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Abstract: The appearance of elliptic periodic orbits in families of n-dimensional smooth
repelling billiard-like potentials that are arbitrarily steep and limit to Sinai billiards is
established for any finite n. For typical potentials, the stability regions in the parameter
space scale as a power-law in 1/n and in the steepness parameter. Thus, it is shown
that even though these systems have a uniformly hyperbolic (albeit singular) limit, the
ergodicity of this limit system is destroyed in the more realistic smooth setting. The
considered example is highly symmetric and is not directly linked to the smooth many
particle problem. Nonetheless, the possibility of explicitly constructing stable motion
in smooth n degrees of freedom systems limiting to strictly dispersing billiards is now
established.

1. Introduction

At sufficiently high temperature, many-particle gas systems show fast decay of corre-
lation, and, for most initial configurations, the time averages of this system and the
appropriately defined ensemble averages coincide. This fundamental observation of
Boltzmann lead to the development of the theory of statistical mechanics. It was further
suggested by Boltzmann that at such temperatures the particles interaction resembles
that of hard spheres, independent of the details of their effective potentials, hence, that a
gas of hard spheres supplies an instructive universal model for studying statistical prop-
erties of gases. Notably, Boltzmann considered the many-particle case. Krylov explained
that the fast decay of correlations of the hard sphere model is caused by the instability
associated with the dispersive nature of the collision between the hard spheres, simi-
lar to the instabilities that appear in geodesic flows with negative curvature [15]. Sinai
found that this instability appears in any dispersing billiard1 geometry (later on called

1 The behavior of a point particle travelling with a constant speed in a region D, undergoing elastic colli-
sions at the region’s boundary, is known as the billiard problem. The billiard is dispersing if its boundary is
piecewise strictly concave when looking from the billiards’s interior.
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Sinai billiards2) in any dimension, and set the mathematical foundation for rigorously
studying such systems. Sinai proved, in his seminal works [30,32], that such systems
are ergodic and hyperbolic in the two-dimensional billiard case. He further stated (the
Sinai-Boltzmann conjecture3) that if one considers the motion of N hard spheres on a
d-dimensional torus, this motion will be mixing4 for any d ≥ 2 and N ≥ 2. In particu-
lar, the Sinai-Boltzmann conjecture means that for any N , d ≥ 2, ergodicity is achieved
independently of the number of particles because of the universal nature of the instability
associated with the convex particles collision.

We propose that the study of real particles, with smooth potentials, or, more generally,
in studying Hamiltonians with smooth steep n-dimensional potentials, may shed light
on the role of dimensionality in this problem. Thus, to formalize this notion, we consider
a Hamiltonian

H =
n∑

i=1

p2
i

2
+ W (x; ε), (1.1)

where W (x; ε) is a smooth potential that becomes a hard-wall potential5 in the limit
ε → 0:

W (x; ε) →
ε→0

{
0 x ∈ D\∂D,
c x ∈ ∂D.

In general, studying (1.1) for a finite ε value is a formidable task. Boltzmann’s insight
and Sinai’s theory, in which the n-dimensional nonlinear system is replaced by the study
of billiards, serve as a great simplification. To mimic the soft nature of the particles
interactions and still obtain a tractable system, finite-range axis-symmetric potentials
were introduced. It was established that these systems may be studied by a modified
(non-smooth) billiard map, and thus that in two dimensions some configurations remain
ergodic [30,31,16,6,3], while other configurations may possess stability islands [2,5].
More recently, some higher dimensional configurations were proved to be hyperbolic
[4].

Yet, it was noticed in [35] that the behavior of any smooth approximation has to
be fundamentally different from the discontinuous behavior of the billiards. Indeed, in
mathematical terms the Krylov-Sinai instability translates to the existence of a universal
hyperbolic structure in any dispersing billiard problem. More precisely, the family of
cones dx · dp > 0 is forward invariant with respect to the billiard flow in the dispersing
case independent of the details of the billiard’s shape. After each reflection from the
billiard’s boundary, the cones are mapped into each other with flipped orientation (the
normal component of the momentum p changes sign, while all other components are
preserved), see [32,37,35]. In particular, nearby orbits experiencing a different number
of reflections (i.e. near tangencies or near corners), have unstable manifolds with oppo-
site orientability properties – one orientable and the other non-orientable [35]. Such
a discontinuous dependence of the unstable manifold on initial conditions in smooth
uniformly hyperbolic systems is impossible.

