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Abstract-Recent results describing nontrivial dynamical phenomena in systems with homoclinic 
tangencies are represented. Such systems cover a large variety of dynamical models known from 
natural applications and it is established that so-called quasiattractors of these systems may exhibit 
rather nontrivial features which are in a sharp distinction, with that one could expect in analogy 
with hyperbolic or Lorenz-like attractors. For instance, the impossibility of giving a finite-parameter 
complete description of dynamics and bifurcations of the quasiattractors is shown. Besides, it is shown 
that the quasiattractors may simultaneously contain saddle periodic orbits with different numbers of 
positive Lyapunov exponents. If the dimension of a phase space is not too low (greater than four for 
flows and greater than three for maps), it is shown that such a quasiattractor may contain infinitely 
many coexisting strange attractors. 
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1. INTRODUCTION 

The discovery of dynamical chaos is one of the main achievements in the modern science. At the 
aftermath, various phenomena in natural sciences and engineering have obtained an adequate 
mathematical description within the framework of differential equations. From the mathematical 
point of view, dynamical chaos is commonly associated with the notion of a strange attractor-all 
attractive limit set with the complicated structure of orbit behavior. 

By now, there does not exist a commonly accepted definition for a strange attractor describing 
dynamical chaos in real systems. Frequently, a strange attractor is regarded as a nontrivial 
attractive set which is composed by unstable orbits and which is transitive. There exist two types 
of attractors which correspond completely to this definition: these are hyperbolic attractors and 
Lorenz attractors (the latters are also called quasihyperbolic attractors). Hyperbolic attractors 
are structurally stable (they satisfy to Smale’s “axiom A”). Lorenz attractors are structurahy 
unstable and, moreover, they compose open sets in the space of dynamical systems. The structural 
instability of Lorenz attractors is connected with the fact that such an attractor contains a saddle 
equilibrium state together with its unstable separatrices which can form homoclinic loops of 
different types when parameters vary. Nevertheless, the property of transitivity and the property 
of instability of individual orbits are preserved by perturbations, and Lorenz attractors are similar 
to hyperbolic attractors with this point of view. 

The “transitivity” and “instability” properties give a possibility of rigorous description of dy- 
namical chaos in hyperbolic and quasihyperbolic systems by tools of the ergodic theory. Therefore, 
such attractors were called stochastic attractors. 
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However, it is necessary to remark that there are no examples (known to the authors) of 
dynamical models from applications where nontrivial hyperbolic attractors are found; and to the 
present time, the study of such attractors is the subject of the pure mathematics rather than 
of the nonlinear dynamics. Quasihyperbolic attractors do occur in applications but in a limited 
class of problems. 

At the same time, for most of known dynamical systems of natural origination that demon- 
strate chaotic behaviour nontrivial attractive sets have quite different nature. We mention, for 
instance, spiral attractors [l-3] associated with a homoclinic loop to a saddle-focus [4,5]; at- 
tractors that arise through breakdown of an invariant torus [6--g]; screw-like attractors in the 
Chua circuit [lO,ll]; attractors in the H&on map [12-141; attractors forming through the period- 
doubling cascade in strongly dissipative maps; attractors in the Lorenz model 

zi = a(y - x), e=rx-y-xz, .i=-bz+xy, 

at large values of T (for instance, at c = 10, b = 8/3, T > 31) [15-171; attractors in periodically 

forced self-oscillatory systems with one degree of freedom [18-211, etc. 
Strange attractors of such systems are well known to contain not only nontrivial hyperbolic sets 

but also attractive periodic orbits, and thereby, not being stochastic rigorously speaking. Due to 
this reason, we will adhere to the definition given in [6,22]: a strange attractor (a qumiattructor 
in terms of [6,22]) is an attractive limit set which contains nontrivial hyperbolic subsets and which 
may contain attractive periodic orbits of extremely long periods. Since neither the transitivity 
property nor the property of individual instability of orbits may not be fulfilled in this case1 we 
will use the term a quasistochastic attractor. 

We notice that the principal reason of distinguishing the class of quasistochastic attractors is 
that, in contrast with the genuine stochastic attractors, for them there is no rigorous mathematical 
base for the main notions by using of which chaotic dynamics is analyzed: Lyapunov exponents, 
entropy, decay of correlations, sensitive dependence on initial data, etc. Thus, for a large variety 
of dynamical systems of natural origination, the question of the nature of chaos remains open so 
far. 

The following speculation indicates possible direction for the study of this question. Note 
that if a system has an attractor which is structurally stable, then according to conventional 
hypothesis (the structural stability theorem [23,24]), the attractor is hyperbolic: either trivial 
(i.e., a stable periodic orbit) or nontrivial. As we mentioned, no one has ever seen nontrivial 
hyperbolic attractors in natural applications. It follows that if any attractor could be made 
structurally stable by a small perturbation of the system, then in principle, the study of chaotic 
dynamics in real systems would be reduced to the study of stable periodic regimes, but t:his would 
be quite strange. 

An alternative is to try to find nontrivial attractors for systems which lie in the open regions 
of structural instability in the space of dynamical systems. At the present time two types of 
such regions are known. The regions of the first type are filled by the systems with Lorenz 
(quasihyperbolic) attractors. The second are the so-called Newhouse regions with the study of 
which the present paper deals. 

The scope of this paper is to represent recent results of the authors which show that quasi- 
attractors of systems in the Newhouse regions may exhibit rather nontrivial features which are 
in a sharp distinction with that one could expect in analogy with stochastic attractors. Thus, 
we show that the quasistochastic attractors may contain structurally unstable and, moreover, 
infinitely degenerate periodic orbits are what makes the complete description of dynamics and 
bifurcations of such attractors impossible in any finite-parameter family. 

We also establish that the quasistochastic attractors, in contrast with hyperbolic ones, may 
not possess the property of self-similarity, Namely, there may exist infinitely many time scales on 

‘Even if these properties may hold, they are not preserved under small perturbations. 
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which behavior of the system is qualitatively different. Besides, we show that the quasiattractors 
may simultaneously contain saddle periodic orbits with different topological indices or, what is 
the same, with different numbers of positive Lyapunov exponents. The last is also impossible for 
hyperbolic attractors. 

Different quasistochastic attractors possess rather different properties (such as “the form” of 
attractor, the form of power spectrum, fractal dimension, etc.) Nevertheless, it seems to us that 
the most important property common for them is the presence of structurally unstable Poincartl 
homoclinic orbit either in the system itself or in a nearby system. 

Recall that a Poincare homoclinic orbit is an orbit of intersection of the stable and unstable 
manifolds of a saddle periodic orbit. A homoclinic orbit is called structurally stable if the in- 
tersection is transverse, and it is called structurally unstable (or a homoclinic tangency) if the 
invariant manifolds are tangent along it (Figure 1). 

Figure 1. The saddle fixed point 0 whose the stable Ws and the unstable W” 
manifolds have a quadratic tangency at the points of a homoclinic orbit I+ (bold 
points in the figure). 

As it is well known [25,26], in any neighborhood of a structurally stable Poincare homoclinic or- 
bit there exist nontrivial hyperbolic sets containing a countable number of saddle periodic orbits, 
continuum of nonperiodic Poisson stable orbits, etc. Thus, the presence of a structurally stable 
Poincare homoclinic orbit can be considered as the universal criterium of complex dynamics. 

Bifurcations of systems with homoclinic tangencies were studied in a series of papers beginnin.g 
with [27,28]. An important result was established by Newhouse [29], that in the space of dy- 
namical systems there exist regions (Newhowe regions) where systems with structurally unstable 
Poincare homoclinic orbits are dense. Moreover, as it was found in [29-311, Newhouse regions 
exist in any neighbourhood of any system with homoclinic tangency. Namely, the following resu1.t 
is valid. 

THEOREM 1. Let fe be a general2 finite parameter family of dynamicai systems which has a 
saddle periodic orbit L,. Suppose that at E = 0 there exists a structurally unstable homoclimic 
orbit l? of the orbit LO. Then, values of E for which L, has an orbit of quadratic homoclinic 
tangency axe dense in some open regions Ai of the parameter space, accumulating at E = 0. 

The one-parameter version of this theorem was established by Newhouse in [29], for the case of 
two-dimensional diffeomorphisms and it was extended onto the general multidimensional case bly 
us in [30] (the case with an arbitrary number of parameters follows immediately from [29,30]). The 

2The exact conditions of general position have been formulated in [30]. In particular, it is required of fo that for 
the tangency to be quadratic, the orbit I’0 not lie in the strong stable and strong unstable submanifolds Wad and 
Wuu, etc. 
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multidimensional case was also considered partly in [31]. This theorem shows that although any 
given homoclinic tangency can be removed by a small perturbation of the system, the presence 
of homoclinic tangencies is, nevertheless, a persistent phenomenon. 

In our opinion, the presence of structurally unstable Poincare homoclinic orbits either in the 
system itself or in a nearby system is one of the main peculiarities of quasistochastic systems. 
As we cm judge, the presence of homoclinic tangencies for some values of parameters was either 
theoretically proved or found by computer simulations in all dynamical models with quasiattrac- 
tors (see the list above) for which the problem of finding such parameter values was explicitly 
set. By Theorem 1, the closure of these parameter values contains open regions. Note that the 
size of these regions may be rather large in concrete examples (see, for instance, [14]), thiough the 
theoretical estimates for the size of the regions Ai that can be extracted from the known proof 
of Theorem 1 give us extremely small values. 

We will call as the Nevrhovse regions, such regions in the space of dynamical systems (or in 
the parameter space while speaking on a finite-parameter family) where systems with homoclinic 
tangencies are dense. In the case where bifurcations of some system having a saddle periodic orbit 
with a homoclinic tangency are considered, we reserve the term “Newhouse regions” specifically 
for those in a small neighborhood of the initial system, where systems are dense which have 
homoclinic tangencies of the given periodic orbit. 

As we see, the problem of studying dynamical phenomena in the Newhouse regions is an 
important part of the global problem of studying the nature of chaos in real dynamics models. 
Besides, this problem is of its own interest from the point of view of the qualitative th.eory and 
the theory of bifurcations of dynamical systems. 

In the present paper, we describe dynamical phenomena in the Newhouse regions for both the 
two-dimensional and the multidimensional cases. In Sections 2 and 3, we discuss main results 
(Theorems 2-10). In Section 4, we collect geometrical constructions which determine dynamics 
near homoclinic tangencies. We restrict ourself by the case of diffeomorphisms: the case of flows 
can be similarly considered by means of the Poincare map. 

2. MAIN RESULTS: THE TWO-DIMENSIONAL CASE 

Before studying the general multidimensional case, we consider the case of two-dimensional 
maps. Let f be a two-dimensional diffeomorphism having a saddle fixed point 0 with multipliers X 
and 7, where IX] < 1, ]y] > 1. Let Ws and W” be, respectively, the stable and unstable manifolds 
of 0. Suppose they have a quadratic tangency at the points of some homoclinic orbit P (Figure 1). 

According to the traditional approach going back to Andronov, to study the bifurcations of 
a given system is to embed it in an appropriate finite-parameter family, then to divide the 
parameter space into the regions of structural stability, to determine the bifurcation set, and to 
split the bifurcation set into connected components corresponding to identical phase portraits (in 
the sense of topological equivalence). Accordingly, a good model must possess a sufficient number 
of parameters allowing one to analyze bifurcations of each periodic, homoclinic, heteroclinic orbit 
occurred. 

In a general finite-parameter family containing f, the splitting parameter p must clearly be one 
of the main parameters. We define the splitting parameter as follows. Take a point of homoclinic 
tangency on Ws (the point M + in Figures 2 and 3). The manifold W” has a parabola-like shape 
near this point for all maps close to f. We denote as p the distance between W3 and th.e bottom 
of the parabola. The sign of p is chosen such that f,, has no homoclinic orbits at p :a 0 which 
are close to P, and there are two structurally stable such orbits at p < 0 (Figure 2). 

As we noticed, values of p for which the map f,, has “secondary” homoclinic tangencies accu- 
mulates at /.J = 0. Indeed, take a pair of points belonging to P and lying near 0 : M+ E Wi, 
and M- E W& (see Figure 3). Take ,U a bit smaller than zero. Take a piece C of the part of the 
unstable manifold that lies near M+ and begin to iterate it. After some number of iterations (the 
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Figure 2. The splitting parameter p is chosen such that WU has a tangency with W3 
at a homoclinic point M+ at p = 0, there is no homoclinic intersection near M+ at 
~1 > 0 and there are two points of intersection at p < 0. 

a seccfndary homoclinic 
tangency 

Figure 3. The figure shows how a secondary homoclinic tangency of the manifolds Ws 
and W” may be obtained. Take a pair of points which belong to r and lie near 
0 : M+ E WC, and M- E W&. Take p a bit smaller than zero. Take a piece C 
of the part of W” that lies near M+ and begin to iterate it. After some number 
of iterations (the closer C is to WP,,, the larger the number), it may approach a 
small neighborhood of M-. Since, at p = 0, the point M- goes at M+ by some 
finite degree of f, it follows that a small neighborhood of M- is mapped into a small 
neighborhood of M+ by the same degree of fp at all small /.L Thus, completing one 
round along the initial orbit of homoclinic tangency, the curve C may return to a 
neighborhood of M+. While doing that, the curve C is expanded and folded, thereby 
forming a “parabola” f!(C) which may clearly have a tangency with WC, at some 
point near M+, if fi and C are appropriately chosen. 

closer C is to the stable manifold, the larger the number), it may approach a small neighborhoold 
of M-. Since, at ,LL = 0, the point M- goes at M+ by some finite degree of f, it follows that 
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of ffi at all small p. Thus, the curve C may return to a neighborhood of M+ for some number Ic 
of iterations of fiL (we will speak that C makes a single round along I?). While doing that, the 
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finite degree of f, it follows that a small neighborhood of M- is mapped into a small 
neighborhood of M+ by the same degree of II' at all small p,. Thus, completing one 
round along the initial orbit of homoclinic tangency, the curve C may return to a 
neighborhood of M+. While doing that, the curve C is expanded and folded, thereby 
forming a "parabola" f!(C) which may clearly have a tangency with Wl~c at some 
point near M+, if p, and C are appropriately chosen. 
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closer C is to the stable manifold, the larger the number), it may approach a small neighborhood 
of M-. Since, at J.L = 0, the point M- goes at M+ by some finite degree of f, it follows that 
a small neighborhood of M- is mapped into a small neighborhood of M+ by the same degree 
of f,." at all small J.L. Thus, the curve C may return to a neighborhood of M+ for some number k 
of iterations of f", (we will speak that C makes a single round along r). While doing that, the 
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c the cu ic tangency 
Figure 4. Take p a bit greater than in Figure 2. Then, after one more round along 
the initial homoclinic orbit, the image of C takes a distorted form which allows one 
to obtain a cubic tangency of Ws and W”. 

curve C is expanded and folded, thereby forming “parabola” f,(C). Fitting 1-1 and C, one can 
clearly obtain a secondary homoclinic tangency. 

Making more rounds, other homoclinic tangencies can be obtained with an appropriate variation 
of p. According to Theorem 1, values of p corresponding to the multi-round homoclinic ixmgencies 
fill densely intervals accumulating at p = 0. 

We note also, that a small perturbation of f may imply cubic homoclinic tangencies. Figure 4 
shows how it can be achieved. Consider a system with the secondary homoclinic tangency (Fig- 
ure 3). We take the parabola f,k(C) and change p a little bit, so that the parabola lies above 
Ws. By some number k’ of iterations, the parabola carries out one more round along I?. The 
curve f k+k’(C) is a “distorted parabola” (Figure 4) which can be made cubically tangent to W” 
by a small perturbation (for this, two control parameters are necessary). 

Increasing the number of rounds along I, homoclinic tangencies of higher and higher orders can 
be obtained in a neighborhood of the initial quadratic tangency. Since systems with quadratic 
tangencies are dense in the Newhouse regions, we arrive at the following result. 

THEOREM 2. (See [32,33].) Systems with homociinic tangencies of any order (definite or indefi- 
nite) are dense in the Newhouse regions. 

