously, Theorem 3 implies Theorem 1 by virtue of Theorem 2.

In fact, Theorem 1 implies another instance of coexistence of conservative and dissipative dynamics, as given by Theorem 4 below. Let C be a closed invariant curve of a reversible $C^{r}-\operatorname{map} f(r=4,5, \ldots, \infty, \omega)$. In analogy with the conservative case we will call the invariant curve C a KAM-curve if the following conditions hold: (1) $g C=C$ (i.e., C is a symmetric invariant curve); (2) there exist C^{4}-coordinates (ρ, θ) near C (where θ is an angular variable and ρ runs a small interval around zero) such that C is given by the equation $\rho=0$, and the map f takes the form $\bar{\rho}=q(\rho, \theta)$, $\bar{\theta}=\theta+\psi(\rho, \theta)$, where q, ψ are functions, 1-periodic in θ, such that $q(0, \theta) \equiv 0$ and $\psi(\rho, \theta)=\psi_{0}+\psi_{1} \rho+$ $O\left(\rho^{2}\right)$, where ψ_{0} and ψ_{1} are some constants; (3) the twist condition is satisfied: $\psi_{1} \neq 0$; (4) the rotation number ψ_{0} is Diophantine: $\left|k \psi_{0}+p\right| \geq K|k|^{-\alpha}$ for all integer $k \neq 0$ and p, and for some fixed $K>0$ and $\alpha>0$.

Theorem 4. In the space \mathscr{R}_{g}^{r} there is a residual subset $\mathscr{R}^{* *}$ such that for every $f \in \mathscr{R}^{* *}$ every point of each KAM-curve is a limit of sinks and sources. ${ }^{4}$

In the final part of this letter we describe one more mechanism of the destruction of conservativity near elliptic points, which is not related to homoclinic tangencies. As we show, a degenerate resonant elliptic

[^3]point can itself undergo a symmetry-breaking bifurcation that produces a sink and a source. Let us have a symmetric elliptic periodic orbit with the multipliers $e^{ \pm i \psi}$ where $\psi=\frac{2 \pi p}{q}+\mu$, where μ is a small parameter. Then for all small μ the Poincare map T near this orbit can be brought to the normal form: $T=R_{2 \pi p / q} \circ F+$ $o\left(\rho^{q+1}\right)$ where F is the time-1 map of the flow defined by
\[

$$
\begin{gather*}
\dot{z}=i \mu z+i \sum_{1 \leq j \leq \frac{q}{2}} \Psi_{j}|z|^{2 j} z+i A\left(z^{*}\right)^{q-1} \\
+i B z^{q+1}+i C z\left(z^{*}\right)^{q} \tag{1}
\end{gather*}
$$
\]

where $z=\rho e^{i \varphi}, z^{*}=\rho e^{-i \varphi}$. Note that the reversibility requires the coefficients A, B, C, and Ψ_{j} in (1) to be real. Importantly, for conservative maps the coefficients B and C must be zero. However, they can take arbitrary real values in the case of reversible systems if we do not a priori require the conservativity. We rewrite (1) as

$$
\begin{gather*}
\dot{\rho}=\rho^{q-1}\left(A+(C-B) \rho^{2}\right) \sin \phi \\
\dot{\phi}=q \mu+\sum_{1 \leq j \leq \frac{q}{2}} q \Psi_{j} \rho^{2 j}+q \rho^{q-2}\left(A+(C+B) \rho^{2}\right) \cos \phi \tag{2}
\end{gather*}
$$

where $\phi=q \varphi$. Assume $\Psi_{1} \neq 0$. If $A \neq 0$, then the behavior of system (2) at small ρ is essentially conservative: there are only two equilibrium states at $\mu \Psi_{1}<0$ and they both are symmetric (i.e., $\sin \phi=0$), so one is a saddle and one is a center. However, if $A=0$, then by changing μ and A non-symmetric equilibria can be created in system (2). Namely, if $C \neq B$, then system (2) has a pair of equilibria $\rho^{2}=\frac{A}{B-C}$ with $\sin \phi \neq 0$ for μ running a small interval that lies near the point $\mu=$ $\frac{A \Psi_{1}}{C-B}$. One checks that the non-symmetric equilibria are a sink and a source if $B(B-C)>0$. They correspond to q-periodic sink and source for the Poincare map T.

Now we make the following
Proposition. Given an elliptic point with the multipliers $e^{ \pm i \psi}$, an arbitrarily small C^{r}-perturbation can be added such that it does not lead the map out of the class of reversible maps and makes the elliptic point resonant (i.e., $\psi=\frac{2 \pi p}{q}$) with any given real values of the coefficients A, B, and C in the normal form (1).