2 Strictly dispersing billiards for which the smooth boundary components intersect at positive angles (no
cusps are allowed).

3 Proved initially for the N = d = 2 by Sinai [32], then for the N = 2, d = 3 by Sinai and Chernov
[33] whereas the most general higher dimensional cases were studied by Krámli, Simányi, and Szász, see
[11–14,26,25,29,27,28].

4 On the reduced manifold, eliminating the total energy and momenta conservation laws.
5 Here c > 0 may be finite or infinite, and we always take the particle’s energy, h, to be positive and strictly

smaller than c so that the particle cannot cross ∂D.
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On the other hand, the hyperbolic structure near regular orbits of the billiard (e.g.
periodic orbits that are bounded away from the singularity set) is typically inherited by
steep billiard-like potentials [35,21]. It follows that the Krylov-Sinai instability mech-
anism indeed controls the smooth dynamics but only for some limited time scale, after
which the non-hyperbolic behavior which stems from the billiard singularities will pre-
vail. Therefore, we propose that the dependence of this instability time scale on the
number of particles and other parameters is the most relevant question in the study of
many-particle systems.

One concludes then, that in order to study the dynamics of real particles, one needs to
study (1.1) for smooth steep potentials, utilizing the theoretical advancements regarding
the singular billiard limit as a tool in this study. This approach requires a well-defined
limiting procedure that is well developed by now [17,22,21].

This formulation was first introduced in the most general two-dimensional setting of
Sinai billiards (not necessarily axis-symmetric, nor of finite range) in [22]. After proving
that regular hyperbolic orbits of the billiard persist in the smooth flow, two mechanisms
by which the billiards ergodicity property is destroyed were identified [22,36]. One such
mechanism is a tangency: periodic orbits or homoclinic orbits that are tangent to the bil-
liard’s boundary produce islands of stability [22]. Another mechanism are corners–a
sequence of regular reflections that begins and ends in a corner (termed a corner poly-
gon) may, under some prescribed conditions, produce stable periodic orbits [36]. In both
cases it was shown that a two-parameter family of potentials W (x;µ, ε) (ε is the steep-
ness parameter and µ is responsible for a regular continuous change of the billiard’s
geometry) possesses a wedge in the (µ, ε)-plane, at which the Hamiltonian flow has an
elliptic periodic orbit. This orbit limits to the tangent billiard orbit or the corner polygon
as ε → 0. These findings were shown to correctly describe the motion of cold atoms in
atom-optics billiards in laboratory experiments [10].

What would one expect in the multi-dimensional case? Can there be other types
of universal instabilities, besides the Krylov-Sinai one, that would make such systems
ergodic for sufficiently steep potentials? Namely, would the billiard’s ergodicity be
preserved for n-dimensional steep billiard-like potentials when n ≥ 3? While there
are some conjectures regarding the generic appearance of islands in smooth n degrees
of freedom systems, results of this nature appeared only in the case of C1-flows and
assume the systems are not partially hyperbolic (see [34,19,1,24]), which is the heart
of the problem here. Indeed, the above described mechanism of orientation flipping,
which corresponds to a direct generalization of our previous two-dimensional results
(e.g. [22]) to dispersing n-dimensional billiards, will produce orbits that have one pair
of imaginary multipliers (ruining hyperbolicity), yet all the other (n − 2) pairs can still
correspond to hyperbolic behavior. Thus, though destroying hyperbolicity, this mech-
anism is not necessarily going to kill ergodicity in the smooth case, as the existence
of some uniform partially hyperbolic structure is not ruled out. This intuition might
lead one to believe that the mechanisms described in [22,36] for ruining ergodicity are
inherently two-dimensional.