Recall the definition of the order of tangency of two Cr-smooth curves yr and ys on a plane. 
Let the curve yr be given by the equation y = 0 and “yz be given by the equation y = q(s), 
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the Cll ic tangency 
Figure 4. Take jJ. a bit greater than in Figure 2. Then, after one more round along 
the initial homoclinic orbit, the image of C takes a distorted form which allows one 
to obtain a cubic tangency of W' and W". 

curve C is expanded and folded, thereby forming "parabola" f!(C). Fitting J..L and C, one can 
clearly obtain a secondary homo clinic tangency. 

Making more rounds, other homoclinic tangencies can be obtained with an appropriate variation 
of J..L. According to Theorem 1, values of J..L corresponding to the multi~round homo clinic tangencies 
fill densely intervals accumulating at J..L O. 

We note also, that a small perturbation of f may imply cubic homoclinic tangencies. Figure 4 
shows how it can be achieved. Consider a system with the secondary homo clinic tangency (Fig­
ure 3). We take the parabola f!(C) and change J..L a little bit, so that the parabola lies above 
W S

• By some number k' of iterations, the parabola carries out one more round along r. The 
curve f!+k' (C) is a "distorted parabola" (Figure 4) which can be made cubically tangent to WB 

by a small perturbation (for this, two control parameters are necessary). 
Increasing the number of rounds along r, homoclinic tangencies of higher and higher orders can 

be obtained in a neighborhood of the initial quadratic tangency. Since systems with quadratiC 
tangencies are dense in the Newhouse regions, we arrive at the following result. 

THEOREM 2. (See [32,33}.) Systems with homoc1inic tangencies of any order (definite or indefi­
nite) are dense in the Newhouse regions. 

Recall the definition of the order of tangency of two cr -smooth curves '/'1 and '/'2 on a plane. 
Let the curve '/'1 be given by the equation y = 0 and '/'2 be given by the equation 'Ii = cp(x), 
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~(0) = 0, in some C’-coordinates (z, y). If $$(O) = 0 at i = 1,. . . , s and B(O) # 0 for some 
s < T, then yi and 7/s have a tangency of order s (a quadratic tangency if s = 1, a cubic tangency 
ifs=2). Incase$$(O)=Oati=l , . . . , T, the curves yi and 72 have a tangency of indefinite 
order. 

If IV’ and W” have a tangency of order s, then at small perturbations, the equation of IV‘ in 
a neighborhood of the point of tangency may be well known and written in the form 

y = &i-J + El2 + . . . + Es-&-l + x8+l + o(z8+l). (2.1) 

The values ci are parameters which control the bifurcations of the intersections of IV” and IV9 
(the last has the form y = 0). We see that the bifurcation analysis requires at least an s-parameter 
family in this case. 

According to Theorem 2, one can obtain tangencies of arbitrarily high order by a small per- 
turbation of the initial map f with the orbit of homoclinic tangency of order 1. Therefore, we 
have to conclude that no finite number of control parameters is sufficient for the complete study 
of the bifurcations in a small neighborhood of a homoclinic tangency, independently of the order 
of it. 

The impossibility of giving the complete description of the bifurcations of systems with struc- 
turally unstable Poincare homoclinic orbits appears also as the presence of systems with arbi- 
trarily degenerate periodic orbits in the Newhouse regions. 

It is well known that if, for some C-smooth map, an orbit of period j has one multiplier equal 
to v = fl and all the other multipliers do not lie on the unit circle, then in the case Y = 1, the 

‘th restriction of the J degree of the map onto the center manifold can be written either in the form 

g = y + L,y8+1 + 0 (ys+l) 1 l<s<r-1, (2.2) 

where the coefficient L, that is not equal to zero is called sth Lyapunov value, or in the form 

g=y+o(yT). (2.3) 

In the case v = -1, the restriction of the ‘th 23 degree of the map onto the center manifold can be 
written either in the form 

g = y + L8yz8+l + 0 (y2=+‘) ) 3 2 2S+ 15 T, LB #o, (2.4) 

or, again in form (2.3). If one of formulas (2.2) or (2.4) holds (L, # 0), we speak that the periodic 
orbit has the degeneracy of order s, and in csse formula (2.3) holds, we speak about degeneracy 
of indefinite or infinite order. 

THEOREM 3. (See [32,33].) Systems with periodic orbits of any prescribed order (definite or 
indefinite) of degeneracy are dense in the Newhouse regions (both for the case v = 1 and for the 
case v = -1). 

This theorem is a corollary of Theorem 2. The main element of the proof is the construction 
of the first return map near a structurally unstable homoclinic orbit of an sth order of tangency 
(Figure 5). We begin with the initial case of quadratic tangency (s = 1). Take a small strip u 
in a neighborhood of the point M +. If the strip is chosen appropriately, it rounds once along I? 
and returns in the neighborhood of M+ for some number k of iterations of fp; the image f,“(a) 
has the horseshoe shape. We denote the restriction of the map fi onto u as Tk and call it the 
first return map. The strip o is small. Therefore, we rescale coordinates, as in [34], so that it 
obtains a finite size. In such resealed coordinates, the map Tk is written in the following form 
(see Lemma 1 in Section 4): 

z = y + 0 (pyl” + Ifk) , 

g = M - y2 + 0 (jAyI” + IY~-~), 

where M N ~7~“. 

(2.5) 
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<p(0) = 0, in some Cr-coordinates (x, y). If ~(O) = 0 at i = 1, ... , sand ::~~f(O) '10 for some 
8 < r, then 'Yl and 'Y2 have a tangency of order s (a quadratic tangency if s = 1, a cubic tangency 
if 8 = 2). In case ~(O) = 0 at i = 1, ... , r, the curves 'Yl and 'Y2 have a tangency of indefinite 
order. 

If W8 and WU have a tangency of order s, then at small perturbations, the equation of WU in 
a neighborhood of the point of tangency may be well known and written in the form 

(2.1) 

The values Ci are parameters which control the bifurcations of the intersections of WU and WS 
(the last has the form y = 0). We see that the bifurcation analysis requires at least an s-parameter 
family in this case. 

According to Theorem 2, one can obtain tangencies of arbitrarily high order by a small per­
turbation of the initial map f with the orbit of homoclinic tangency of order 1. Therefore, we 
have to conclude that no finite number of control parameters is sufficient for the complete study 
of the bifurcations in a small neighborhood of a homoclinic tangency, independently of the order 
of it. 

The impossibility of giving the complete description of the bifurcations of systems with struc­
turally unstable Poincare homoclinic orbits appears also as the presence of systems with arbi­
trarily degenerate periodic orbits in the Newhouse regions. 

It is well known that if, for some Cr -smooth map, an orbit of period j has one multiplier equal 
to v = ±1 and all the other multipliers do not lie on the unit circle, then in the case v = 1, the 
restriction of the lh degree of the map onto the center manifold can be written either in the form 

1:::; 8 :::; r -1, (2.2) 

where the coefficient L8 that is not equal to zero is called sth Lyapunov value, or in the form 

(2.3) 

In the case v = -1, the restriction of the 2lh degree of the map onto the center manifold can be 
written either in the form 

3 :::; 28 + 1 :::; r, L8 'I 0, (2.4) 

or, again in form (2.3). If one offormulas (2.2) or (2.4) holds (L8 '" 0), we speak that the periodic 
orbit has the degeneracy of order 8, and in case formula (2.3) holds, we speak about degeneracy 
of indefinite or infinite order. 

THEOREM 3. (See [32,33].) Systems witb periodic orbits of any prescribed order (definite or 
indefinite) of degeneracy are dense in tbe Newbouse regions (botb for tbe case v = 1 and for tbe 
case v = -1). 

This theorem is a corollary of Theorem 2. The main element of the proof is the construction 
of the first return map near a structurally unstable homo clinic orbit of an 8 th order of tangency 
(Figure 5). We begin with the initial case of quadratic tangency (8 == 1). Take a small strip cr 
in a neighborhood of the point M+. If the strip is chosen appropriately, it rounds once along r 
and returns in the neighborhood of M+ for some number k of iterations of f!J.; the image f!(cr) 
has the horseshoe shape. We denote the restriction of the map f! onto cr as Tk and call it the 
first return map. The strip cr is small. Therefore, we rescale coordinates, as in [34], so that it 
obtains a finite size. In such rescaled coordinates, the map Tk is written in the following form 
(see Lemma 1 in Section 4): 

x y + 0 (1'\'Yl k + bl-k
) , 

f} = M y2 + 0 (1'\'Yl k + hl-k
) , 

(2.5) 

where M '" f,L'Y2k. 
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(a) s = 1. (b) s = 2. 

Figure 5. The first return map for the cases oE (a) quadratic tangency; (b) cubic 
tangency. 

Let [Xyl < 1 (the case IXyl > 1 is reduced to the case IA+yl < 1 by transition from f to its 
inverse map). Then map (2.5) is close to the well-known one-dimensional parabola map 

&=M-y2, (2.6) 

for k large enough; the resealed splitting parameter M may be take arbitrary finite values (the 
larger k, the larger the interval of allowed values of M). 

In the case of sth order tangency, the resealed map T, is close to the one-dimensional map (see 
Lemma 2 in Section 4) 

g=Eo+E1y+ ' * * + E,-lys-' + ys+l + 0 (ys+l) ) (2.7) 

where Ee, El,. . . , ES-i are resealed parameters EO,EI,. . . ,es-i from (2.1) and they may take 
arbitrary finite values. Particularly, if Es = Ez = a.. = Es-1 = 0, El = fl, then map (2.7) 
has a fixed point with the multiplier fl and with the order of degeneracy which can be made 
arbitrarily high by increasing the value of s. Since Tk is close to map (2.7) it also has a highly 
degenerate fixed point for Eo, E2, . . . , Es-1 close to zero and El close to fl. 

Thus, by a small perturbation of a system with a homoclinic tangency of a large order, one can 
achieve a periodic orbit of a high order of degeneracy to arise. Since systems with homoclinic 
tangencies of any order are dense in the Newhouse regions (Theorem 2), it follows that systems 
with arbitrarily degenerate periodic orbits are also dense there. 

We see again that no finite number of control parameters is sufficient for the complete study of 
the Newhouse regions: now, for the study of the bifurcations of periodic orbits. In other words, 
from the point of view of the approach traditional to the bifurcation theory, any dynamical model 
(a finite-parameter family of dynamical systems) is, in terms of [32,33], bad in the Newhouse 
regions. Apparently, here it is necessary to give up the ideology of complete description and to 
restrict oneself to the calculation of some average quantities and to the study of certain general 
properties. 

In particular, such a general property is that in the Newhouse regions there exist nontrivial 
hyperbolic sets; i.e., there is always a countable number of saddle periodic orbits and structurally 
stable Poincare homoclinic orbits. 

Another important feature of systems in the Newhouse regions is the absence of complete 
self-similarity. Notice that the homoclinic orbits of high orders of tangency that we o’btained by 
perturbations of the map f make quite a large number of rounds along P (for instance, the cubic 
tangency can be formed after three rounds). It is clear that the higher the order of tangency, the 
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M+ 0 f'(0' 

(a) 8 == 1. (b) 8::: 2. 

Figure 5. The first return map for the cases of: (a) quadra.tic tangency; (b) cubic 
tangency. 

Let 1'>'')'1 < 1 (the case 1'>'')'1 > 1 is reduced to the case 1'>'')'1 < 1 by transition from f to its 
inverse map). Then map (2.5) is close to the well-known one-dimensional parabola map 

(2.6) 

for k large enough; the rescaled splitting parameter M may be take arbitrary finite values (the 
larger k, the larger the interval of allowed values of M). 

In the case of 8th order tangency, the rescaled map Tk is close to the one-dimensional map (see 
Lemma 2 in Section 4) 

(2.7) 

where Eo,E1, ... ,Es-l are rescaled parameters co,eb ... ,es-l from (2.1) and they may take 
arbitrary finite values. Particularly, if Eo = E2 = ... Es- 1 0, El = ±1, then map (2.7) 
has a fixed point with the multiplier ±1 and with the order of degeneracy which can be made 
arbitrarily high by increasing the value of s. Since Tk is close to map (2.7) it also has a highly 
degenerate fixed point for Eo, E2, . .. , Es- 1 close to zero and El close to ±l. 

Thus, by a small perturbation of a system with a homoclinic tangency of a large order, one can 
achieve a periodic orbit of a high order of degeneracy to arise. Since systems with homoclinic 
tangencies of any order are dense in the Newhouse regions (Theorem 2), it follows th;a.t systems 
with arbitrarily degenerate periodic orbits are also dense there. 

We see again that no finite number of control parameters is sufficient for the complete study of 
the Newhouse regions: now, for the study of the bifurcations of periodic orbits. In other words, 
from the point of view of the approach traditional to the bifurcation theory, any dynam.ical model 
(a finite-parameter family of dynamical systems) is, in terms of [32,33], bad in the Newhouse 
regions. Apparently, here it is necessary to give up the ideology of complete description and to 
restrict oneself to the calculation of some average quantities and to the study of certain general 
properties. 

In particular, such a general property is that in the Newhouse regions there exist nontrivial 
hyperbolic sets; i.e., there is always a countable number of saddle periodic orbits and structurally 
stable Poincare homoclinic orbits. 

Another important feature of systems in the Newhouse regions is the absence of complete 
self-similarity. Notice that the homoclinic orbits of high orders of tangency that we obtained by 
perturbations of the map f make quite a large number of rounds along r (for instance, the cubic 
tangency can be formed after three rounds). It is clear that the higher the order of tangency, the 
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more rounds is required to get it. Near the homoclinic tangencies of high orders there appear the 
maps described by formula (2.7). Since the first return map near such a tangency corr~pon&, 

at the same time, to many rounds along the initial homoclinic orbit I’, maps close to the map f 

exhibit dynamics which is described on large time scales by maps (2.7): the larger the number 
of rounds, the larger the value of s. The maps given by formula (2.7) are completely &f&rent 

for different values of s. Thus, systems belonging to the Newhouse regions may show completely 

different qualitative behavior on different time scales. Note that nothing similar happens in 
hyperbolic systems where the number of essential scales is always finite. 

One more important feature is the coexistence of orbits of different topological types. If we 
consider a structurally stable Poincare homoclinic orbit, then we see that all periodic orbits lying 
in a small neighborhood of it have a saddle-type [25,26]. On the contrary, near a structurally 
unstable homoclinic orbit there may well known exist both structurally unstable and attractive 
periodic orbits in addition to saddle ones. Namely, the following theorem is valid. 

THEOREM 4. (See 127,281.) Let the product of the multipliers of 0 be less than unity in absolute 
value: ]Xy] < 1. Then for a general one-parameter family fM there exists a sequence of intervals 
6i accumulating at p = 0, such that at p E &i the map fp possesses an attractive periodic orbit in 
a small neighborhood of F and, at p belonging to the boundary of &, the map has a structurally 
unstable periodic orbit. 

If ]Xy] > 1, then the analogous result is also valid: the map has here a repelling periodic orbit 
(a source) for p E 6i. Theorems 4 and 1 imply the following result. 

THEOREM 5. If ]Xr] < 1, then, for a general one-parameter family fP, in the Newhouse re- 
g-ions Ai, parameter values are dense for which the map, in addition to a countable number of 
saddle periodic orbits, also possesses a countable number of attractive3 periodic orbits. 

In its initial weaker formulation (not for intervals in one-parameter families but for regions in 
the space of dynamical systems) this theorem was proved in [35]. The proof of the one-parameter 
version can be obtained, for instance, in the following way. Let ]Xy] < 1 and ~0 E A,. By 
Theorem 1, arbitrarily close to 110 there exists ~1 E Ai such that 0 has a quadratic homoclinic 
tangency at ~1 = ,ui. By Theorem 4, near p = ~1 there exists a small interval di c Ai such 
that f,, has an attractive periodic orbit at p E di. Again, since dr C Ai there exists a value 
p2 E dl such that 0 has a quadratic tangency at p = ~2 and some new interval dz c dl such 
that f, has one more attractive periodic orbit at p E da. Repeating the arguments, we obtain, 
in arbitrary closeness of the given value ~0, the system of embedded intervals dr > dz > . . . such 
that fp has at least j attractive periodic orbits at p E dj. The intersection of all dj is nonempty. 
It contains at least one point p* and the map fp has a countable number of attractive periodic 
orbits at ,u = p*. 