We do not prove this claim when $r=\omega$, i.e. it has to be considered as a conjecture in the analytic case. For small C^{∞}-perturbations the proof of the proposition is achieved as follows. When $\frac{\psi}{\pi}$ is irrational, the normal form for the Poincare map T times the rotation $R_{-\psi}$ coincides, up to flat terms, with the time- 1 shift by the
orbits of the equation $\dot{z}=i \Psi\left(z z^{*}\right) z$ for some real function Ψ where $\Psi(0)=0$. Therefore, by a C^{∞}-small perturbation of the original map one can make the map $R_{-\psi} \circ T$ coincide exactly with the time 1 shift by this flow in a sufficiently small neighborhood of $z=0$ (in the analytic case, $r=\omega$, this is, in general, impossible to do). Now, take a sufficiently large q such that $\frac{2 \pi p}{q}$ is close to ψ, change the equation $\dot{z}=i \Psi\left(z z^{*}\right) z$ to $\dot{z}=$ $i \Psi\left(z z^{*}\right) z+i A\left(z^{*}\right)^{q-1}+i B z^{q+1}+i C z\left(z^{*}\right)^{q}$ (in a sufficiently small neighbourhood of zero this perturbation is small in C^{q-2}), and change the value of ψ to $\frac{2 \pi p}{q}$.

Thus, there exist arbitrarily small perturbations of elliptic points which produce sinks and sources, and, at least in the C^{∞}-case, these perturbations do not need to be related to "unpredictable subtleties" of homoclinic tangles [7].

ACKNOWLEDGMENTS

The work was supported by the Russian Foundation for Basic Research (project nos. 11-01-00001, 13-01-00589, and 13-01-97028-povolzh'e (Gonchenko), by UK EPSRC, CAPES, CNPq, and Faperj (Lamb, Rios), and by the Leverhulme Trust grant no. RPG-279 and the RF FCP "Kadry" grant no. 14.B37.21.0862 (Turaev).

REFERENCES

1. M. B. Sevryuk, Reversible Systems, Lect. Notes Math. (Springer-Verlag, Berlin, 1986), Vol. 1211.
2. S. V. Gonchenko, D. V. Turaev, and L. P. Shil'nikov, Proc. Steklov Inst. Math. 216, 70-118 (1997).
3. S. V. Gonchenko, L. P. Shilnikov, and O. V. Stenkin, Proceedings of International Conference on Progress in Nonlinear Science (Nizhni Novgorod, 2002), Vol. 1, pp. 80-102.
4. S. E. Newhouse, Publ. Math. Inst. Hautes Etudes Sci. 50, 101-151 (1979).
5. L. P. Shil'nikov, Mat. Sb. 74 (116), 378-397 (1967).
6. S. V. Gonchenko, L. P. Shilnikov, and D. Turaev, Phys. D 62 (1-4), 1-14 (1993).
7. S. V. Gonchenko, D. V. Turaev, and L. P. Shil'nikov, J. Math. Sci. 105 (1), 1738-1778 (New York) (2001).
8. S. V. Gonchenko, L. P. Shilnikov, and D. Turaev, Nonlinearity 20, 241-275 (2007).
9. J. S. W. Lamb and O. V. Stenkin, Nonlinearity 17, 1217-1244 (2004).
10. A. Delshams, S. V. Gonchenko, V. S. Gonchenko, J. T. Lázaro, and O. Stenkin, Nonlinearity 26, 1-33 (2013).
11. S. E. Newhouse, Topology 13, 9-18 (1974).
12. E. Zehnder, Commun. Pure Appl. Math. 26, 131-182 (1973).
13. L. Mora and N. Romero, Ann. Fact. Sci. Toulouse 6, 711-725 (1997).
14. V. Gelfreich and D. Turaev, Regular Chaotic Dyn. 15 (2-3), 159-164 (2010).

[^0]: ${ }^{\pi}$ The article was translated by the authors.
 ${ }^{a}$ Institute for Applied Mathematics and Cybernetics, Nizhni Novgorod University, Nizhni Novgorod, Russia
 ${ }^{b}$ Mathematics Department, Imperial College, London
 ${ }^{c}$ Instituto de Matenmática e Estatistica, Universidade Federal Fluminense
 e-mail: *gonchenko@pochta.ru;
 **jeroen.lamb@imperial.ac.uk;
 d.turaev@imperial.ac.uk; *rios@mat.uff.br

[^1]: ${ }^{1}$ The restriction of the map on a basic set is topologically conjugate to a finite Markov chain. Main examples are given by the Smale horseshoe, the Shilnikov hyperbolic set in a neighbourhood of a transverse homoclinic [5], etc.

[^2]: ${ }^{2}$ Quadratic and cubic tangencies $(k=2,3)$ appear in generic oneparameter families of systems from $\mathcal{N}_{\text {rev }}$.

[^3]: ${ }^{3}$ This type of the Newhouse phenomenon was later called mixed dynamics [3]. It is characterized by the coexistence of infinitely many periodic orbits of all possible structurally-stable topological types, and by their inseparability from each other (the closures of the sets of the periodic orbits of different topological types have a non-empty intersection).
 ${ }^{4}$ In the analytic case we were unable to prove that every KAMcurve is a limit of elliptic points. In the C^{∞}-case this claim is easily proved by reducing the map to an integrable normal form, similar to that discussed below.