However, it was numerically demonstrated recently that regions of effective stability,
hereafter called islands, are created in steep dispersing three-dimensional billiards for
what appears to be arbitrarily small ε [20]. Before further describing this construction
and its current generalization to the n degrees of freedom case, let us discuss the issue
of islands in the multi-dimensional context.

As opposed to the two-dimensional situation, due to the possible existence of Arnold
diffusion, one cannot claim that in the vicinity of a non-degenerate non-resonant elliptic
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Fig. 1. The billiard geometry in the two-dimensional and three-dimensional cases.

orbit there exists an invariant open neighborhood (on energy surfaces or on the full phase
space). Nonetheless, by KAM theory, near such elliptic orbits there exists a positive mea-
sure set foliated by KAM-tori that corresponds to trajectories that remain forever near
the elliptic trajectory. Furthermore, while other trajectories in this neighborhood may
perhaps escape, this can take an exponentially long time [18,7] (namely, such islands
may correspond to high-dimensional dynamical traps, generalizing the two-dimensional
stickiness phenomena). Thus, hereafter, an island in the multi-dimensional context will
be defined as the small neighborhood of the elliptic orbit which is effectively stable [7],
bearing in mind that only in the two degrees of freedom case this neighborhood is known
to correspond to an invariant set.

The islands constructed in [20] are produced by a highly symmetric orbit of the
smooth system which visits the vicinity of a symmetric 3-corner. The 3-corner is a point
at which three smooth spheres of identical radius intersect in a symmetric fashion, so that
only one characteristic parameter µ controls the angle of their intersection (µ = 0 cor-
responds to a cusp whereas µ = 1 corresponds to a complete overlap of the spheres, see
Fig. 1). It is demonstrated numerically in [20] that for any value of ε there are intervals
ofµ values for which the symmetric orbit is elliptic. Here, we generalize this example to
the n-dimensional case, for arbitrary large n, proving, that for certain classes of smooth
repelling potentials (such as the power-law family) the smooth symmetric orbit which
enters the vicinity of an n-corner has, for arbitrary small ε, intervals of µ values for
which it is elliptic (all its 2n multipliers belong to the unit circle). Furthermore, these
intervals converge to positive µ values and their length, for sufficiently small ε values,
scales as a function of εn. In other words, we show that for arbitrarily large n, we can con-
struct n-dimensional Sinai billiards and corresponding families of billiard-like smooth
potentials, where, for arbitrary steepness the smooth flow possesses elliptic behavior.
Our main result may be summarized by the following theorem:

Theorem 1. There exist families of analytic billiard potentials that limit (in the sense of
[36]), as the steepness parameter ε → 0, to Sinai billiards in n-dimensional compact
domains6, yet, for arbitrary small ε, the corresponding smooth Hamiltonian flows have
stable (elliptic) periodic orbits.

6 In particular, for any finite n such billiards are hyperbolic, ergodic and mixing.
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Proof. We construct specific families of n-dimensional billiards depending on a param-
eter µ, such that the billiards are Sinai billiards for any µ > 0 depending smoothly on
µ for µ ∈ (0, 1) (Sect. 2). We then consider families of potentials W (x;µ, ε) that limit
as ε → 0, for any fixed µ, to these billiards. We establish that for sufficiently small ε
these Hamiltonian flows have a periodic orbit γ (t, µ, ε) and we prove that the Floquet
multipliers of this orbit may be found by solving a linear second order equation with a
time-periodic coefficient (Sect. 3 ). This coefficient depends on µ, ε and n as param-
eters, and it approaches a sum of delta-like functions as ε → 0. For certain classes of
W (x;µ, ε) (e.g. when W (x;µ, ε) decays as a power-law in the distance to the scatter-
ers) we are able to analyze the asymptotic behavior of the emerging linear second order
equation: we prove that for these potentials there are countable infinity values of µ, one
of them given by 1√

n
(i.e. bounded away fromµ = 0, 1), from which a wedge of stability

region in the (µ, ε) plane emerges. Namely, we prove that for any n, for arbitrary small
ε, there exists an interval of µ values at which γ (t, µ, ε) is linearly stable (Lemma 1 in
Sect. 3). ��

In particular, this theorem proves that such systems are not partially hyperbolic.