Theorems 4 and 5 provide a theoretical basis for the fact that most presently known strange 
attractors contain attractive periodic orbits within. As a rule, the attractive periodic orbits 
in a quasiattractor have very long periods and narrow basins of attraction, and they are hard 
to observe in applied problems because of the presence of noise. However, in the space of the 
parameters of the model there can exist regions where individual, relatively short-period attractive 
periodic orbits can be seen; these regions are called windows of stability. 

3. MAIN RESULTS: THE MULTIDIMENSIONAL CASE 

Theorems 2 and 3 can be extended onto the general multidimensional case [36]. Thus, the 
conclusion on impossibility of a finite-parameter complete description is also valid for this case. 
However, the situation connected with the coexistence of periodic orbits of different topological 
types is considerably more complicated. Here, the windows of stability may contain narrow 

3Repelling if IA71 > 1. 
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more rounds is required to get it. Near the homo clinic tangencies of high orders there appear the 
maps described by formula (2.7). Since the first return map near such a tangency corresponds, 
at the same time, to many rounds along the initial homoclinic orbit r, maps close to the map 1 
exhibit dynamics which is described on large time scales by maps (2.7): the larger the number 
of rounds, the larger the value of s. The maps given by formula (2.7) are completely different 
for different values of s. Thus, systems belonging to the Newhouse regions may show completely 
different qualitative behavior on different time scales. Note that nothing similar happens in 
hyperbolic systems where the number of essential scales is always finite. 

One more important feature is the coexistence of orbits of different topological types. If we 
consider a structurally stable Poincare homoclinic orbit, then we see that all periodic orbits lying 
in a small neighborhood of it have a saddle-type [25,26]. On the contrary, near a structurally 
unstable homoclinic orbit there may well known exist both structurally unstable and attractive 
periodic orbits in addition to saddle ones. Namely, the following theorem is valid. 

THEOREM 4. (See [27,28]') Let the product of the multipliers of 0 be less than unity in absolute 
value: 1..\,1 < 1. Then for a general one-parameter family 1/1 there exists a sequence of intervals 
Di accumulating at J.t = 0, such that at J.t E Di the map IJ1. possesses an attractive periodic orbit in 
a small neighborhood ofr and, at J.t belonging to the boundary of Di, the map has a structurally 
unstable periodic orbit. 

If 1..\')'1 > 1, then the analogous result is also valid: the map has here a repelling periodic orbit 
(a source) for J.t E Di. Theorems 4 and 1 imply the following result. 

THEOREM 5. If 1..\,1 < 1, then, for a general one-parameter family IJ1.' in the Newhouse re­
gions D.i' parameter values are dense for which the map, in addition to a countable number of 
saddle periodic orbits, also possesses a countable number of attractive3 periodic orbits. 

In its initial weaker formulation (not for intervals in one-parameter families but for regions in 
the space of dynamical systems) this theorem was proved in [35]. The proof of the one-parameter 
version can be obtained, for instance, in the following way. Let 1..\')'1 < 1 and J.to E D.i. By 
Theorem 1, arbitrarily close to J.to there exists J.tl E D.i such that 0 has a quadratic homoclinic 
tangency at J.t = J.tl' By Theorem 4, near J.t = J.tl there exists a small interval d1 C D.i such 
that IJ1. has an attractive periodic orbit at J.t E d1. Again, since d1 C D.i there exists a value 
J.L2 E d1 such that 0 has a quadratic tangency at J.L = J.t2 and some new interval d2 C d1 such 
that IJ1. has one more attractive periodic orbit at J.L E d2. Repeating the arguments, we obtain, 
in arbitrary closeness of the given value J.Lo, the system of embedded intervals d1 :) d2 :) ••• such 
that IJ1. has at least j attractive periodic orbits at J.L E dj • The intersection of all dj is nonempty. 
It contains at least one point J.t* and the map fJ1. has a countable number of attractive periodic 
orbits at J.L = J.t* • 

Theorems 4 and 5 provide a theoretical basis for the fact that most presently known strange 
attractors contain attractive periodic orbits within. As a rule, the attractive periodic orbits 
in a quasiattractor have very long periods and narrow basins of attraction, and they are hard 
to observe in applied problems because of the presence of noise. However, in the space of the 
parameters of the model there can exist regions where individual, relatively short-period attractive 
periodic orbits can be seen; these regions are called windows of stability. 

3. MAIN RESULTS: THE MULTIDIMENSIONAL CASE 

Theorems 2 and 3 can be extended onto the general multidimensional case [36]. Thus, the 
conclusion on impossibility of a finite-parameter complete description is also valid for this case. 
However, the situation connected with the coexistence of periodic orbits of different topological 
types is considerably more complicated. Here, the windows of stability may contain narrow 

3Repelling if IA11 > 1. 
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invariant tori and even chaotic attractors. Moreover, not only saddle and attractive (or saddle and 
repelling) periodic orbits may exist simultaneously, but saddle periodic orbits with the different 
numbers of positive Lyapunov exponents may also coexist. These statements are based on the 
results represented below. 

Let f be a multidimensional diffeomorphism with a structurally unstable homoclinic orbit r 
of some saddle fixed point 0. We are interested in the structure of the set N of all orbits which 
lie entirely in a small neighborhood U of the set 0 U I’. 

Suppose the map satisfies some conditions of general position [36] (the tangency is quadratic, 
l? does not lie in W8* and W”“, etc.). Let Xi,. . . , Am, 71,. . . ,3;1 be the rnultipliers of 0, (+yn] 1 
**- 2 lyll > 1 > 1x11 > *** 2 IX,]. We use the notation X = 1x11, y = In]. The multipliers Xi,yj 
nearest to the unit circle (i.e., those for which ]Xi] = X, ]-yj] = y) we call Eeading and the rest we 
call nonleading. The coordinates in a neighborhood of 0 that correspond to the characteristic 
directions of these multipliers we call, respectively, leading and nonleading. 

We assume that the leading multipliers are simple. We designate the number of leading stable 
multipliers by p, and the number of leading unstable multipliers by p,. Accordingly, we assign 
the type (pS,pu) to the system. The four following cases are possible here: 

(1,l). AI and yi are real and X > I&], y < ]TZ], 
(2,l). Xi = X.2 = XeiV, yi is real and X > I&], y < ]TZ], 
(I,2). Xi is real, 72 = 72 = yei+, and X > IX,], y < ]~a], 
(2,2). XI = X2 = Xe@, YI = 72 = yezG, and X > I&l, Y < Irsl. 

The following reduction theorem shows that orbit behavior of the map f and all nearby maps 
is determined, first of all, by dynamics in the leading coordinates. 

THEOREM 6. (See [36].) Under general conditions, for all systems close to f there exists an 
invariant (p, + p,)-dimensional Cl-manifold MC possessing the following properties. 

1. The set N of all orbits that Jie entirely in U is contained in MC. 
2. MC is tangent to the leading directions at the point 0. 
3. Along the stable and unstable nonleading directions there are exponential contraction and, 

respectively, expansion which are stronger that those along directions tangential to MC. 

Figure 6. An example of the “center” manifold MC (the union of M&, with the 
dashed regions outside M&, in the figure) for the three-dimensional case where the 
multipliers X2, X1, and y of the fixed point are such that 0 < AZ < A1 < 1 < 7. 

Figure 6 represents an example of the manifold MC for the three-dimensional case where the 
multipliers of 0 are such that 0 < X2 < Xi < 1 < yi. In the terms that we have introduced, 
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invariant tori and even chaotic attractors. Moreover, not only saddle and attractive (or saddle and 
repelling) periodic orbits may exist simultaneously, but saddle periodic orbits with the different 
numbers of positive Lyapunov exponents may also coexist. These statements are based on the 
results represented below. 

Let f be a multidimensional diffeomorphism with a structurally unstable homo clinic orbit r 
of some saddle fixed point O. We are interested in the structure of the set N of all orbits which 
lie entirely in a small neighborhood U of the set 0 u r. 

Suppose the map satisfies some conditions of general position [36] (the tangency is quadratic, 
r does not lie in W8S and WUu, etc.). Let AI, ... , Am, 11. ... , In be the multipliers of 0, lin I 2:: 
..• 2:: 1111 > 1 > IA11 2:: ••. ~ IAml· We use the notation A = IA11, I = 1111. The multipliers Ai"j 

nearest to the unit circle (Le., those for which IAi I A, IIj I I) we call leading and the rest we 
call nonleading. The coordinates in a neighborhood of 0 that correspond to the characteristic 
directions of these multipliers we call, respectively, leading and nonleading. 

We assume that the leading multipliers are simple. We designate the number of leading stable 
multipliers by Ps and the number of leading unstable multipliers by PU' Accordingly, we assign 
the type (Pa, Pu) to the system. The four following cases are possible here: 

(1,1). Al and II are real and A > IA21, I < I"nl, 
(2,1). Al 'x2 Ae i <P,,1 is real and A > IA31, 1<11'21, 
(1,2). Al is real, 12 = 1'2 = ,ei 1/!, and A > IA21, ,<1,31, 
(2,2). Al 'x2 Aei<P, II 1'2 = ,ei1/!, and A > IA31, I < 1131· 

The following reduction theorem shows that orbit behavior of the map f and all IlE:arby maps 
is determined, first of all, by dynamics in the leading coordinates. 

THEOREM 6. (See [36J.) Under general conditions, for all systems close to f ther,':: exists an 
invariant (Ps + pu)-dimensional CI-manifold Me possessing the following properties. 

1. The set N of all orbits that lie entirely in U is contained in Me. 
2. Me is tangent to the leading directions at the point O. 
3. Along the stable and unstable nonleading directions there are exponential contmction and, 

respectively, expansion which are stronger that those along directions tangential to Me. 

Figure 6. An example of the "center" manifold Me (the union of Mfoc with the 
dashed regions outside Mfoc in the figure) for the three-dimensional case where the 
multipliers A2, AI, and 'Y of the fixed point are such that 0 < A2 < Al < 1 < 'Y. 

Figure 6 represents an example of the manifold Me for the three-dimensional case where the 
multipliers of 0 are such that 0 < A2 < Al < 1 < II. In the terms that we have introduced, 
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(a) The orbit of tangency belongs to Wad. 

WU n 
(b) The vector that is tangent to W* and 
W” at M+ is parallel to the nonleading 
eigendirection. 

(c) The image of the surface lI; is tangent to Wd at W+ 

Figure 7. The exceptional cases where the smooth invariant manifold does not exist. 

this is Case (1,l) where Xi and yi are the leading multipliers and X2 is the nonleading stable 
multiplier. The point 0 is the fixed point of the stable node-type for the restriction of the map f 
onto W”. The nonleading manifold Wss exists in Ws such that iterations of any point of Wss 
tend to 0 like a geometric progression with the ratio X2. The orbits lying in Ws \ W”” tend to 0 
along the leading eigendirection and the distance to 0 decreases as a geometric progression with 
the ratio Xi. 

In this case, in a small neighborhood of 0 there are well known [37] to exist two-dimensional 
invariant Cl-manifolds each of which contains Wlu,, and intersects Ws at a curve tangential to 
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(a) The orbit of tangency belongs to W B
8. (b) The vector that is tangent to w· and 

WU at M+ is parallel to the nonleading 
eigendirection. 

(c) The image ofthe surface TI;;- is tangent to W8 at W+. 

Figure 7. The exceptional cases where the smooth invariant manifold does not exist. 
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this is Case (1,1) where Al and 1'1 are the leading multipliers and A2 is the nonleading stable 
mUltiplier. The point 0 is the fixed point of the stable node-type for the restriction of the map f 
onto W S

• The nonleading manifold W 8S exists in W8 such that iterations of any point of W8S 
tend to 0 like a geometric progression with the ratio A2' The orbits lying in W8 \ was tend to 0 
along the leading eigendirection and the distance to 0 decreases as a geometric progression with 
the ratio AI. 

In this case, in a small neighborhood of 0 there are well known [37] to exist two-dimensional 
invariant C 1-manifolds each of which contains Wl~c and intersects W S at a curve tangential to 
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the leading direction. According to Theorem 6, at least one of them, ML,, can be extended 
along the orbits of f, forming a global attractive invariant manifold MC which contains r. The 
manifold MC is attractive in the sense, any point that do not belong to MC leave the small 
neighborhood U of r with the iterations of the inverse map f- ‘. This implies that bfc contains 
the whole set N of orbits lying in U entirely. The invariance of MC means that if one takes 
a small area II; c MfO, containing the point M- of r and iterates this area k times, then it 
returns in the neighborhood of 0 for some k, so that fk(H;) c MTO, (Figure 6). 

This occurs possible if the map f satisfy some conditions of general position. The excluded cases 
where the smooth invariant manifold does not exist are shown in Figure 7: the homoclinic orbit I’ 
belongs to VP (Figure 7a); the vector tangential to W” at M+ is parallel to the nonleading 
eigenvector (Figure 7b); the surface f”(H,) is tangent to W” at M+ (Figure 7~). 

The reduction theorem immediately give us essential restrictions on possible types of orbits of 
the set N for the map f itself and for all nearby maps. Thus, since there is a strong exponential 
contraction along the stable nonleading directions and the number of such linearly independent 
directions is (m - ps), orbits of N must have at least (m - p,) negative Lyapunov exponents. 
Analogously, the strong expansions along the nonleading unstable directions causes ,that orbits 
of N must have at least (n - pU) positive Lyapunov exponents. This means that dimensions 
of stable and unstable manifolds of any periodic orbit in U may not be less than (m - p,) and 
(n - pU), respectively. In particular, if 0 has unstable nonleading multipliers (i.e., p, < n), then 
neither f nor any nearby map has attractive periodic orbits in U. 

In general, these restrictions are not final. More precise estimates for the number of positive 
and negative Lyapunov exponents can be found if one consider the (ps + p,)-dimensional map 
which is the restriction of the initial map onto MC. 

Let us introduce the quantity D which is equal to the absolute value of the product of all 
leading multipliers, i.e., D = XPsyPu. Note that D is the Jacobian of the restriction of 1’ onto MC, 
calculated at the point 0. If D < 1, then the map fl~c contracts (p, +p,)-dimensional volumes 
exponentially near 0, and if D > 1, then it expands the volumes. Since any orbit that lies in U, 
entirely spends most of the time in a small neighborhood of 0, the map flm= contracts (pa +pu)- 
dimensional volumes in a neighborhood of the orbit at D < 1 and it expands the volumes at 
D > 1. Therefore, any orbit of N has at least one negative Lyapunov exponent at D < 1 and it 
has at least one positive Lyapunov exponent at D > 1. 

If to summarize what is said above, we arrive at the following result. 

THEOREM 7. (See [36].) Let f b e a map with a homoclinic tangency in general position. If the 
saddle fixed point 0 has unstable nonleading multipliers (pu < n) or if D > 1, then neither f 
nor maps close to it have attractive periodic orbits in a small neighborhood of 0 n I?. 

A statement that is, in a sense, opposite to this theorem, is also valid. 

THEOREM 8. (See [36].) If 0 has no unstable nonleading multipliers (p,, = n) and if D < 1, then 
systems with infinitely many attractive periodic orbits are dense in the Newhouse regions Ai. 

This theorem does not follow from the reduction theorem. Here, the proof is based on the study 
of the first return map Tk of some small strip ff close enough to M+. Note that the maps Tk may 
be different in different situations. Namely, let 0, do not have unstable nonleading multipliers 
and let D < 1. Then, in the case (ps,pu) = (1, l), the map Tk is close to the one-dimensional 
map (like in the two-dimensional case; see the previous section) 

g=M-y2, (3.1) 
in some resealed coordinates. The same formula holds in the case (ps,pu) = (2,1) at Xy C 1. In 
both cases, only one variable is relevant and all the others are suppressed by strong contraction. 

