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Let M be a two�dimensional manifold. Let g: M →
M be an involution, so g ° g = id. A map f : M → M is
called reversible if it is conjugate by the involution g to
its own inverse, i.e. f–1 = g ° f ° g.

Let  denote the set of the reversible maps,

endowed with the C r�topology, r = 1, 2, …, ∞, ω. In
the analytic case, r = ω, we choose, first, some fixed

complex neighbourhood Q of M, and  =  is
then the space of reversible maps which are real on M
and analytic on Q, with the topology of uniform con�
vergence on compacta in Q. We also assume that the

involution g itself is Cr�smooth or, in the case of ,
real analytic.

A subset of � is called residual if it is an intersec�
tion of a countable sequence of open and dense sets; a
property is called generic if it holds for maps which
comprise a residual set.

An orbit of a reversible map f is called symmetric if
it is invariant with respect to g; namely, g(x0) = f j(x0)
for some j (then gf(x0) = f j – 1(x0), g f 2(x0) = f j – 2(x0),
…). It is easy to see that for a symmetric periodic orbit
at least one of its points is either a fixed point of the
involution g, or a fixed point of f ° g. Such point will be
called a symmetric periodic point.

Dynamics in a small neighbourhood of a non�sym�
metric periodic orbit can be arbitrary. However, the
image gL of such orbit by the involution g is also a peri�
odic orbit, and if L has multipliers λ and γ, then the
multipliers of gL will be λ–1 and γ–1. Therefore, in
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reversible maps, asymptotically stable periodic orbits
(sinks) and completely unstable ones (sources) always
exist in pairs.

For a symmetric periodic orbit, if λ is a multiplier,
then λ–1 is also a multiplier. Therefore, elliptic sym�
metric periodic orbits (i.e., those with multipliers e±iψ

where ψ ≠ 0, π) persist at C1�small perturbations within
the space of reversible maps. It is well�known that the
dynamics near a generic elliptic orbit of a reversible
map appears pretty much conservative. Namely, every
point of such orbit is surrounded by invariant KAM�
curves. Moreover, the KAM�curves occupy most of
the neighbourhood of the elliptic point [1].

However, between the KAM�curves there exist res�
onant zones. We show here that the generic dynamics
in the resonant zones is not conservative and has a
mixed nature (in the sense of [2, 3]). Namely, our main
result is the following

Theorem 1. In the space , r = 1, 2, …, ∞, ω, there
is a residual subset �* such that for every f ∈ �* every
point of each symmetric elliptic periodic orbit is a limit of
periodic sinks, sources, saddles, and other elliptic points.

Let Λ be a non�trivial, transitive, zero�dimen�
sional, compact, locally�maximal uniformly�hyper�
bolic set. Following [4], we simply call such sets basic.1

A basic set Λ is called a wild hyperbolic set if its stable
and unstable manifolds W s(Λ) and W u(Λ) have a non�
degenerate tangency and if this property persists at all
perturbations sufficiently small in C2. According to
[4], if a C r�map (r = 2, 3, …, ω) has a basic set Λ such
that Ws(Λ) and Wu(Λ) have a tangency, then an arbi�
trarily small Cr�neighborhood of this map intersects a
C2�open set � (the Newhouse region) such that for
every map from � the hyperbolic set Λ is wild. A basic
set Λ of a reversible map is called symmetric if gΛ = Λ.

Lemma 1. Let f be a reversible map with a symmetric
wild hyperbolic set Λ. Let � be the corresponding New�
house region, and let �rev be a neighbourhood of f in the

1 The restriction of the map on a basic set is topologically conju�
gate to a finite Markov chain. Main examples are given by the
Smale horseshoe, the Shilnikov hyperbolic set in a neighbour�
hood of a transverse homoclinic [5], etc.
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space of reversible maps. Then, for any map from �rev =
� ∩ �rev the manifolds W s(Λ) and Wu(Λ) have a pair of
non�symmetric quadratic tangencies. Moreover, in �rev,
for each k ≥ 2 there exists a dense subset �sym, k such that
every map from �sym, k has a symmetric orbit at the
points of which Ws(Λ) and Wu(Λ) have a tangency of the
order k.2

The proof is based on the fact that near non�sym�
metric orbits of tangency of the stable and unstable
manifolds the dynamic behaviour of a reversible map
does not differ from that for the general case, therefore
the original Newhouse arguments [4] are applicable.
The part concerning symmetric orbits is proven by
showing, using the methods of [6–8], that the sym�
metric tangencies (of any order) can be obtained by a
perturbation of a pair of non�symmetric ones.