The paper is ordered as follows; we first construct the geometry of the limiting bil-
liard domain. The construction of the billiards boundary, by intersecting several (n −1)-
dimensional spheres in Rn , is valid for any finite dimension n. Then, we establish that
in the smooth case, for sufficiently small ε, there exists a symmetric periodic orbit γ (t)
which corresponds to the one dimensional motion along the diagonal (in the n-dimen-
sional space), and that this motion may be found by integrating a one-degree of freedom
system which is independent of n. Next we show that the linear stability analysis about
this motion is governed by a single second order linear differential equation with a time
periodic coefficient in which n appears as a parameter. In the third section we con-
struct asymptotic solutions to this equation showing that for small εn it has intervals of
parameter values at which γ (t) is linearly stable, thus establishing the main theorem.
Precise estimates of the length of these intervals are found for the power-law case. In
the last section we integrate numerically these equations and compare the numerically
found wedges of stability with the corresponding asymptotic estimates. Finally, we dem-
onstrate the appearance of islands of effective stability by numerical integration of the
symmetric n d.o.f. system and of a slight asymmetric perturbation of it for a few n values
(n = 2, 3, 10) for two different types of potential families – the power-law family and
the Gaussian family (e.g. we present islands of effective stability of dispersing, repelling,
nonlinear 20 dimensional system).

2. Construction of the Billiard and the Limiting Smooth Flows

2.1. The billiard geometry. Define the n-dimensional billiard’s domain D as the region
exterior to (n + 1) spheres Sn−1: one sphere �n+1 of radius R which is centered on the
diagonal at a distance L from the origin, i.e. at the point 1√

n
(L , . . . , L), and n spheres

�1, . . . , �n of radius r , each centered along a different principle axis at a distance

0 ≤ l ≤ r
√

n
n−1 from the origin, i.e. the sphere�k is centered at (0, . . . , l︸ ︷︷ ︸

k

, . . . , 0) (Fig. 1).

To obtain a bounded domain, we enclose this construction by a large n-dimensional
hyper-cube centered at the origin (we will look only at the local behavior near the diago-
nal connecting the radius-r spheres �1, . . . , �n to the radius-R sphere �n+1 and thus we
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will not be concerned with the form of the outer boundary). The diagonal line (ξ, . . . , ξ)
intersects the radius-R sphere in the normal direction and the spheres�1, . . . , �n at their
common intersection point Pc = (ξc, . . . , ξc), where (Fig. 1):

ξc = l

n
+

1√
n

√

r2 − l2

(
1 − 1

n

)
. (2.1)

Thus, for L > R +
√

n ξc, it defines a corner ray

γ =
{
(ξ, . . . , ξ)| ξ ∈

(
ξc,

L − R√
n

)}

that starts at the corner Pc, gets reflected from the radius-R sphere and returns to Pc (and
then gets stuck as there is no reflection rule at the corner).

Notice that the dynamics in the billiard is unchanged when all the geometrical param-
eters are proportionally increased, hence, with no loss of generality, we may set r = 1
and regard all the other parameters as scaled by r . It is convenient for us to express the
scaled l and L through

µ =
√

1 −
(

1 − 1

n

)
l2

r2 and d = L − R − √
n ξc

r
. (2.2)

The parameter d corresponds to the length of the diagonal ray γ whereas µ governs the
angle created by the intersection of the n spheres at the corner point (both parameters
have a finite limit as n → ∞). At µ = 0 the n spheres are tangent to each other, namely
the corner becomes a cusp. The case µ = 1/

√
n corresponds to l = r, hence the spheres

intersect at a right angle. The caseµ = 1 corresponds to l = 0, namely the limit at which
the n spheres collapse to a single sphere of radius r which is centered at the origin. In
this case the diagonal becomes a hyperbolic periodic orbit of the billiard (note that the
limit µ → 1 is singular: at µ = 1 the billiard’s boundary is smooth, whereas for all
µ ∈ (0, 1) it has a corner).