In the case (ps,pu) = (2,l) at Xy > 1, the resealed map Tk is close to the Henon map 

3 = y, g=M-y2-Bx, (3.2) 
at an appropriate choice of u. 
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the leading direction. According to Theorem 6, at least one of them, Mfoc' can be extended 
along the orbits of I, forming a global attractive invariant manifold Me which contains r. The 
manifold Me is attractive in the sense, any point that do not belong to Me leave the small 
neighborhood U of r with the iterations of the inverse map 1-1• This implies that .Nt C contains 
the whole set N of orbits lying in U entirely. The invariance of Me means that if one takes 
a small area TI; C Mfoc containing the point M- of r and iterates this area k times, then it 
returns in the neighborhood of 0 for some k, so that Ik(TI;) C Mfoc (Figure 6). 

This occurs possible if the map I satisfy some conditions of general position. The excluded cases 
where the smooth invariant manifold does not exist are shown in Figure 7: the homoclinic orbit r 
belongs to W 8S (Figure 7a); the vector tangential to WU at M+ is parallel to the nonleading 
eigenvector (Figure 7b); the surface Ik(fI;;) is tangent to WS at M+ (Figure 7c). 

The reduction theorem immediately give us essential restrictions on possible types of orbits of 
the set N for the map I itself and for all nearby maps. Thus, since there is a strong exponential 
contraction along the stable nonleading directions and the number of such linearly independent 
directions is (m - Ps), orbits of N must have at least (m - Ps) negative Lyapunov exponents. 
Analogously, the strong expansions along the nonleading unstable directions causes that orbits 
of N must have at least (n Pu) positive Lyapunov exponents. This means that dimensions 
of stable and unstable manifolds of any periodic orbit in U may not be less than (m - Ps) and 
(n Pu), respectively. In particular, if 0 has unstable nonleading multipliers (Le., Pu < n), then 
neither I nor any nearby map has attractive periodic orbits in U. 

In general, these restrictions are not final. More precise estimates for the number of positive 
and negative Lyapunov exponents can be found if one consider the (Ps + pu)-dimensional map 
which is the restriction of the initial map onto Me. 

Let us introduce the quantity D which is equal to the absolute value of the product of all 
leading multipliers, Le., D = )..P''YPu . Note that D is the Jacobian of the restriction of f onto Me, 
calculated at the point O. If D < 1, then the map tiMe contracts (Ps + pu)-dimensional volumes 
exponentially near 0, and if D > 1, then it expands the volumes. Since any orbit that lies in U, 
entirely spends most of the time in a small neighborhood of 0, the map liMo contracts (Ps + Pu)­
dimensional volumes in a neighborhood of the orbit at D < 1 and it expands the volumes at 
D > 1. Therefore, any orbit of N has at least one negative Lyapunov exponent at D < 1 and it 
has at least one positive Lyapunov exponent at D > 1. 

If to summarize what is said above, we arrive at the following result. 

THEOREM 7. (See (36].) Let I be a map with a homoclinic tangency in general posit;ion. If the 
saddle fixed point 0 has unstable nonleading multipliers (pu < n) or jf D > 1, then neither I 
nor maps close to it have attractive periodic orbits in a small neighborhood of 0 n r. 

A statement that is, in a sense, opposite to this theorem, is also valid. 

THEOREM 8. (See (36J.) If 0 has no unstable nonleading multipliers (pu = n) and if D < 1, then 
systems with infinitely many attractive periodic orbits are dense in the Newhouse regions ~i' 

This theorem does not follow from the reduction theorem. Here, the proof is based on the study 
of the first return map Tk of some small strip (J close enough to M+. Note that the maps Tk may 
be different in different situations. Namely, let 0, do not have unstable nonleading multipliers 
and let D < 1. Then, in the case (Ps,Pu) = (1,1), the map Tk is close to the one-dimensional 
map (like in the two-dimensional case; see the previous section) 

- M 2 Y = -y, (3.1) 

in some rescaled coordinates. The same formula holds in the case (Ps, Pu) = (2,1) at >''''1 < 1. In 
both cases, only one variable is relevant and all the others are suppressed by strong contraction. 

In the case (Ps, Pu) = (2, 1) at ).."'1 > 1, the rescaled map Tk is close to the Henon map 

x = Y, fi = M - y2 - Ex, (3.2) 

at an appropriate choice of (J. 
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In the cases (ps, pU) = (1,2) and (pa, pU) = (2,2) at Xy2 < 1, the resealed map Tk is close, for 
the appropriately chosen u, to the map 

z = y, fj=M-x2--y, (3.3) 

and, in the case (ps, pU) = (2,2) at X+y2 > 1, it is close to the map 

z = y, g = z, y=M-y2-Cz-B~, (3.4) 

where M is the resealed splitting parameter CL, and B and C are some trigonometric functions of 
kcp and k+, respectively. At k large enough, parameters M, B, and C may take arbitrary finite 
values. 

The last two maps have not been studied sufficiently, unlike the parabola map (3.1) and 
the Henon map (3.2). However, the bifurcation analysis of the fixed points of these maps is 
comparatively simple. Thus, for each of maps (3.1)-(3.4) one can easily find parameter values 
such that there exists an attractive fixed point. 

Thus, an analogue of Theorem 4 is valid: if there are no n&able nonleading multipliers and 
if D < 1, then a small perturbation of f can provide an appearance of an attractive periodic 
orbit. Unlike to the two-dimensional case, in dependence on the situation, not only the splitting 
parameter p may be required here, but also there may be necessary the perturbation of values cp 
and $ which control the variation of B and C, respectively. 

By the use of the construction with the system of embedded disks (analogous to that ap 
plied in the two-dimensional case at the proof of Theorem 5), the theorem on infinitely many 
attractive periodic orbits (Theorem 8) follows immediately now for the Newhouse regions Ai in 
corresponding one-, two-, or three-parameter families. 

Actually, the analysis of fixed points of maps (3.1)-(3.4) allows us to establish much more than 
the existence of attractive periodic orbits. Thus, for maps (3.2) and (3.3) there exist the values 
of M and, respectively, B or C at which the map has a fixed point with a pair of multipliers 
equal to unity in absolute value, while map (3.4) has a fixed point with three multipliers equal 
to unity in absolute value for some M, B, and C. If we select now the three cases (recall that 
D = PyPU is less than one): 

o+> (Pa,P¶L) = (1,1)1 or (P~,P~) = C&l) and X-Y < 1, 
(2+) (ps,pu) = (2,l) ad h > 1, or (P~,P,) = (L2) or (P~,P~> = (2,2) and h2 < 1, 
(3+) (P~,PJ = C&2) and X-v2 > 1, 

then we arrive at the following result. 

THEOREM 9. (See (361.) Suppose that D < 1. Then, in Case (l+), systems having periodic 
orbits with 1 multipliers equal to unity in absolute value are dense in the Newhouse regions Ai. 

This theorem has quite nontrivial consequences. Note that an invariant curve can be born 
from the points with two unit multipliers (an invariant torus, if we consider a flow) and chaotic 
attractors can be formed in the case of three multipliers equal to unity in absolute value. For 
instance, an attractor similar to the Lorenz attractor can be born at local bifurcations of a fixed 
point with two multipliers equal to -1 and one equal +l, and a spiral attractor can be born in 
the case of three multipliers equal to -1 (see [38,39], where an analysis of corresponding normal 
forms is carried out). 

Using the construction with embedded disks again, we find that systems with infinitely many 
invariant tori and systems with infinitely many coexisting chaotic attractors are dense in the 
Newhouse regions in Cases (2+) and (3+), respectively. 

To conclude, we consider the question on the coexistence of saddle periodic orbits with different 
numbers of positive Lyapunov exponents. 
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In the cases (Pa,Pu) = (1,2) and (Ps,Pu) = (2,2) at )..'Y2 < 1, the rescaled map Tk is close, for 
the appropriately chosen 0', to the map 

x == y, y=M _x2 Cy, (3.3) 

and, in the case (Pa,Pu) (2,2) at )....,,2 > 1, it is close to the map 

x=y, fi = z, fi = M y2 - Cz Bx, (3.4) 

where M is the rescaled splitting parameter j.L, and B and C are some trigonometric functions of 
kcp and k1{J, respectively. At k large enough, parameters M, B, and C may take arbitrary finite 
values. 

The last two maps have not been studied sufficiently, unlike the parabola map (3.1) and 
the Henan map (3.2). However, the bifurcation analysis of the fixed points of these maps is 
comparatively simple. Thus, for each of maps (3.1)-(3.4) one can easily find parameter values 
such that there exists an attractive fixed point. 

Thus, an analogue of Theorem 4 is valid: if there are no unstable nonleading multipliers and 
if D < 1, then a small perturbation of f can provide an appearance of an attractive periodic 
orbit. Unlike to the two-dimensional case, in dependence on the situation, not only the splitting 
parameter j.L may be required here, but also there may be necessary the perturbation of values cp 
and 1{J which control the variation of Band C, respectively. 

By the use of the construction with the system of embedded disks (analogous to that ap­
plied in the two-dimensional case at the proof of Theorem 5), the theorem on infinitely many 
attractive periodic orbits (Theorem 8) follows immediately now for the Newhouse regions Ai in 
corresponding one~, two-, or three~parameter families. 

Actually, the analysis of fixed points of maps (3.1)-(3.4) allows us to establish much more than 
the existence of attractive periodic orbits. Thus, for maps (3.2) and (3.3) there exist the values 
of M and, respectively, B or C at which the map has a fixed point with a pair of multipliers 
equal to unity in absolute value, while map (3.4) has a fixed point with three multipliers equal 
to unity in absolute value for some M, B, and C. If we select now the three cases (recall that 
D )..P''YP'' is less than one): 

(1+) (Ps,Pu) = (1,1), or (Ps,Pu) = (2,1) and)"'Y < 1, 
(2+) (Ps,Pu) = (2,1) and )...." > 1, or (Ps,Pu) = (1,2) or (Ps,Pu) (2,2) and )..'Y2 < 1, 
(3+) (Ps,Pu) = (2,2) and )....,,2> 1, 

then we arrive at the following result. 

THEOREM 9. (See (36].) Suppose tbat D < 1. Tben, in Case (1+), systems baving periodic 
orbits witb l multipliers equal to unity in absolute value are dense in tbe Newbouse regions Ai. 

This theorem has quite nontrivial consequences. Note that an invariant curve can be born 
from the points with two unit multipliers (an invariant torus, if we consider a flow) and chaotic 
attractors can be formed in the case of three multipliers equal to unity in absolute value. For 
instance, an attractor similar to the Lorenz attractor can be born at local bifurcations of a fixed 
point with two multipliers equal to -1 and one equal +1, and a spiral attractor can be born in 
the case of three multipliers equal to -1 (see [38,39J, where an analysis of corresponding normal 
forms is carried out). 

Using the construction with embedded disks again, we find that systems urith infinitely many 
invariant tori and systems urith infinitely many coexisting chaotic attractors are dense in the 
Newhouse regions in Cases (2+) and (3+), respectively. 

To conclude, we consider the question on the coexistence of saddle periodic orbits with different 
numbers of positive Lyapunov exponents. 
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THEOREM 10. (See [36].) Let D < 1, and let 0 have no unstable nonleading multipliers4 Then, 
in Case (l+), systems that for any j = 0,. . . , 1 have a countable number of periodic orbits with 
j multipliers greater than unity in absolute value are dense in the Newhouse regions &. At the 
same time, no map close to f can have, in a smail neighborhood U of 0 U F, a periodic orbit with 
more than 1 multipliers greater than unity in absolute value. 

The second part of the theorem follows from the easily verified fact that, in Case (l+), the 
map f (and any nearby map) contracts exponentially (1+ l)-dimensional volumes o:n MC in a 
small neighborhood of 0, and hence, in a small neighborhood of any orbit lying in #I;r entirely. 
Therefore, any such orbit cannot have more than 1 positive Lyapunov exponents. 

The first part of the theorem is proved by the linear analysis or fixed points of maps (3.1)-(3.4): 
for any of these maps, regions of parameter values can be easily found where the map has a fixed 
point with j multipliers greater than unity in absolute value (0 5 j < 1). This implies that, for 
anyj =o,..., 1, a periodic orbit with j positive Lyapunov exponents can arise at an arbitrarily 
small perturbation of f in a corresponding Z-parameter family. Using the construction with 
embedded disks again, we find that the parameter values are dense in the Newhouse regions Ai 
at which the map has now infinitely many such orbits simultaneously for each j = 0,. . . , 1. 

Theorem 10 has a direct relation to the problem of hyperchaos. Usually, those attractors are 
called hyperchaotic for which more than one positive Lyapunov exponent is found. As we see, 
in contrast with hyperbolic systems, the number of positive Lyapunov exponents may vary for 
different orbits if the system belongs to a Newhouse region. It is not clear, therefore, in ,what sense 
the number of positive Lyapunov exponents can be considered as a characteristics of the system 
as a whole. At the same time, considerations based on estimates of contraction and expansion 
of volumes are still effective here: the quantity 1 in Theorem 10 is none other than the integral 
part of the Lyapunov dimension calculated at the point 0 by the Kaplan-Yorke formula [40] for 
the restriction of the map f onto the “center” (or “inertial”) manifold MC. 

4. GEOMETRIC CONSTRUCTIONS AND CALCULATIONS 
We discuss here in greater detail, the geometric constructions that determine the dynamics 

near homoclinic tangencies. First, we consider the two-dimensional case. Namely, we consider 
a CT-smooth (r 1 3) two-dimensional diffeomorphism f, which has a saddle fixed point 0 with 
multipliers X and y where 0 < IX] < 1, ]y] > 1. We consider the case where ]Xy] < I.. Suppose 
the stable and unstable manifolds of 0 have a quadratic tangency at the points of the homoclinic 
orbit l?. 

Let U be a small neighborhood of the set 0 U I’. The neighborhood U is the union of a small 
disc Uo containing 0, and of a finite number of small disks surrounding the points of I’ which are 
located outside U,J (Figure 8). We denote by N the set of orbits of the map f that lie entirely 
in U. Let To be the restriction of f onto Uo (it is called the local map). Note that the map TO in 
some C’-’ -coordinates (z, y) can be written in the form [41,42] 

z = xx + f(x, y)x2y, ?J = YY + dx7 Y)XY2. (4.1) 

By (4.1), the equations of the local stable manifold IV{, and local unstable manifold IV& are 
y = 0 and z = 0, respectively. The representation (4.1) is convenient in that, in these coordinates 
the map Tt for any sufficiently large k is linear in the lowest order. Specifically, we have the 
following representation [4l] of the map T,k : (20, yo) t+ (2k, yk) 

xk = AkZO + i~lkl-fl-ktk(xO,yk), 

?/O = Y-“Yk + ld-2k~k(z0,yk), (4.2) 

4The contribution of the unstable nonleading multipliers is trivial: instead of “‘j multipliers greater than unity” 
we should write “(n - pU + j) multipliers . ;” the case D > 1 is reduced to the case D < 1 by considering the 
map f-’ instead of f, so everywhere through the theorem the words “greater than unity” should be replaced by 
“less than” in this case. 
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THEOREM 10. (See [36].) Let D < 1, and let 0 bave no unstable nonleading multipliers.4 Tben, 
in Case (1 +), systems tbat for any j = 0, ... ,1 bave a countable number of periodic orbits witb 
j multipliers greater tban unity in absolute value are dense in tbe Newbouse regions At. At tbe 
same time, no map close to I can bave, in a small neigbborbood U of 0 u r, a periodic orbit witb 
more tban 1 multipliers greater tban unity in absolute value. 

The second part of the theorem follows from the easily verified fact that, in Case, (1+), the 
map I (and any nearby map) contracts exponentially (1 + I)-dimensional volumes on MC in a 
small neighborhood of 0, and hence, in a small neighborhood of any orbit lying in U entirely. 
Therefore, any such orbit cannot have more than I positive Lyapunov exponents. 

The first part of the theorem is proved by the linear analysis or fixed points of maps (3.1 )-( 3.4): 
for any of these maps, regions of parameter values can be easily found where the map has a fixed 
point with j multipliers greater than unity in absolute value (0 $ j $ 1). This implies that, for 
any j 0, ... ,1, a periodic orbit with j positive Lyapunov exponents can arise at an arbitrarily 
small perturbation of I in a corresponding l-parameter family. Using the construction with 
embedded disks again, we find that the parameter values are dense in the Newhouse regions Ai 
at which the map has now infinitely many such orbits simultaneously for each j 0, ... , l. 