Since periodic orbits are dense in Λ and their stable
and unstable manifolds are dense, respectively, in
Ws(Λ) and Wu(Λ), we derive the following result from
Lemma 1.

Lemma 2. In �rev, reversible maps which possess the
following properties are dense:

1. The set Λ contains a pair of saddle periodic orbits
P1 and P2 such that P2 = gP1, and Wu(P1) has a trans�
verse intersection with Ws(P2) while Wu(P2) has a qua�
dratic tangency with Ws(P1) at the points of symmetric
heteroclinic orbits Γ12 and, respectively, Γ21.

2. The set Λ contains a pair of symmetric periodic
orbits Q1 and Q2 such that the manifold Wu(Q1) has a
quadratic tangency with Ws(Q2) while Wu(Q2) has a
quadratic tangency with Ws(Q1) at the points of hetero�
clinic orbits Γ12 and, respectively, Γ21, where Γ21 = gΓ12.

Since the orbit P1 is not symmetric, the Jacobian
J(P1) of the Poincare map for this orbit does not need
to be equal to ±1, and in any case one can always apply
an arbitrarily small perturbation and make |J(P1)| ≠ 1.
Then, due to the reversibility, J(P2) = J(P1)

–1 ≠ ±1. It
was shown in [9] that under this condition arbitrarily
small (and not leading out of the class of reversible
maps) perturbations of the heteroclinic cycle
described in item 1 of Lemma 2 lead to the birth of
non�symmetric periodic sinks and sources along with
symmetric elliptic periodic orbits (see also [2]). By
[10], the same conclusion holds for perturbations of
the heteroclinic cycle from item 2 of Lemma 2
(eventhough the bifurcation scenario is different here
as |J(Q1)| = |J(Q2)| ≡ 1 for all small perturbations within
the class of reversible maps). Using these results, we
infer the following theorem from Lemma 2.

Theorem 2. In the Newhouse domain �rev a residual
subset � is comprised by reversible maps each having
infinitely many sinks, sources and symmetric elliptic
points. Moreover, within � there is a residual subset �*
which is comprised by the maps such that for each of
them the closure of sinks, the closure of sources and the

2 Quadratic and cubic tangencies (k = 2, 3) appear in generic one�
parameter families of systems from �rev.

closure of elliptic points have a non�empty intersection
that contains the wild set Λ.

Theorem 2 is, in a sense, analogous to Newhouse
theorem [11] on the existence of open regions (in the
space of dissipative systems) where systems with infi�
nitely many periodic sinks are generic. This result was
generalized to the non�dissipative case in [2]: in the
space of two�dimensional maps that have periodic
saddles with Jacobians both greater and less that 1
there exist Newhouse regions where a generic map has
infinitely many sinks and sources.3

It is well known that the dynamics in resonant
zones near elliptic periodic points is typically chaotic.
In the conservative case the existence of transverse and
non�transverse homoclinic orbits near elliptic points
was shown in [12–14]. In the reversible case an analo�
gous statement holds true.

Theorem 3. For a generic map from  (r = 2, 3, …,
ω) each symmetric elliptic periodic orbit is a limit of sym�
metric wild�hyperbolic sets.

Obviously, Theorem 3 implies Theorem 1 by virtue
of Theorem 2.

In fact, Theorem 1 implies another instance of
coexistence of conservative and dissipative dynamics,
as given by Theorem 4 below. Let C be a closed invari�
ant curve of a reversible C r�map f (r = 4, 5, …, ∞, ω).
In analogy with the conservative case we will call the
invariant curve C a KAM�curve if the following condi�
tions hold: (1) gC = C (i.e., C is a symmetric invariant
curve); (2) there exist C4�coordinates (ρ, θ) near C
(where θ is an angular variable and ρ runs a small
interval around zero) such that C is given by the equa�

tion ρ = 0, and the map f takes the form  = q(ρ, θ),

= θ + ψ(ρ, θ), where q, ψ are functions, 1�periodic
in θ, such that q(0, θ) ≡ 0 and ψ(ρ, θ) = ψ0 + ψ1ρ +
O(ρ2), where ψ0 and ψ1 are some constants; (3) the
twist condition is satisfied: ψ1 ≠ 0; (4) the rotation
number ψ0 is Diophantine: |kψ0 + p| ≥ K|k|–α for all
integer k ≠ 0 and p, and for some fixed K > 0 and α > 0.