2.2. Smooth motion – the diagonal periodic orbit. In this section we establish that for
sufficiently small ε the diagonal corner ray γ of the billiard flow transforms into a peri-
odic orbit of the smooth flow. Consider the smooth motion in the scaled billiard region,
governed by the Hamiltonian (1.1), i.e.

H =
n∑

i=1

p2
i

2
+ W (x1, . . . , xn) (2.3)

with

W (x; ε) = 1

n

n∑

k=1

V

(
Qk

ε

)
+ V

(
Qn+1

ε

)
, (2.4)

where Qk(x) (the pattern function of [23,21]) is the distance from x to �k :

Qk(x) =
√√√√

n∑

i=1

x2
i − 2lxk + l2 − 1 for k = 1, . . . , n,

Qn+1(x) =
√√√√

n∑

i=1

(xi − L√
n
)2 − R (2.5)
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(recall that we scale r = 1). The potentials associated with the r−spheres
(

i.e.V
(

Qk
ε

))

are multiplied by the 1/n factor so that for all n values the potential height near the corner
is of the same magnitude as the potential near the R-sphere.

The Ck+1 (k ≥ 1) smooth function V satisfies at z > 0,

V (z) > 0 and V ′(z) < 0, (2.6)

so the potentials are repelling. We further assume that V ′′(z) decays sufficiently rapidly
for large z (in accordance to the assumptions in [23,21,36]), so there exists some α > 0
such that

V ′′(z) = O

(
1

z2+α

)
as z → +∞. (2.7)

As a typical V , one can take the power-law potentials:

V (z) =
(

1

z

)α
, α > 0, (2.8)

the Gaussian potential

V (z) = exp
(
−z2

)
, (2.9)

or the exponential potential

V (z) = exp (−z),

that naturally appear in applications (e.g. the Gaussian form arises in the problem of cold
atomic motion in optical traps [10], whereas the power-law and exponential potentials
are abundant in various classical models of atomic interactions).

The potential W (x; ε) given by (2.4), (2.5) is symmetric with respect to any per-
mutation of the xi ’s (i = 1, . . . , n). This strong symmetry enables us to progress with
the analysis for any n. Notice that it is easy to break this symmetry, by, for example,
multiplying the terms V (Qk(x)/ε) in (2.4) by slightly different coefficients. Such a
modification is studied numerically in Sect. 4.2.

Now, consider the smooth motion along the diagonal x1 = · · · = xn = ξ . By the
symmetry,

∂

∂x1
W (ξ, . . . , ξ) = ∂

∂xi
W (ξ, . . . , ξ) for i = 1, . . . , n,

so the plane {x1 = · · · = xn = ξ, p1 = · · · = pn = ξ̇} is an invariant submanifold of
the phase space. It follows from the conservation of energy that

H = n
ξ̇2

2
+ W (ξ, . . . , ξ), (2.10)

for the orbits in this manifold; by differentiating this identity we obtain the following
equation of motion on the invariant plane:

ξ̈ +
∂

∂x1
W (ξ, . . . , ξ) = 0. (2.11)

Let
ν = √

n(ξ − ξc), (2.12)
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where ξc is defined by (2.1) with r = 1. The energy conservation law (2.10) at the fixed
energy level h/2 reads as

h

2
= ν̇2

2
+ Wef f (ν; ε, µ, d), (2.13)

where the effective potential is as follows (see (2.4),(2.5) and (2.12)):

Wef f = V

(√
1 + 2µν + ν2 − 1

ε

)
+ V

(
d − ν

ε

)
. (2.14)

Equation (2.11) for the motion on the diagonal line transforms then into the equation
(which is independent of n):

ν̈ +
∂

∂ν
Wef f (ν; ε, µ, d) = 0. (2.15)

This is a Hamiltonian equation with the Hamiltonian given by the right-hand side of
(2.13). Since V ′ < 0, for any finite ε, the potential Wef f (ν; ε, µ, d) has a minimal
value for ν in the interval (0, d) and the potential is monotonically increasing as the
boundaries of this interval are approached. Thus, by (2.13), it has periodic solutions for
the non-critical values of h in the interval:

h > hmin(ε, µ, d) := 2 min Wef f (ν) (2.16)

(at h = hmin the periodic orbit degenerates into an equilibrium point). The critical values
of h are those at which Wef f has maxima, and then the periodic orbit is replaced by
homoclinic or heteroclinic orbits.