Theorem 10 has a direct relation to the problem of hyperchaos. Usually, those attractors are 
called hyperchaotic for which more than one positive Lyapunov exponent is found. As we see, 
in contrast with hyperbolic systems, the number of positive Lyapunov exponents may vary for 
different orbits if the system belongs to a Newhouse region. It is not clear, therefore, in what sense 
the number of positive Lyapunov exponents can be considered as a characteristics of the system 
as a whole. At the same time, considerations based on estimates of contraction and expansion 
of volumes are still effective here: the quantity 1 in Theorem 10 is none other than the integral 
part of the Lyapunov dimension calculated at the point 0 by the Kaplan-Yorke formula [40] for 
the restriction of the map I onto the "center" (or "inertial") manifold MC. 

4. GEOMETRIC CONSTRUCTIONS AND CALCULATIONS 
We discuss here in greater detail, the geometric constructions that determine the dynamics 

near homoclinic tangencies. First, we consider the two-dimensional case. Namely, we consider 
a Or-smooth (r :::: 3) two-dimensional diffeomorphism I, which has a saddle fixed point 0 with 
multipliers ,A and "I where 0 < IAI < 1, 1"11 > 1. We consider the case where IA"II < 1. Suppose 
the stable and unstable manifolds of 0 have a quadratic tangency at the points of the homoclinic 
orbit r. 

Let U be a small neighborhood of the set 0 U r. The neighborhood U is the union of a small 
disc Uo containing 0, and of a finite number of small disks surrounding the points of r which are 
located outside Uo (Figure 8). We denote by N the set of orbits of the map f that lie entirely 
in U. Let To be the restriction of f onto Uo (it is called the local map). Note that the map To in 
some Or-l·coordinates (x, y) can be written in the form [41,42] 

(4.1) 

By (4.1), the equations of the local stable manifold WI~c and local unstable manifold WI~c are 
Y = 0 and x = 0, respectively. The representation (4.1) is convenient in that, in these coordinates 
the map T~ for any sufficiently large k is linear in the lowest order. Specifically, we have the 
following representation [41] of the map T~ : (xo, Yo) t-+ (Xk' Yk) 

Xk = ,AkXO + IAlkl"ll-kek(xo,Yk), 

Yo = "Y-kYk + bl-2k'l'/k(xo,Yk), (4.2) 

4The contribution of the unstable nonleading multipliers is trivial: instead of "j multipliers greater than unity" 
we should write "(n - P-u + j) multipliers ... j" the case D > 1 is reduced to the case D < 1 by considering the 
ma.p 1-1 instead of I, so everywhere through the theorem the words "greater than unity" should be replaced by 
"less than" in this case. 
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Figure 8. The neighborhood lJ of the contour 0 U r (bold points in the figure) is a 
union of a small disk We containing 0 and of a finite number of small neighborhoods 
of that points of r which lie outside Uo. 

where & and qk are functions uniformly bounded at all k along with their derivatives up to the 
order (r - 2). 

Let M+(s+,O) and M-(0, y-) be a pair of points of I’ which lie in Ue and belong to I+‘& 

and J$:,, respectively. Without loss of generality, we can assume x+ > 0 and y- > 0. Let 
II+ and II- be sufficiently small neighborhoods of the homoclinic points M+ and M- such 
that Te(II+) n II+ = 0 and Te(II-) n II- = 0. Evidently, there exists an integer Q such that 
fQ’(M-) = M+. We denote the map fq : II- ---) II+ as 2’1 (it is called the global map, see 
Figure 9). The map Ti can obviously be written in the form 

2 - x+ = ax + b(y - y-) + + n. , 

g = cx + d(y - y-)2 + . . . , (4.3) 

where bc # 0 since Tl is a diffeomorphism, and d # 0 since the tangency is quadratic. 
Note that the orbits of N must intersect the neighborhoods II+ and II- (otherwise, these orbits 

would be far from I). However, not all orbits that start in II+ arrive in III-. The set of the points 
whose orbits get into II- form a countable number of strips ui = II+ n Tt”II- that accumulate 
on IV”. The way of constructing these strips is obvious from Figure 10. In turn, the images of 
the strips 0: under the maps T$ give on II- a sequence of vertical strips C$ that accumulate 
on W& (Figure 11). 

The images of the strips 0: under the map Tl have the shape of horseshoes, accumulating on 
the “parabola” TIN’& (F g i ure 13). It is clear that the orbits of N must intersect II+ at the 
points of intersection of the horseshoes Tl$ and the strips oi . o Therefore, the structure of the 
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Figure 8. The neighborhood U of the contour 0 u r (bold points in the figure) is a. 
union of a. small disk Uo containing 0 and of a finite number of small neighborhoods 
of that points of r which lie outside Uo. 
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where ek and 17k are functions uniformly bounded at all k along with their derivatives up to the 
order (r - 2). 

Let M+(x+,O) and M-(O,y-) be a pair of points of r which lie in Uo and belong to Wl~c 
and lVj~c' respectively. Without loss of generality, we can assume x+ > 0 and y- > O. Let 
n+ and n- be sufficiently small neighborhoods of the homoclinic points M+ and M- such 
that To(n+) n n+ 0 and To(n-) n n- 0. Evidently, there exists an integer q such that 
fq(M-) = M+. We denote the map f q : n- --+ n+ as Tl (it is called the global map, see 
Figure 9). The map Tl can obviously be written in the form 

x - x+ = ax + b(y - y-) + ... , 
fi = ex + d(y _ y-)2 + ... , (4.3) 

where be f; 0 since Tl is a diffeomorphism, and d f; 0 since the tangency is quadratic. 
Note that the orbits of N must intersect the neighborhoods n+ and n- (otherwise, these orbits 

would be far from r). However, not all orbits that start in I1+ arrive in n-. The set of the points 
whose orbits get into n- form a countable number of strips lT2 = n+ n To-kn- that accumulate 
on W S

• The way of constructing these strips is obvious from Figure 10. In turn, the images of 
the strips lT2 under the maps T~ give on n- a sequence of vertical strips IT! that accumulate 
on WI~c (Figure 11). 

The images of the strips lTk under the map Tl have the shape of horseshoes, accumulating on 
the "parabola" Tl WI~c (Figure 13). It is clear that the orbits of N must intersect n+ at the 
points of intersection of the horseshoes T1lTJ and the strips IT?. Therefore, the structure of the 
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W U 

Figure 9. The local and global maps Ti and Tl. 

set N depends strongly on the geometric properties of the intersection of the horseshoes and the 
strips. 

To be specific, we shall assume that X > 0 and y > 0. Then, depending on the signs of c and d, 
four different cases of mutual arrangement of the manifolds IS’,& and TrW,& are possible [27,28] 
(Figure 12). If Z’rW’,& is tangent to W’,& from below (d < 0) (Figures 12a,b), then the set N 
has a trivial structure: N = (0, I’} [27,28]. This is related to the fact that here the intersection 
Tiai n c$’ can be nonempty only for j > i, since the strip a$’ lies at a distance of the order of 
7-j from I$&, and the top of the strip Tiof lies at a distance of the order of Xi < l ymi from it 
(Figure 13a). Note that in the case c < 0 and d < 0 the strips Trai and cry lie on diflerent sides 
of W,W for any i. and j, and therefore, Trcr: I-I a$’ = 8 in this case (Figure 13b). 

If Ti Wl:, is tangent to W& fram above (d > 0) (Figure 12c,d), then the set N will now contain 
nontrivial hyperbolic subsets. If c < 0 and d > 0, then for any i and j the intersection of Tiai 
with c$’ is regular, i.e., it consists of two connected components (Figure 13~). In this case, the 
set N can be shown [27,28] to be in one-to-one correspondence with the quotient system of the 
Bernoulli shift with three-symbols (0, 1,2, } which is obtained by identifying the two homoclinic 
orbits: (.,., 0 ,..., O,l,O ,..., 0 ,... )and( . . . . 0 ,..., 0,2,0 ,..., 0 ,... ). Hereat,allorbitsofN\I’ 
are of the saddle-type. 

In the case c > 0, d > 0, the set N also contains nontrivial hyperbolic subsets [27,28,43] 
but, in general, these subsets do not exhaust the set N. The reason is that there, besides 
regular intersections of the horseshoes and the strips, there may also be nonregular intersections 
(Figure 13d). The existence of attractive and structurally unstable orbits is associated with the 
latter [44,45]. 
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Figure 9. The local and global maps To and Tl' 

set N depends strongly on the geometric properties of the intersection of the horseshoes and the 
strips. 

To be specific, we shall assume that A > ° and "I > 0. Then, depending on the signs of c and d, 
four different cases of mutual arrangement of the manifolds Wl~c and Tl Wl~c are possible [27,28] 
(Figure 12). If Tl Wl~c is tangent to Wl~c from below (d < 0) (Figures 12a,b), then the set N 
has a trivial structure: N:= {G,r} [27,28]. This is related to the fact that here the intersection 
T1o} n aJ can be nonempty only for j > i, since the strip aJ lies at a distance of the order of 
"I- j from Wl~c' and the top of the strip T1allies at a distance of the order of Ai « 'y-i from it 
(Figure 13a). Note that in the case c < ° and d < ° the strips Tlal and aJ lie on different sides 
of Wl~ for any i and j, and therefore, Tlal n aJ = 0 in this case (Figure 13b). 

If Tl Wl~c is tangent to Wl~c from above (d > 0) (Figure 12c,d), then the set N will now contain 
nontrivial hyperbolic subsets. If c < ° and d > 0, then for any i and j the intersection of Twl 
with aJ is regular, i.e., it consists of two connected components (Figure 13c). In thLs case, the 
set N can be shown [27,28] to be in one-to-one correspondence with the quotient system of the 
Bernoulli shift with three-symbols {O, 1, 2,} which is obtained by identifying the two homo clinic 
orbits: ( ... ,0, ... ,0, 1,0, ... ,0, ... ) and ( ... ,0, ... ,0,2,0, ... ,0, ... ). Hereat, all orbits of N \ r 
are of the saddle-type. 

In the case c > 0, d > 0, the set N also contains nontrivial hyperbolic subsets [27,28,43] 
but, in general, these subsets do not exhaust the set N. The reason is that there, besides 
regular intersections of the horseshoes and the strips, there may also be nonregular intersections 
(Figure 13d). The existence of attractive and structurally unstable orbits is associated with the 
latter [44,45]. 
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To-‘(II-) 
rT1 

Figure 10. This figure illustrates the construction of the strips a:, lying on lI+, such 
that ui is the domain of definition of the map T$ : Tf+ 4 II-. The points on II+ 

that lie in II- after k iterations of the map To, belong to the set Tck(FI-) n fI+. 
The neighborhood II- is contracted in the vertical direction by a factor of y-’ and 
expanded in the horizontal direction by a factor of X-’ under the action of the map 
Tr’, and moreover, T,’ (II-) n II- = 0. Correspondingly, the set Tck(II-) in a 
narrow rectangular are expanded along the x axis and displaced from it by a distznce 
of the order of y-lr. Moreover, the rectangles Z’G”(TI-) and Z’i’k+l’(II-) do not 

intersect. For sufficiently large k, the intersection of To-(“)(If-) with II+ is a strip UE 
as in the figure. As k -+ 00, the strips oz accumulate on the segment W* f~ II+. 

Figure 11. The range of the map T,k : fI+ + ll- is the vertical strip o:. 

Quasiattractors 

• 
• • 
• • 

o 
Figure 10. This figure illustrates the construction of the strips 0'2, lying on rr+, such 
that 0'2 is the domain of definition of the map T~ : rr+ ..... rr-. The points on rr+ 
that lie in rr- after k iterations of the map To, belong to the set To-k(rr-) n rr+. 
The neighborhood n- is contracted in the vertical direction by a factor of ,,(-1 and 
expanded in the horizontal direction by a factor of >. - 1 under the action of the map 
To-I, and moreover, TO-1 (rr-) n rr- 0. Correspondingly, the set To-k(n-) in a 
narrow rectangular are expanded along the x axis and displaced from it by a distence 
of the order of ,,(-k. Moreover, the rectangles To"(rr-) and To-(k+1)(rr-) do not 

intersect. For sufficiently large k, the intersection of To-(k) (rr-) with rr+ is a strip 0'2 
as in the figure. As k ..... 00, the strips 0'2 accumulate on the segment W· n n+. 

Figure 11. The range of the map T~ : rr+ ..... rr- is the vertical strip CT~. 
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(a) c c: 0, d < 0. (b) c > 0, d < 0. 

(c) c < 0, d > 0. (d) c > 0, d > 0. 

Figure 12. The four different cases of homoclinic tangencies. These cases differ not 
only in the mutual arrangement of the stable and unstable manifolds (tangent from 
below: Figures (a) and (b); tangent from above: Figures (c) and (d), but also in that 
how the shaded semineighborhood of the point M- is mapped into the neighborhood 
of the point M+ under the action of the global map ‘71. If X > 0 and y > 0, these 
four cases are distinguished by the combinations of signs of the parameters c and d 
of the map Tl. 

Below, to be specific, we consider only the case c > 0, d > 0. To describe maps close to f we 
must introduce the splitting parameter p: when p < 0, the parabola TlW’& intersects WiC at 
two points; when p = 0, the parabola TlW,S,, is tangent to Wi, at one point, and w:hen Jo > 0 
there is no intersection. It is clear that if the bottom of the parabola descends sufficiently low 
(large and negative p), then each horseshoe intersects each strip. In this case, the set NP is a 
hyperbolic set similar to the invariant set in the Smale horseshoe. However, if p is sufficiently 
large and positive, then the horseshoes and the strips do not intersect at all, and all of the orbits 
except 0 will escape from U. 

The main question is what happens when the parameter p varies from the large negative to 
the large positive values. First of all, it is necessary to study the structure of the bifurcation 
set corresponding to one strip, that is, to study the bifurcations in the family of the first return 
maps Tk(p) E TlT,k : 0: + 0:. The following result is valid. 

LEMMA 1. The map Tk(p) can be brought to the form 

z = y + 0 (Xkyk + yk) ( 

g = M - y2 + 0 (Xkyk + 7-k) , 
(4.4) 
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(a) c < 0, d < 0. (b) c> 0, d < O. 

o o 

(c) c < 0, d> O. (d) c > 0, d> 0. 

Figure 12. The four different cases of homoc1inic tangencies. These cases differ not 
only in the mutual arrangement of the stable and unstable manifolds (tangent from 
below: Figures (a) and (b)j tangent from above: Figures (c) and (d), but also in that 
how the shaded semineighborhood of the point M- is mapped into the neighborhood 
of the point M+ under the action of the global map TI. If >. > 0 and '"Y > 0, these 
four cases are distinguished by the combinations of signs of the parameters c and d 
of the map TI. 

Below, to be specific, we consider only the case c > 0, d > 0. To describe maps close to f we 
must introduce the splitting parameter 11: when 11 < 0, the parabola Tl Wl~c intersects lVj~c at 
two points; when 11 = 0, the parabola Tl Wl~c is tangent to Wl~c at one point, and when J1. > ° 
there is no intersection. It is clear that if the bottom of the parabola descends sufficiently low 
(large and negative 11), then each horseshoe intersects each strip. In this case, the Sl3t Np. is a 
hyperbolic set similar to the invariant set in the Smale horseshoe. However, if 11 is sufficiently 
large and positive, then the horseshoes and the strips do not intersect at all, and all of the orbits 
except 0 will escape from U. 

The main question is what happens when the parameter 11 varies from the large negative to 
the large positive values. First of all, it is necessary to study the structure of the bifurcation 
set corresponding to one strip, that is, to study the bifurcations in the family of the first return 
maps Tk(J.L) == T1T~ : 0"2 -+ O"k' The following result is valid. 

LEMMA 1. The map Tk(l1) can be brought to the form 

x = Y + 0 ().k"l + 'Y- k) , 

f} = M y2 + 0 ().k'Yk + 'Y- k) , 
(4.4) 
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, 

(a) c < 0, d < 0. 

(c) c < 0, d > 0. 

(b) c > 0, d < 0. 

M’ 
(d) c > 0, d > 0. 