Theorem 4. In the space  there is a residual subset
�** such that for every f ∈ �** every point of each
KAM�curve is a limit of sinks and sources.4

In the final part of this letter we describe one more
mechanism of the destruction of conservativity near
elliptic points, which is not related to homoclinic tan�
gencies. As we show, a degenerate resonant elliptic

3 This type of the Newhouse phenomenon was later called mixed
dynamics [3]. It is characterized by the coexistence of infinitely
many periodic orbits of all possible structurally�stable topologi�
cal types, and by their inseparability from each other (the clo�
sures of the sets of the periodic orbits of different topological
types have a non�empty intersection).

4 In the analytic case we were unable to prove that every KAM�
curve is a limit of elliptic points. In the C∞�case this claim is eas�
ily proved by reducing the map to an integrable normal form,
similar to that discussed below.
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point can itself undergo a symmetry�breaking bifurca�
tion that produces a sink and a source. Let us have a
symmetric elliptic periodic orbit with the multipliers

e±iψ where ψ =  + μ, where μ is a small parameter.

Then for all small μ the Poincare map T near this orbit
can be brought to the normal form: T = R2πp/q ° F +

o(ρq + 1) where F is the time�1 map of the flow defined by

(1)

where z = ρeiϕ, z* = ρe–iϕ. Note that the reversibility
requires the coefficients A, B, C, and Ψj in (1) to be real.
Importantly, for conservative maps the coefficients B
and C must be zero. However, they can take arbitrary
real values in the case of reversible systems if we do not
a priori require the conservativity. We rewrite (1) as

(2)

where φ = qϕ. Assume Ψ1 ≠ 0. If A ≠ 0, then the behav�
ior of system (2) at small ρ is essentially conservative:
there are only two equilibrium states at μΨ1 < 0 and
they both are symmetric (i.e., sinφ = 0), so one is a
saddle and one is a center. However, if A = 0, then by
changing μ and A non�symmetric equilibria can be
created in system (2). Namely, if C ≠ B, then system (2)

has a pair of equilibria ρ2 =  with sinφ ≠ 0 for

μ running a small interval that lies near the point μ =

. One checks that the non�symmetric equilibria

are a sink and a source if B(B – C) > 0. They corre�
spond to q�periodic sink and source for the Poincare
map T.

Now we make the following
Proposition. Given an elliptic point with the multipli�

ers e±iψ, an arbitrarily small Cr�perturbation can be
added such that it does not lead the map out of the class
of reversible maps and makes the elliptic point resonant

i.e., ψ =  with any given real values of the coeffi�

cients A, B, and C in the normal form (1).
We do not prove this claim when r = ω, i.e. it has to

be considered as a conjecture in the analytic case. For
small C∞�perturbations the proof of the proposition is

achieved as follows. When  is irrational, the normal

form for the Poincare map T times the rotation R–ψ

coincides, up to flat terms, with the time�1 shift by the

2πp
q

�������
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orbits of the equation  = iΨ(zz*)z for some real func�
tion Ψ where Ψ(0) = 0. Therefore, by a C∞�small per�
turbation of the original map one can make the map
R–ψ ° T coincide exactly with the time 1 shift by this

flow in a sufficiently small neighborhood of z = 0 (in
the analytic case, r = ω, this is, in general, impossible

to do). Now, take a sufficiently large q such that 

is close to ψ, change the equation  = iΨ(zz*)z to  =
iΨ(zz*)z + iA(z*)q – 1 + iBzq + 1 + iCz(z*)q (in a suffi�
ciently small neighbourhood of zero this perturbation

is small in Cq – 2), and change the value of ψ to .

Thus, there exist arbitrarily small perturbations of
elliptic points which produce sinks and sources, and,
at least in the C∞�case, these perturbations do not need
to be related to “unpredictable subtleties” of
homoclinic tangles [7].
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