Summarizing, we have established the following lemma:

Lemma 1. For every non-critical value of h > hmin(ε, µ, d) the Hamiltonian flow (2.3)
satisfying (2.4)–(2.6) possesses in the energy level H = h

2 a periodic solution of the

diagonal form: γ (t) = (ξ(t), . . . , ξ(t)), where ξ(t) = v(t)√
n

+ ξc with v(t) ∈ (0, d) being

a periodic solution of (2.15) with energy h
2 .

Let T (ε, µ, d, h) denote the period of γ (t). To fix the notation, let us parameterize
time along γ (t) so that t = 0 will correspond to the turning point near the corner whereas
T/2 corresponds to the turning point near the large sphere, namely:

Wef f (ν(0)) = Wef f (ν(T/2)) = h

2

with ν(0) ≈ 0, ν(T/2) ≈ d.

3. Stability of the Periodic Orbit

To study the stability of the periodic orbit γ (t), one needs to linearize the Hamiltonian
equations of motion corresponding to (1.1) about this solution, solve the corresponding
2n-dimensional linear system with the time-periodic coefficients for a set of 2n ortho-
normal initial conditions and find the stability of the associated (2n × 2n)-dimensional
monodromy matrix, leading finally to a set of 2n Floquet multipliers (2 of which are
trivially one). The symmetric form of the potential allows to reduce this formidable task
to a much simpler one – to solving a single second order homogeneous equation with a
time periodic coefficient which depends on n as a parameter in a very simple form:
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Lemma 2. The Floquet multipliers of the T -periodic orbit γ (t) are (1, 1, λ, 1
λ
, . . . ,

λ, 1
λ
), where λ is given by:

λ = 1

2
Tr(A) +

√
Tr(A)2

4
− 1, (3.1)

and A is the monodromy matrix of the second order linear equation:

ÿ + a(t)y = 0 (3.2)

with the T -periodic coefficient a(t) given by (see also (2.15)):

a(t; ε, µ, d, R, n, h) =
(

V ′(ε−1(
√

1 + 2µν + ν2 − 1))

ε
√

1 + 2µν + ν2
+

V ′(ε−1(d − ν))

ε(R + d − ν)

)

+
1 − µ2

n − 1

(
V ′′(ε−1(

√
1 + 2µν + ν2 − 1))

ε2(1 + 2µν + ν2)

− V ′(ε−1(
√

1 + 2µν + ν2 − 1))

ε
√
(1 + 2µν + ν2)3

)

= a−(ν(t); ε, µ, d, R, h) +
1 − µ2

n − 1
a+(ν(t); ε, µ, d, h), (3.3)

Proof. Consider the linearization about γ (t) of the system defined by (2.3). Let:

b(t) = ∂2

∂x1∂x2
W (ξ(t), . . . , ξ(t)),

a(t) = ∂2

∂x2
1

W (ξ(t), . . . , ξ(t))− ∂2

∂x1∂x2
W (ξ(t), . . . , ξ(t)). (3.4)

By symmetry, ∂2

∂xi ∂x j
W (ξ(t), . . . , ξ(t)) = b(t) for all i �= j and ∂2

∂x2
i

W (ξ(t), . . . , ξ(t)) =
a(t) + b(t) for all i . Hence, the linearization of (2.3) is given by

ẍi + a(t)xi + b(t)
n∑

j=1

x j = 0, i = 1, . . . , n. (3.5)

Let s = ∑n
i=1 xi and yi = xi − s

n in (3.5). By summing the above equation on i we
obtain

s̈ + (a(t) + nb(t))s = 0,
ÿi + a(t)yi = 0, i = 2, . . . , n. (3.6)