Figure 13. Basic elements of the geometry of the intersection of a strip up and 
a horseshoe Tr(ujl) for the case 1x71 < 1. In the case of tangency from below 
(Figures (a) and (b)), the horseshoe Tr(a~) lies below “its” strip up. In this case, 
either Z’r(oi) intersects the strips uy only if j >> i (the case c > 0, d < 0) or it does 
not intersect any strips at all (the case c < 0, d < 0). For this reason, the structure 
of the set N is trivial in this case: N = 0 U r. 

In the case of tangency from above (Figures (c) and (d)), the horseshoe rr(uf) 
intersects “its” strip (up) regularly, thereby forming the geometric configuration of 
the Smale’s horseshoe example. Just from this fact it is possible to infer that the 
structure of the set N is nontrivial here. The difference in the cases c < 0, d > 0 
and c > 0, d > 0 is that the intersection of any horseshoe with any strip is regular 
in the first case, while in the latter case there can be nonregular as well as regular 
intersections. As a result, all the orbits of the set N except r can be shown to be of 
the saddle-type in the case c < 0, d > 0, whereas in the case c > 0, d > 0 there can 
be structurally unstable and attractive periodic orbits in N (moreover, systems with 
arbitrarily degenerate periodic and homoclinic orbits are dense in the set of systems 
with homoclinic tangencies of this type). 

by means of a linear transformation of the coordinates and the parameter; here the resealed 
splitting parameter A4 = -dy2”(p - y-“y- -t . . . ) may take arbitrary finite values for sufficiently 
large k. 

PROOF. Take a point (20,y0) E ok’ ’ Let (xk,Yk) = Tgk(zO,YO), (~O,~O) =Tl(xk,vk) = Tk(zO,YO)r 

(zk,‘&) = $(ZO, $0). By (4.1),(4.2), the map Tk(h) is written in the fOrIn 

ft - x+ = aX”x(1 4 . . . ) + b(y - y-) + * * * ) 

+f-“& (1 + -f-“7)& g)) = /i + dkx( 1 + . . . ) + d(y - y-)2 + . * * , 
(4.5) 

where we use the notation x = x0, 3 = !&, y = yk, g = yk. 
With the shift of the origin: y -+ y + y-, x + x + x+, we write the map Tk(p) in the form 

f = by + 0 (xk) + 0 (y”) , 

Yk& + Y2”O(y) = MI + dy2 +X20 (1x1 + Iyl) + 0 (y3) , 
(4.6) 

where 
Ml = /.A + cXkx+ - ~-~y- + . . . . (4.7) 

... 1 

/'l;~ 
T1(Jjl 

(a) c < 0, d < 0. 

T1(Jjl 

(c) c < 0, d> 0. 
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M+ 
(d) c > 0, d> O. 

Figure 13. Basic elements of the geometry of the intersection of a strip u? and 
a horseshoe Tl (uJ) for the case 1>'1'1 < 1. In the case of tangency from below 
(Figures (a) and (b), the horseshoe Tl(U{) lies below "its" strip ur. In this case, 
either Tl (ui) intersects the strips uJ only if j ;$ i (the case c > 0, d < 0) or it does 
not intersect any strips at all (the case c < 0, d < 0). For this reason, the structure 
of the set N is trivial in this case: N == 0 u r. 

In the case of tangency from above (Figures (c) and (d)), the horseshoe Tl(Ul) 
intersects "its" strip (ur) regularly, thereby forming the geometric configuration of 
the Smale's horseshoe example. Just from this fact it is possible to infer that the 
structure of the set N is nontrivial here. The difference in the cases c < 0, d > ° 
and c > 0, d > ° is that the intersection of any horseshoe with any strip is regular 
in the first case, while in the latter case there can be nonregular as well as regular 
intersections. As a result, all the orbits of the set N except r can be shown to be of 
the saddle-type in the case c < 0, d > 0, whereas in the case c > 0, d > 0 there can 
be structurally unstable and attractive periodic orbits in N (moreover, systems with 
arbitrarily degenerate periodic and homoclinic orbits are dense in the set of systems 
with homoclinic tangencies of this type). 
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by means of a linear transformation of the coordinates and the parameter; here the rescaled 
splitting parameter M = _d"(2k (J-L - ,,(-ky- + ... ) may take arbitrary finite values for sufficiently 
large k. 

PROOF. Take a point (xo,Yo) E O'~. Let (Xk,Yk) = Tt(xo,Yo), (xo,Yo) T1(Xk,Yk) 
(Xk, Yk) Tt(xo, yo). By (4.1),(4.2), the map Tk(fJ,) is written in the form 

x - x+ = aAkx(l + ... ) + b(y - Y-) + ... , 
,,(-ky (1 + ,,(-k1]k(X, y)) = J-L + cAkx(l + ... ) + d(y _ y-)2 + ... , 

where we use the notation x = Xo, X xo, Y Yk, Y Uk. 

(4.5) 

With the shift of the origin: Y -Jo Y + Y- , X -Jo X + x+, we write the map Tk (J-L) in the form 

x = by + 0 (Ak) + 0 (y2) , 
"(-ky + ,,(-2kO(y) = Ml + dy2 + A20 (Ixl + IYI) + 0 (y3) , 

(4.6) 

where 
(4.7) 
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saddle- 
node 

CHAOS Smale 
horse-shoe 

period homoclinic 
doubling bifurcations 

4 
Figure 14. The bifurcation interval bt’ , @] that corresponds to the sequence of 
bifurcations in the development of the Smale horseshoe on the strip ug, beginning 
with the first bifurcation of the generation of a saddle-node fixed point at p = ,ut’ 
and ending with the last one corresponding to a homoclinic tangency for p = @, 
after which the horseshoe appears. 

Now, resealing the variables: 

x + --$ykx, Y + +-‘Y, 

brings equations (4.6) to form (4.4) where M = -dy2kMr. This completes the proof of the 
lemma. 

Map (4.4) is close to the one-dimensional parabola map 

fj=M-y2, (4.8) 

whose bifurcations have been well studied, so that it is possible to recover the bifurcation picture 
for the initial map Tk. For the parabola map, the bifurcation set is contained in the interval 
[-(l/4),2] of values of M : at M = -l/4 there appears a fixed point with the multiplier equal 
to +l, this fixed point is attractive at M E (-(l/4), (3/4)) and it undergoes a period-doubling 
bifurcation at M = 314; the cascade of period-doubling bifurcations lead to chaotic dynamics 
which alternates with stability windows and the bifurcations stop at M = 2, when the restriction 
of the map onto the nonwandering set becomes conjugate to the Bernoulli shift of two symbols 
and it no longer bifurcates as M increases. 

By Lemma 1, similar bifurcations take place for the map Tk (see Figure 14). The map has 
an attractive fixed point ok at fi E (cl:‘, &‘) which arises at the saddle-node bifurcation at 
p = pi1 and loses stability (at ,u = PC’) at the period-doubling bifurcation. Here 

p;’ = py- -cx”x++-p ’ -m +. . * 7 

pk 
-1 = m,-ky- - ,-Akx+ _ 4d .-., 3 -2k+... > 
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Figure 14. The bifurcation interval [Ptl, 1L~'1 that corresponds to the sequence of 
bifurcations in the development of the Smale horseshoe on the strip 0"£, beginning 
with the first bifurcation of the generation of a saddle-node fixed point at 1L :=; 1Ltl 
and ending with the last one corresponding to a homoc1inic tangency for 1L = lL~s, 
after which the horseshoe appears. 

Now, rescaling the variables: 

b -k x -t --'" x d I , 

1 -k 
Y -t -d"( y, 

brings equations (4.6) to form (4.4) where M _d"(2k Ml. This completes the proof of the 
lemma. 

Map (4.4) is close to the one-dimensional parabola map 

(4.8) 

whose bifurcations have been well studied, so that it is possible to recover the bifurcation picture 
for the initial map Tk. For the parabola map, the bifurcation set is contained in the interval 
[-(1/4),2] of values of M : at M ::::.:: -1/4 there appears a fixed point with the multiplier equal 
to +1, this fixed point is attractive at M E (-(1/4), (3/4)) and it undergoes a period-doubling 
bifurcation at M = 3/4; the cascade of period-doubling bifurcations lead to chaotic: dynamics 
which alternates with stability windows and the bifurcations stop at M = 2, when the restriction 
of the map onto the nonwandering set becomes conjugate to the Bernoulli shift of two symbols 
and it no longer bifurcates as M increases. 

By Lemma 1, similar bifurcations take place for the map Tk (see Figure 14). The map has 
an attractive fixed point Ok at 11 E (I1t1, 11k I) which arises at the saddle-node bifurcation at 
11 = I1tl and loses stability (at 11 = I1kl) at the period-doubling bifurcation. Here 

I1tl ,,(-ky- c,\kX+ + 41d ,,(-'2k + ... , 
3 

I1kl = ,,(-ky- - c,\kx+ - 4d ,,(-2k + ... , 
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Figure 15. A homoclinic tangency, the last in the sequence of bifurcations in the 
development of the Smale’s horseshow (this is the tangency corresponding to the 
case shown in the Figure 13~). 

Note, that we have found the intervals where the map fP possesses the attractive single-round 
periodic orbit and this is the main element of the proof of Theorem 4 in Section 2. 

The bifurcation set of the map Tk is contained in the interval [pi’, &“I, where 

At /I = &, the fixed point of Tk has the last homoclinic tangency (Figure 15) and an invariant 

set similar to those of the Smale’s horseshoe example arises after this bifurcation. Note, that 
these bifurcational intervals do not intersect each other for different k. 

Clearly, in addition to the orbits that intersect II+ each time in the same strip, the map fp also 
has orbits that jump among the strips with various indices. The bifurcation intervals correspond- 
ing to these orbits can now overlap. This is the case already for orbits that jump among two strips 
ui, u: and their images, the horseshoes TiU,O and Tjcj ‘. Figure 16 shows the case where there 
exist completely developed Smale horseshoes on ~9 and uy but the upper horseshoe intersects the 
lower strip in a “nonregular” manner, and new structurally unstable orbits can arise as a result. 
In particular, using this construction, one can obtain new heteroclinic (Figure 16a) or homoclinic 
(Figure 16b) tangencies. Moreover, there exist here also periodic orbits “jumping” from one strip 
to another (they correspond to the fixed points of the double-round return map TjTi : up --) up). 
The regions of stability of these double-round periodic orbits can overlap for various i and j, even 
a countable number of these regions may have common points. In particular, in the set of maps 
with the homoclinic tangency (in the case c > 0, d > 0) the maps with a countable number of 
attractive periodic orbits of this type are dense [44,45]. 

The geometric construction with two horseshoes was also a basic element of the proof of Theo- 
rem 1. Figure 17 shows the bihorseshoe used for the proof. In this situation, the invariant set of 
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Figure 15. A homoclinic tangency, the last in the sequence of bifurcations in the 
development of the Smale's horseshow (this is the tangency corresponding to the 
case shown in the Figure 13c). 
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Note, that we have found the intervals where the map 11-' possesses the attractive single-round 
periodic orbit and this is the main element of the proof of Theorem 4 in Section 2. 

The bifurcation set of the map Tk is contained in the interval [/-ttl, /-t~8], where 

At /-t = /-t~8, the fixed point of Tk has the last homo clinic tangency (Figure 15) and an invariant 
set similar to those of the Smale's horseshoe example arises after this bifurcation. Note, that 
these bifurcational intervals do not intersect each other for different k. 

Clearly, in addition to the orbits that intersect n+ each time in the same strip, the map 11-' also 
has orbits that jump among the strips with various indices. The bifurcation intervals correspond­
ing to these orbits can now overlap. This is the case already for orbits that jump among two strips 
a?, aJ and their images, the horseshoes Tia? and Tjo-J. Figure 16 shows the case where there 
exist completely developed Smale horseshoes on a? and aJ but the upper horseshoe intersects the 
lower strip in a "nonregular" manner, and new structurally unstable orbits can arise as a result. 
In particular, using this construction, one can obtain new heteroclinic (Figure 16a) or homoclinic 
(Figure 16b) tangencies. Moreover, there exist here also periodic orbits "jumping" from one strip 
to another (they correspond to the fixed points of the double-round return map TjTi : a? --+ a?). 
The regions of stability of these double-round periodic orbits can overlap for various i and j, even 
a countable number of these regions may have common points. In particular, in the set of maps 
with the homoclinic tangency (in the case c > 0, d> 0) the maps with a countable number of 
attractive periodic orbits of this type are dense [44,45]. 

The geometric construction with two horseshoes was also a basic element of the proof of Theo­
rem 1. Figure 17 shows the bihorseshoe used for the proof. In this situation, the invariant set of 
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(4 (‘4 
Figure 16. This figure shows how new heteroclinic or homoclinic tangencies are ob- 
tained. Here, on the strips up and CT: there are already developed Smale’s horseshoes 
for the maps Ti and T’, respectively, but the upper horseshoe intersects the lower 
strip “nonregularly.” In Figure (a), the manifold W’(Oi) is tangent to II”( In 
Figure (b), a piece W”(Oi) n 0: of the unstable manifold of the point Oi lies just 
slightly above the stable manifold of the point Oj and the curve Tj(W”(Oi) 17 u$‘) 
which is a part of the manifold W“(Oi) is tangent to Ws(Oi); i.e., a homoclinic 
tangency of the invariant manifolds of Oi takes place. 

the map Ti on 0: is a completely developed Smale horseshoe. The map Tj on 0; is cl.ose to the 
moment of the last tangency; i.e., the value of the parameter ,U is close to $j”“. At this moment, 
unstable whiskers of the hyperbolic set that lies in 0: are tangent, at points of some smooth 
curve, to stable whiskers of the hyperbolic set that lies in cj. ’ The latter, in intersection with 
the curve of tangency, form a specific (thick) Cantor set, what, as Newhouse has shown, is the 
reason for the nonremovable nature of the tangency. 

If we use not two, but a larger number of strips, then we can obtain degenerate homoclinic 
tangencies and periodic orbits. In particular, when three horseshoes are used, then cubic orbits 
can be formed. Figure 18 shows three horseshoes where WU(Oi) and WS(Oj) are quadratically 
tangent, as are WU(Oj) and Ws (Ok). The next figure (Figure 19) illustrates how from one of 
these structurally unstable contours one can, by a small perturbation, obtain a cubic tangency 
of the manifolds IV‘(Oi) and IV’(Ok). 

Taking into account a larger number of strips is a quite complicated problem. We bypass the 
difficulties if note, instead of calculating the multi-round return map, that due to Theorem 2, 
homoclinic tangencies of high orders can appear when a piece of IV‘ makes many rounds along the 
initial homoclinic orbit I?. Therefore, the multi-round return maps can presumably be modelled 
by the first return maps near orbits of highly degenerate tangencies. 

These maps are easily calculated. Indeed, let a two-dimensional diffeomorphism f have an orbit 
of homoclinic tangency of some order s. In this case, the local map TO still has the lform given 
by (4.1),(4.2); the global map can be written in the form 

T--x:+ =az+b(y-y-)+---) 

g = cz + d(y - y-y+1 -!-. . * ) (4.9) 

where, in the first equation, the dots stand for the second (and more) order terms and, in the 
second equation, for the terms of the order o(lxl + Iy - y-I’+l). 

216 S. V. GONCHENKO et al. 
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Figure 16. This figure shows how new heteroc1inic or homoc1inic tangencies are ob­
tained. Here, on the strips u? and O'J there are already developed Smale's horseshoes 
for the maps T; and Tj, respectively, but the upper horseshoe intersects the lower 
strip "nonregularly." In Figure (a), the manifold W"(Od is tangent to W8(Oj). In 
Figure (b), a piece W"(Oi) n O'J of the unstable manifold of the point 0; lies just 
slightly above the stable manifold of the point OJ and the curve Tj(W"(O,) n uJ) 
which is a part of the manifold W"(Oi) is tangent to W8(Oil; i.e., a homoc1inic 
tangency of the invariant manifolds of Oi takes place. 

the map Ti on a? is a completely developed Smale horseshoe. The map Tj on aJ is close to the 
moment of the last tangency; i.e., the value of the parameter J.L is close to J.Ljs. At this moment, 
unstable whiskers of the hyperbolic set that lies in a? are tangent, at points of some smooth 
curve, to stable whiskers of the hyperbolic set that lies in aJ. The latter, in intersection with 
the curve of tangency, form a specific (thick) Cantor set, what, as Newhouse has shown, is the 
reason for the nonremovable nature of the tangency. 

If we use not two, but a larger number of strips, then we can obtain degenerate homoclinic 
tangencies and periodic orbits. In particular, when three horseshoes are used, then cubic orbits 
can be formed. Figure 18 shows three horseshoes where WU(Oi) and WS(Oj) are qua.dratically 
tangent, as are WU(Oj) and WS(Ok)' The next figure (Figure 19) illustrates how from one of 
these structurally unstable contours one can, by a small perturbation, obtain a cubic! tangency 
of the manifolds WU(Oi) and W8(Ok)' 

Taking into account a larger number of strips is a quite complicated problem. We bypass the 
difficulties if note, instead of calculating the multi-round return map, that due to Theorem 2, 
homoc1inic tangencies of high orders can appear when a piece of WU makes many rounds along the 
initial homoclinic orbit r. Therefore, the multi-round return maps can presumably be modelled 
by the first return maps near orbits of highly degenerate tangencies. 

These maps are easily calculated. Indeed, let a two-dimensional diffeomorphism f have an orbit 
of homo clinic tangency of some order s. In this case, the local map To still has the form given 
by (4.1),(4.2); the global map can be written in the form 

x x+ =ax+b(y y-)+ ... , 

f} ex + d(y - y-)s+1 + ... , (4.9) 

where, in the first equation, the dots stand for the second (and more) order terms and, in the 
second equation, for the terms of the order o(JxJ + Iy - y-Js+1). 
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Figure 17. The bihorseshoe used for the proof of Theorem 1. In this situation, the 
invariant set of the map Ti on up is the developed Smale horseshoe. The map Tj 
on a: is close to the moment of the last tangency; i.e., the value of the parameter p 
is close to p$“. At this moment unstable whiskers of the hyperbolic set on up touch 
the stable whiskers of some hyperbolic subset on cry. 

Consider an s-parameter family fE, E = (~0, . . . , &+I), of maps close to f (fs = f) where 
parameters E are chosen such that they provides a general unfolding of the given tangency between 
IV“ and IV5 (see formula (2.1)). In this case, the global map takes the form 

~-cc+=az+b(y-y-)+~~*) 

g=cr++EgfE1(y-y-)+“’ + es-1(y - y-y-’ + d(y - y-y+1 + * * * . 
(4.10) 

Let us now consider the first return map Tk(&). The following lemma shows that it is close to a 
polynomial one-dimensional map. 

LEMMA 2. The map Tk can be brought to the form 

z = y +o ( Xkyk+y-k’s > , 

g = I& + E1y +. * * + E,-tys-l + dys+’ + 0 (Xkrk + y-klJ) ) 
(4.11) 
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Figure 17. The bihorseshoe used for the proof of Theorem 1. In this situation, the 
invariant set of the map Ti on u? is the developed Smale horseshoe. The map Tj 
on uJ is close to the moment of the last tangency; i.e., the value of the parameter p. 

is close to J.Lj". At this moment unstable whiskers of the hyperbolic set on u? touch 
the stable whiskers of some hyperbolic subset on C1J. 
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Consider an s-parameter family Ie, C = (co, ... ,cs-I), of maps close to I (fo == f) where 
parameters c are chosen such that they provides a general unfolding of the given tangency between 
WU and W 8 (see formula (2.1)). In this case, the global map takes the form 

x - x+ = ax + b(y - y-) + ... , 
y = ex + eo + CI(Y - Y-) + ... + es-l(Y - y-)s-l + d(y _ y-)s+1 + .... 

(4.10) 

Let us now consider the first return map Tk(c). The following lemma shows that it is close to a. 
polynomial one-dimensional map. 

LEMMA 2. The map Tk can be brought to the form 

x = y + 0 ()..k"(k + "(-k/S) , 

y = Eo + ElY + ... + Es_1ys-l + dyS+l + 0 ()..k"(k + "(-k/S) , 
(4.11) 
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Figure 18. The geometric construction by which it is possible to obtain cubic tangen- 
cies. Three horseshoes are shown, where W”(Oi) and Ws(Oj), as well as WU(Oj) 
and w’(ok) are tangent. 

by a linear transformation of the coordinates and the parameters. Here I& = yk(lS.l/S)(eo - 
r-ky- + . . .), ,l$ = yky-“14~-‘)ei. 

PROOF. By (4.2),(4.10), the map Tk is written in the following form (see the proof of Lemma 1): 

3 - xf = aX%(l + * ’ *) + b(y - y-) +. . . ) 

r-“$! (1 + y-kqk(ft,jj)) = dkx(l + .*.) 

+EfJ+El(y-y-)+... + Es-1(y - y-)“-’ + d(y - y-)S+’ +. . . . 

By the shift of the origin z -+ x + z+, y -+ y + y-, this map is brought to the form 

z = by + 0 (A’) + 0 (y2), 

-f-kg + y2”0(g) = (El-J - yky- + cx”x+ + *. .) + Ely + * * * + Es-lys-l + clys’-1 

+ 0 (ys+2) + XkO (1x1 + Iyl) . 

If we rescale the variables and the parameters as follows: 

x -+ by-“lSx, Y + Y-k’SY, 
(Eo _ ykY- + CAkx+ + . . . ) --) y-“(l+‘/s)Eo, 

Ei --+ Y 
-kyk/s(i-l)E, 

0 

then the map takes form (4.11). The lemma is proved. 

Returning to the initial quadratic homoclinic tangency, we see that for large numbers of rounds 
along the homoclinic orbit, the multi-round return maps are close to arbitrary one-dimensional 
polynomial maps in some regions of the parameter space and the degree of the polynomials 
becomes arbitrarily large when the number of rounds increases. Thus, these multi-round maps in 
a neighborhood of a single homoclinic tangency represent the whole one-dimensional dynamics. 
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Figure 18. The geometric construction by which it is possible to obtain cubic ta.ngen­
cies. Three horseshoes are shown, where WU(Oi) and W"(Oj), as well as WU(Oj) 
a.nd WS(O",) are tangent. 

by a linear transformation of the coordinates and the parameters. Here Eo = 'Yk(l+l/s)(eO -
'Y-ky- + ... ), Ei = 'Yk'Y-k/s(i-l)ei. 

PROOF. By (4.2),(4.10), the map Tk is written in the following form (see the proof of Lemma 1): 

x - x+ ::;:: aAkx(l + ... ) + b(y - y-) + ... , 
'Y-ky (1 + 'Y- k7]k(X,y)) = c-\kx(l + ... ) 

+ eo + el(y - y-) + ... + es-l(Y - y-)s-l + d(y _ y-)S+1 + .... 

By the shift of the origin x -+ x + x+, Y -+ Y + Y- , this map is brought to the form 

x = by + 0 (-\k) + 0 (y2) , 

'Y-ky + 'Y-2kO(y) ::;:: (eo - 'Y-ky- + CAkx+ + ... ) + elY + ... + es_lys-l + dy8+1 

+ 0 (yS+2) + -\kO (Ixl + Iyl) . 

If we rescale the variables a.nd the parameters as follows: 

x -+ b'Y- k/ sx, y -+ 'Y-k/sy, 

(eo 'Y-ky- + c-\kx+ + ... ) -+ 'Y-k(l+l/s) Eo, 

ei -+ 'Y- k'Yk/8 (i-l) E i , 

then the map takes form (4.11). The lemma is proved. 

Returning to the initial quadratic homo clinic tangency, we see that for large numbers of rounds 
along the homoclinic orbit, the multi-round return maps are close to arbitrary one-dimensional 
polynomial maps in some regions of the parameter space and the degree of the polynomials 
becomes arbitrarily large when the number of rounds increases. Thus, these multi-round maps in 
a neighborhood of a single homoclinic tangency represent the whole one-dimensional dynamics. 
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(4 (b) 
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Figure 19. This figure shows how, from a contour with two quadratic heteroclinic 
tangencies (Figure (a)), one can obtain a cubic tangency (Figure (d)). First, by a 
small perturbation we make LV(Oi) intersect Ws(Oj) transversely and make some 
piece of the manifold W”(Oi) lie just slightly above w’(ok) (Figure (b)). Then we 
make Wy(Oi) intersect WS(Ok) in four points (Figure (c)). There is a special path 
(Figure (e)) from Figure (b) to Figure (c) on which a cubic tangency of the manifolds 
W“(Oi) and w’(ok) (Figure (d)) takes place. 

In conclusion, we look at the structure of the set of strips for the multi-dimensional case. We 
also show how the procedure of resealing the first return map works here. 

Let f be a multidimensional CT-diffeomorphism (r > 3) with a saddle fixed point 0 whose 
stable manifold IV’ is m-dimensional and the unstable manifold W” is n-dimensional. Let WB 
and W” have a quadratic tangency at the points of a homoclinic orbit l?. 

A small neighborhood U of 0 U I’ is the union of a small (n + m)-dimensional disc Ua, and at 
finite number of small (n + m)-dimensional neighborhoods of the points of r which lie outside Ua ,, 
Like in the two-dimensional case, we denote the restriction flu, as Ta. The standard form of the 
map TO corresponds to the coordinates at which the local stable and unstable manifolds of 0 are 
straightened: W,,, 7J = {x = 0,u = O}, wa,, = {y = 0, v = 0) in some coordinates (2, y, U, v). This 
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Figure 19. This figure shows how, from a contour with two quadratic heteroc1inic 
tangencies (Figure (a», one can obtain a cubic tangency (Figure (d». First, by a 
small perturbation we make W"(Oi) intersect W8(Oj} transversely and make some 
piece of the manifold W"(Oi) lie just slightly above W"(Ok) (Figure (b». Then we 
make WU(Oi) intersect W"(Ok) in four points (Figure (c». There is a. special path 
(Figure (e» from Figure (b) to Figure (c) on which a. cubic tangency of the manifolds 
W"(Od and W8(Ok) (Figure (d» takes place. 
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In conclusion, we look at the structure of the set of strips for the multi-dimensional case. We' 
also show how the procedure of rescaling the first return map works here. 

Let f be a multidimensional Cr -diffeomorphism (r ?: 3) with a saddle fixed point 0 whos€: 
stable manifold W S is m-dimensional and the unstable manifold W U is n-dimensional. Let WS 
and WU have a quadratic tangency at the points of a homoclinic orbit r. 

A small neighborhood U of 0 Uris the union of a small (n + m)-dimensional disc Uo, and a, 
finite number of small (n + m )-dimensional neighborhoods of the points of r which lie outside Uo" 
Like in the two-dimensional case, we denote the restriction fluo as To. The standard form of thEl 
map To corresponds to the coordinates at which the local stable and unstable manifolds of 0 are 
straightened: WI~c = {x = O,u = O}, WI~c = {y = O,v = O} in some coordinates (x,y,u,v). ThiE; 
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Figure 20. The case of a three-dimensional map where the multipliers Al, X2, and ~1 
of the fixed point 0 are such that 0 < A2 < X1 < 1 < 71. Here the strips 0: c rI+ 
are three-dimensional “plates,” accumulating on W’ n II+ as k -t 00. The strips uk 
lie in a wedge abutting W” rl II-, asymptotically contracted along the nonleading 
coordinate u and tangent to the leading plane IA = 0 everywhere on W” n II-. 

allows one to write 2’0 in the form 

f = Ala: + fil@, Y, ~)a: + f12b Y, u, 21)~ ti = A~‘u, + f21h Y, VIZ + f22(~ Y, u, ~b, 

g = B1z + g11(z, ‘1L, Y>Y + 912(T Y, 219 VI% v = B2V + gm(& U, Y)Y + 922(? Y, U, v)TJ, 
(4.12) 

where fij and gij vanish at the origin. Here, the eigenvalues of the matrices Al and Bi are 
the leading multipliers of 0, and the eigenvalues of A2 and Bs are the nonleading multipliers. 
Correspondingly, z and y are leading coordinates and u and v are nonleading coordinates. If 
Xi is real, the matrix A1 has the form A1 = (Xi), and it has the form Al = X ?‘+ - sinp ( smp cosv > 
for complex Ai. For real yi, the matrix Br has the form Bi = yi, and it has the form Bi = 

Y ( 
cos1/) -sin+ 
sin+ cosq!J ) 

if yi is complex. 

Like it was done in [2,44], it can be shown that the multidimensional map Tc reduces to a 
form that is analogous in a sense to expression (3.4) which we have for the two-dimensional case. 
Namely, the following identities hold in some U-l-coordinates: 

fillt=O = 0, fljI(~=o,v=o) = 0, 

gilly=o = 0, Slj I(z=O,tL=O) = 0. 
(4.13) 

Analogously to the two-dimensional case, in such coordinates the map T,k is linear in the lowest 
order. Specifically, the map Tt : (zo, yo,uo,vo) H (zk, yk, ‘&, ‘&) for sufficiently large k can be 
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Figure 20. The case of a three-dimensional map where the multipliers AI, A2, and ")'1 

of the fixed point 0 are such that 0 < A2 < Al < 1 < ")'1. Here the strips 0'£ C n+ 
are three-dimensional "plates," accumulating on W· n n+ as k - 00. The strips O'k 
lie in a wedge abutting W" n n-, asymptotically contracted along the nonleading 
coordinate 'U and tangent to the leading plane 'U = 0 everywhere on W" n n- . 

allows one to write To in the form 

x = A1x + 111 (x, y, v)x + /!2(X, y, U, v)U, 

fi = B1X + 911(X, U, y)y + 912(X, y, u, v)v, 

u = A2u + h1(X,y,V)X + h2(X,y,U,v)u, 
(4.12) 

ii = B2V + 921 (x, U, y)y + 922(X, y, u, v)v, 

where lij and 9ij vanish at the origin. Here, the eigenvalues of the matrices Al and Bl are 
the leading multipliers of 0, and the eigenvalues of A2 and B2 are the nonleading multipliers. 
Correspondingly, x and y are leading coordinates and u and v are nonleading coordinates. If 
>'1 is real, the matrix Al has the form Al (>'1), and it has the form Al ,\ (c~s", -sin",) 

sm", cos'" 
for complex >'1. For real'")'l, the matrix Bl has the form Bl '")'1, and it has the form B1 

(
COS'" - sin",) . f' 1 

'")' sin", cos '" 1 '")'1 IS comp ex. 
Like it was done in [2,44], it can be shown that the multidimensional map To reduces to a 

form that is analogous in a sense to expression (3.4) which we have for the two-dimensional case. 
Namely, the following identities hold in some Or-I-coordinates: 

lillx=o == 0, 

9illy=0 == 0, 

/!jl(y=o,v=O) = 0, 

91j 1 (x=O,,,=O) = 0. 
(4.13) 

Analogously to the two-dimensional case, in such coordinates the map Tt is linear in the lowest 
order. Specifically, the map Tt : (xo, Yo, Uo, vo) ...... (Xk' Yk, Uk, Vk) for sufficiently large k can be 
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written as 

Figure 21. The three-dimensional case where the multipliers X1, 71, and 72 of the 
fixed point 0 are such that 0 < X1 < 1 < y1 < 72. Here the strips ai C II- are 
three-dimensional “plates,” accumulating on W” n II- as k -P co. The strips ui 
lie in a wedge abutting Ws n IIf, asymptotically contracted along the nonleading 
coordinate w and tangent to the leading plane v = 0 everywhere on W’ n II+. 

(4.14) 

1 A A 
where x and 9 are constants such that 0 < x < A, T > r and the functions &,&,qk,& are 
uniformly bounded at all k along with their derivatives up to the order (T - 2). 

It is easily seen from these formulae that the points whose iterations approach a small neighbor- 
hood II- of some homoclinic point M- E W$, under the action of the map To, form a countable 
number of (n + m)-dimensional strips ui in a small neighborhood II+ of some homoclinic point 
M+ E W&. For sufficiently large k, the strips ui are strongly contracted along the v coordinate, 
while their images ui = T,kai are contracted along the u coordinate (Figures 20 and 21). In the 
projection onto the leading coordinates, the strips will appear as shown in Figures 22-25. In the 
csse of complex leading multipliers, the strips lie in involuted rolls which wind up, respectively, 
on the stable or the unstable manifold. 