Every equation in this system is decoupled from the others, therefore the spectrum of
the Floquet multipliers of γ (t) is the union of the spectra of the monodromy matrices
(i.e. the spectra of the time-T maps) corresponding to each of the equations. It is easy
to check that the first equation is the linearization of (2.11) about ξ(t). Hence, both
the eigenvalues of its monodromy matrix are equal to 1 (as (2.11) is a Hamiltonian
equation). These correspond to trivial Floquet multipliers of γ (t). Since the rest of the
equations in (3.6) are identical, the other Floquet multipliers of γ (t) correspond to the
n − 1 identical pairs λ and λ−1, the eigenvalues of the monodromy matrix of Eq. (3.2)
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with the T -periodic a(t) given by (3.4). By applying the above formulas to the system
(2.3), (2.4), (2.5), and using the coordinate ν instead of ξ (see (2.12)), we obtain (3.3).
��

To establish the main theorem, the spectral properties of the 2×2 monodromy matrix
A of Eq. (3.2), that depend on n and the geometric parameters via a(t), need to be stud-
ied. For any finite n, when γ (t) is near the corner point (i.e. ν is close to zero) the third
term of (3.3) is of order 1/ε2 and thus dominates a(t). This singular behavior leads to
fast oscillations of the solutions of (3.2) at the corresponding time interval, so careful
analysis of the resulting multipliers is needed. Thus, the rest of this section is dedicated
to studying the dependence of the eigenvalues of A on the parameters.

First, we show that in the limit of fixed ε and large n the periodic orbit γ (t) is unstable.
Likewise, we show that in the limit of low energies (near h = hmin(ε, µ, d), see (2.16)),
the periodic orbit which oscillates near the fixed point is unstable for all n above some
critical value. These observations show that the stable orbits we get do not correspond
to a motion near the bottom of a potential well. Then, we prove the main result, that for
any fixed n there exists a sequence of µ values, µk, such that the periodic orbit is stable
in wedges in the (µ, ε) plane that are close to (µk, 0). The widths of these wedges is
then found in two specific limits, with explicit formulae in the power-law potential case.

In the limit n = +∞, Eq. (3.2) turns into

ÿ + a−(t)y = 0.

Since a− is always negative by (2.6), this equation cannot have non-trivial bounded
solutions and the monodromy matrix A has multiplier λ > 1. Thus, at every fixed ε and
h > hmin(ε, µ, d), the diagonal solution γ (t) is linearly unstable for sufficiently large
n. Therefore, it is not surprising that the stability zones that we find later on correspond
to bounded values of εn, i.e. for higher dimension of the configuration space one should
make the potential steeper in order to make the diagonal periodic orbit stable.

The stability of the equilibrium state on the diagonal, at h = hmin , is determined

by Eq. (3.2) of Lemma 2; the equilibrium is linearly stable if a− +
1 − µ2

(n − 1)
a+ > 0,

and linearly unstable if a− +
1 − µ2

(n − 1)
a+ < 0, where instead of ν(t) in a± one should

substitute the value of ν = ν f that corresponds to the minimum of Wef f (see (2.14)).
Defining

nc(µ, d, R, ε) = 1 +
a+(v f )

−a−(v f )
(1 − µ2),

we see that the equilibrium (and small oscillations on the diagonal near it) are stable
at n < nc and unstable at n > nc. In Fig. 2 we plot nc(µ, d, R, ε) for the power-law,
exponential and Gaussian potentials, showing the dependencies of nc on µ, d and ε. In
the case of power-law potential, nc does not depend on ε (see (2.8), (2.14) and (3.3)),
thus, the stable periodic orbit that we find for small ε clearly does not inherit its stability
from the equilibrium state, i.e. the effect has truly billiard origin. For the exponential and
Gaussian cases nc diverges as ε → 0. In these cases the stable fixed point appears for
exponentially small energies (see ((2.14)). Since the effective potential is essentially flat
away from the scatterers, for energies that are not exponentially small, the amplitude of
the oscillations becomes large and the linearization near v f is not applicable. Indeed, it is
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Fig. 2. The critical dimension, nc , beyond which the fixed point at the minimal energy level becomes unsta-
ble, for various (µ, d, ε) at R = 10. Results for three potentials are presented: power-law (solid), exponential
(dotted) and Gaussian (dashed).

proved below that for such energies the periodic orbit changes its stability several times
as ε → 0, so again, the stability regions we find do not correspond to small oscillations
that inherit their stability from the equilibrium state.