Using formulae (4.14), one can also calculate the first return maps Tk : ug + ui. In Case (l,l), 
there are no fundamental differences from the two-dimensional case due to the reduction theorem.. 
The other cases are more complicated. Here, on most of the strips ui there exist invariant 

written as 
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Figure 21. The three-dimensional case where the mUltipliers AI, 1'1, and 1'2 of the 
fixed point 0 are such that 0 < Al < 1 < 1'1 «1'2. Here the strips O'~ C rr- are 
three-dimensional "plates," accumulating on W" n rr- as k ..... 00. The strips 0'£ 
lie in a wedge abutting W· n rr+, asymptotically contracted along the nonleading 
coordinate v and tangent to the leading plane v = 0 everywhere on W· n rr+. 

k 'k Xk = A1XO + A ek(XO,Uo,Yk,Vk), 
'k Uk = A ek(XO, uo, Yk, Vk), 

Yo BlkYk + -y-k'Y/k(XO, UO, Yk, Vk), 

Vo -y-kilk(XO, UO, Yk, Vk), 
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(4.14) 

where 5. and -Yare constants such that 0 < 5. < A, -y > 'Y and the functions ek, ek, 'Y/k, ilk are 
uniformly bounded at all k along with their derivatives up to the order (r - 2). 

It is easily seen from these formulae that the points whose iterations approach a small neighbor­
hood n- of some homoclinic point M- E Wl~c under the action of the map To, form a countable 
number of (n + m)-dimensional strips O'~ in a small neighborhood n+ of some homo clinic point 
M+ E Wl~c' For sufficiently large k, the strips O'~ are strongly contracted along the v coordinate, 
while their images O'~ = TtO'~ are contracted along the U coordinate (Figures 20 and 21). In the 
projection onto the leading coordinates, the strips will appear as shown in Figures 22-25. In th,e 
case of complex leading multipliers, the strips lie in involuted rolls which wind up, respectively, 
on the stable or the unstable manifold. 

Using formulae (4.14), one can also calculate the first return maps Tk : O'Z - o-z. In Case (1,1), 
there are no fundamental differences from the two-dimensional case due to the reduction theorem. 
The other cases are more complicated. Here, on most of the strips O'Z there exist invariant 
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Figure 22. The projections of the multidimensional strips 0: and u: on the leading 
plane (u,v) = 0 in Case (1,l). These projections look the same as in the two- 
dimensional case. 

manifolds Mk on which the map Tk is close to the one-dimensional parabola map (see (3.1)), 
while along the directions complementary to such a manifold there is contraction or expansion 
that is stronger than on Mk. The manifold Mk is not a global invariant manifold seizing all 
dynamics of the system in the neighborhood of the tangency, but it is an invariant manifold for 

o the map Tk defined on the single strip ok. Nevertheless, the presence of these invariant Imanifolds 
allows one to reduce some questions to the study of two-dimensional maps Tklmb. In this way, 
the multidimensional version of Theorem 1 was proved in [30]. 

At the same time, there exists here a countable number of nonstandard strips, on which the 
map Tk is essentially multidimensional. Thus, if the product D of all the leading multipliers is 
less than unity, then for a countable number of strips D: the first return map is close to one of 
maps given by formulae (3.2)-(3.4), f or some resealed coordinates (we write only that part of the 
map which corresponds to nontrivial behavior: for the other variables the map Tk acts as strong 
contraction or strong expansion). 

We explain this statement in more detail for Case (2,l) at D = X2y < 1 and Xy > 1. For 
the sake of simplicity, we suppose that there are no nonleading multipliers; i.e., we consider the 
three-dimensional case where the multipliers of 0 are X1,2 = Xe*@ and y (here 0 < X < 1, y > 1). 

LEMMA 3. In the case under consideration, there exist infinitely many strips ui for which the 
map Tk takes the form 

31 = 21 + Elk(Zlr 22, Y), 

32 = Y +&Zk(Zl,ZZ,Y), (4.15) 

&? = M - Y2 - Bzl + &3k(xl, 22, ?4), 

in some resealed coordinates. Here M and B are resealed parameters which can take arbitrary 
finite values for k large enough; the functions E& tend to zero as k + co. 

PROOF. By (4.12),(4.13), the map TO has the form 

21 = X(x1 coscp - 22sincp) + 0 (llz1121yl) , 

Z2 = X(z2 coscp + ZI sincp) + 0 (ll~:1j~lyl) , (4.16) 

!J = YY + 0 (II4 lY12> * 

Take a pair of homoclinic points M-(0,0, y-) E IV;, and M’(a:,z$,O) E PVC,. Since W“ 
and Ws have a quadratic tangency at M +, the global map Tl acting from a small neighborhood 
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Figure 22. The projections of the multidimensional strips a~ and a~ on the leading 
plane (u,v) = 0 in Case (1,1). These projections look the same as in the two­
dimensiona.l case. 

manifolds Mk on which the map Tk is close to the one-dimensional parabola map {see (3.1)), 
while along the directions complementary to such a manifold there is contraction or Elxpansion 
that is stronger than on Mk. The manifold Mk is not a global invariant manifold s.eizing all 
dynamics of the system in the neighborhood of the tangency, but it is an invariant manifold for 
the map Tk defined on the single strip ol Nevertheless, the presence of these invariant manifolds 
allows one to reduce some questions to the study of two-dimensional maps TklMk' In this way, 
the multidimensional version of Theorem 1 was proved in [30j. 

At the same time, there exists here a countable number of nonstandard strips, on which the 
map Tk is essentially multidimensional. Thus, if the product D of all the leading multipliers is 
less than unity, then for a countable number of strips 0'2 the first return map is close to one of 
maps given by formulae (3.2)-{3.4), for some rescaled coordinates (we write only that part of the 
map which corresponds to nontrivial behavior: for the other variables the map Tk acts as strong 
contraction or strong expansion). 

We explain this statement in more detail for Case (2,1) at D = A2,,/ < 1 and A,,/ > 1. For 
the sake of simplicity, we suppose that there are no nonleading multipliers; i.e., we consider the 
three-dimensional case where the multipliers of 0 are A1,2 = Ae±i<p and,,/ (here ° < A < 1, 'Y > 1). 

LEMMA 3. In the case under consideration, there exist infinitely many strips 0"2 for which the 
map Tk takes the form 

Xl = Xl + elk(Xl, X2, y), 

X2 = Y + e2k(Xl, X2, y), 

iJ = M - y2 - BXl + e3k(Xl! X2, y), 

(4.15) 

in some rescaled coordinates. Here M and B are rescaled parameters which can take arbitrary 
finite values for k large enough; the functions eik tend to zero as k -> 00. 

PROOF. By (4.12),(4.13)' the map To has the form 

Xl A(Xl COS<p - X2 sin<p) + 0 (1IxI12Iyl) , 
X2 A(X2 cos <p + Xl sin <p) + 0 (lIxl12lyl) , ( 4.16) 

iJ = 'YY + 0 (1IxlllyI2) . 

Take a pair of homo clinic points M-{O,O,y-) E WI~c and M+(xt,xt,O) E WI~c' Since WU 

and W8 have a quadratic tangency at M+, the global map T1 acting from a small neighborhood 
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Figure 23. The three-dimensional strips ug and LT~ in Case (2,1), where the fixed 
point 0 has multipliers 0 Xl.2 = Xe*iv and y1 > 1. Here the strips ug c II+ are 
three-dimensional ‘Lplates” accumulating on Wa rl II+ as k -+ co. The strips cr: lie 
in the involuted roll, wound onto the segment W” fl II-. 

of M- into a small neighborhood of M+, has the form 

21 -x1 + = bl(Y - y-) + a1121 + a1222 + * * * ) 

22 - x2 + = bz(y - y-) + a2121 + a2222 + . .* , (4.17) 

a = p + Cl21 + c252 + d(y - y-y + . . . , 

where bl + bz # 0, cf + cl # 0 since TI is a diffeomorphism, and d # 0 since the tangency is 
quadratic; p is the splitting parameter. 

We may assume bl # 0. By the orthogonal coordinate transformation 

x1 4 x1cosa+x2sincr, 22 -+x2coscr--xlsina, 

• 
• • 

I 
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Figure 23. The three-dimensional strips 0'2 and u~ in Case (2,1), where the fixed 
point 0 has multipliers 0 '>'1,2 := .>.e±i'P and 1'1 > 1. Here the strips u2 c n+ are 
three-dimensional "plates" accumulating on W· n n+ as k -> 00. The strips O'~ lie 
in the involuted roll, wound onto the segment WU n n- . 

of M- into a small neighborhood of M+, has the form 

Xl - xt = bl(y - y-) + aUXl + al2X2 + ... , 
X2 - xt = b2(y - y-) + a21Xl + a22x2 + ... , 

fi = /.L + CIXI + C2X2 + d(y - y-)2 + ... , 

223; 

(4.17) 

where b~ + b~ =1= 0, c~ + c~ ::f:. 0 since Tl is a diffeomorphism, and d ::f:. 0 since the tangency is 
quadratic; /.L is the splitting parameter. 

We may assume b1 =1= O. By the orthogonal coordinate transformation 
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Figure 24. The three-dimensional strips c$ and ui in Case (1,2), where the fixed 
point 0 has multipliers 0 < X1 < 1 and 71,~ = ye*“+. Here the strips u: c II- are 
three-dimensional “plates” accumulating on IV” n II- as k -+ co. The strips uz lie 
in the involuted roll, wound onto the segment W* n II+. 

that obviously do not change form (4.16) of the local map, the term bs(y - y-) in the second 
equation of (4.17) can be eliminated if bs coscr - br since = 0, and the global map takes the form 

&-x1 + = b(y - y-) + UllXl + a12Q, -I- * * - , 

52 - x2 + = a2121 + a2222 + *. . ) (4.18) 

g = /.J + Cl21 + c23-3 + d(y - y-)2 + . * * ) 

with new coefficients x7, oij, ci. Here b # 0, and still c: + cz # 0. 
By (4.14),(4.18), the first return map Tk = TlT,k is written in the form 

3’1 - x;’ = b(y - y-) + allXkxl + a&z2 + *. . , 

22 - x; = a&?q + a&&2 + * * * ) 

-l-k(s - Y-1 + -/-“Y- + ?-kqk(% 8) = p + ~kPlk((P)zl + A2p2k(&2 

+ d(y -y-)2 + *. * , 

(4.19) 

where &(Cp) = cl cos kcp + c2 sin kcp, @&((P) = c2 cos kcp - cl sin kcp. 
Shiftingtheorigin: y-+y+y-,z+z-t-~++..a, we can eliminate the constant terms in the 

first two equations of (4.19) and the map takes the form 
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Figure 24. The three-dimensional strips 0'2 and O't in Case (1,2), where the fixed 
point 0 has multipliers 0 < >'1 < 1 and "(1,2 = -ye±i.p. Here the strips o'~ C n- are 
three·dimensional "plates" accumulating on W" n n- as k ..... 00. The strips 0'£ lie 
in the involuted roll, wound onto the segment w· n n+. 

that obviously do not change form (4.16) of the local map, the term b2(y y-) in the second 
equation of (4.17) can be eliminated if b2 cos a bl sin a 0, and the global map takes the form 

Xl - xi = b(y - y-) + allXl + a12X2 + ... , 
X2 - xt = a21 x l + a22x2 + ... , 

y = f..L + CIXI + C2X2 + d(y - y-)2 + ... , 

with new coefficients xi, aij, Ci· Here b #- 0, and still ci + c~ #- o. 
By (4.14),(4.18), the first return map Tk = TIT~ is written in the form 

Xl xi = b(y y-) + au),kxl + al2),kx2 + ... , 
X2 - xt = a21),kxl + a22),kx2 + ... , 

'Y-k(y y-) + 'Y-ky- + i- k17k(X, Y) = f..L + )..k/3lk(<P)Xl + ),2/32k(<p)X2 

+ d(y _ y-)2 + ... , 

where /31k (<p) = Cl cos k<p + C2 sin k<p, /32k (<p) = C2 cos k<p - C1 sin k<p. 

(4.18) 

(4.19) 

Shifting the origin: y ..... y + y-, x --+ x + x+ + ... , we can eliminate the constant terms in the 
first two equations of (4.19) and the map takes the form 
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Figure 25. The four-dimensional strips up and uk in Case (2,2), where the fixed 
point 0 has multipliers 0 Xl.2 = Xe*i’f’ and 71 2 = 7efi$. Here the strips cri c II- , 
lie in the involuted roll wound onto the two-dimensional area W” 13 II-. The strips 
u: lie in the involuted roll, wound onto the W’ n II+. 

21 = by + A”0 (1141) + 0 (Y2) I 

22 = @?J”Xl + azzXkz2 + 0 (y2) + Xko (~~z~~) , 

0 
1 

-k 

g+ 
Y 

o(l%l + ll~ll> = Ml + dyky2 + (b)khk(dZ1 + (h)lc@2k(+2 

(4.20) 

+ Xk-ikO (11412 + IYI * 1141) + Yk4Y2)> 

where 

Ml = -yk (P + A’Plk(‘p)<f + Ak@2k(‘P)t2+ - Y-kY- + *‘*) * 

Resealing the variables 

b 
Zl + -- qyk, 

b 
d 

Q + -- u2&2y-k, 
d Y + -;YTk, 

where 

Quasiattra.ctors 

Figure 25. The four-dimensional strips crZ and crk in Case (2,2), where the fixed 
point 0 has multipliers 0 >'1,2 == >.e±i'P and ')'1,2 == ,),e±i1/J. Here the strips 0'1 c n­
lie in the involuted roll wound onto the two-dimensional area WU n n-. The strips 
0"2 lie in the involuted roll, wound onto the W' n n+. 

Xl = by + )..kO (11xll) + 0 (y2) , 

X2 = a21)..k x1 + a22)..kx2 + 0 (y2) + )..ko(lIxID, 

17+ (~) -k 0(1171 + Ilxll) = Ml +d'ly2 + ()..')')k,Blk(~)Xl + ()..')')k,B2k(~)X2 
+ )..k')'kO (11 x11 2 + Iyl . Ilxll) + ')'kO(y2) , 

Rescaling the variables 

225 

(4.20) 
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we get the following expression for the map Tk: 

31 =y+... )  

22 = 321 + . *. )  (4.21) 

g = M - y2 - &cl+ (x2$ k PZk(cp)~Z + . . * , 

where the dots stand for the terms which tend to zero as k -+ 00; M = -dykMl, B = 
-b@lk(V+~Y)“. 

Recall that we consider the case Xy > 1, X2y < 1. Therefore, (X2y)k < 1 and (AT)~ B 1 
at large k. Thus, the term with z2 in the third equation of (4.21) is small, so the map is now 
brought to form (4.15). The coefficient B is the product of the large quantity (XT)~ and the value 
& = cl cos kcp + c2 sin kp. When the ratio z is abnormally (exponentially) well approximated 
by rational fractions (such ‘p are dense on the interval (0, r)), the coefficient & can be made 
appropriately small for a countable number of values of k, so that B may take an arbitr,ary finite 
value. The lemma is proved. 
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we get the following expression for the map Tk: 

Xl = Y + ... , 
X2 = Xl + ... , (4.21) 

fj = M - y2 - BXl + (,\2'Y)k {32dip)X2 + ... , 

where the dots stand for the terms which tend to zero as k ---t 00; M = -d-yk M l , B = 
-b{31k( ip)('\'Y)k. 

Recall that we consider the case '\1' > 1, ,\21' < 1. Therefore, (,\2'Y)k «: 1 and (A'Y)k » 1 
at large k. Thus, the term with X2 in the third equation of (4.21) is small, so the map is now 
brought to form (4.15). The coefficient B is the product of the large quantity (A'Y)k and the value 
(3u Cl cos kip + C2 sin kip. When the ratio ;: is abnormally (exponentially) well approximated 
by rational fractions (such ip are dense on the interval (0,11")), the coefficient {3u can be made 
appropriately small for a countable number of values of k, so that B may take an arbitr.ary finite 
value. The lemma is proved. 
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