For any finite n, for sufficiently small ε, γ (t) has a finite positive period and a(t)
changes sign7 as shown in Fig. 3, so the behavior of the monodromy matrix A in the
limit ε → 0 becomes non-trivial. Our main result is that there are wedges in the (µ, ε)
space at which the eigenvalues of A are on the unit circle:

Theorem 2. Suppose the potential function V satisfies (2.6), (2.7). Then, given any
h ∈ (0, 2V (0)), any natural n ≥ 2, and any positive d and R, there exists a tending
to zero countable infinite sequence 1 ≥ µ0 > µ1 = 1/

√
n> · · · >µk > · · · > 0 such

that arbitrarily close to every point (µ = µk, ε = 0) there are wedges of (µ, ε) at which
the orbit γ is linearly stable.

Proof. Recall the definition of the monodromy matrix A: the linear second order dif-
ferential equation (3.2) with the periodic coefficient a(t) defines the linear map: (y(t0),
y′(t0)) �→ (y(t0 + T ), y′(t0 + T )) = A(y(t0), y′(t0)). While A may depend on the choice
of t0, its eigenvalues, the Floquet multipliers of γ (t), do not. We choose t0 = −	t , where
	t > 0 is slowly tending to zero as ε → 0, and express A as the product of two matri-
ces: A = BC , where C corresponds to the map from t = −	t to t = 	t (i.e. to the

7 While a− is always negative, for sufficiently small ε, there exists an interval of t values at which a+ is
positive (as V ′ is negative, and V is bounded from below, it follows that V ′′ has to be positive somewhere).
In fact, a+ > 0 everywhere in the power-law potential case.
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Fig. 3. The rescaled ingredients of a(t) of Eq. (3.3). The peaks of a+(t) and a−(t) are shown to scale as 1/ε2

and 1/ε respectively. Here µ = 0.5, and ε = 0.1, 0.01, 0.001 from widest to narrowest respectively.

linearized smooth motion in the neighborhood of the billiard corner, where the third
term of (3.3) dominates and fast oscillations appear), and B corresponds to the time
interval [	t, T −	t] (i.e. to the linearization about the smooth regular motion along the
diagonal and the regular reflection from the radius R sphere �n+1 in the normal direction
at t = T/2).

Below, we find the form of B (Lemma 3) and C (Lemma 4) in the limit of small ε
and fixedµ. In fact, we show in the proof of Lemma 4 that by rescaling time by δ = ε/µ

and taking the appropriate limits of (2.15) and (3.3), the matrix C may be found by
integrating a simplified scattering problem. There, only the rescaled third term of (3.3)
appears with a rescaling parameter β:

β = 1 − µ2

(n − 1)µ2 , (3.7)

and Eq. (2.15) is replaced by an equation which is independent of ε and µ (Eq. (3.11)).
We then show that the trace of A is dominated by a term of the form s21(β)

δ
, where s21(β)

is a coefficient of the scattering matrix associated with the simplified scattering problem.
We thus conclude (since δ → 0 as ε → 0) that the wedges in the (µ, ε) plane, where the
trace of A varies between −2 to 2, emanate near the points at which s21(β) changes sign.
We then show (Lemma 5) that the zeroes of s21(β) correspond to the “spectrum” of the
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simplified scattering problem. Namely, bounded solutions appear if and only if s21(β)

vanishes, and the number of zeroes of a fundamental solution of the scattering problem
is even when s21 > 0 and is odd when s21 < 0. We complete the proof by noticing that
in this simplified scattering problem it is easy to establish that the number of zeroes of
all solutions increases to infinity as β → ∞ (i.e. when µ → 0+), and to conclude that
there is a countable number of µ values at which bounded solutions appear. These are
the values at which s21 vanishes and wedges of stability are formed.

The form of B is easily found by utilizing the billiard limit (using [21]):

Lemma 3. For small	t and sufficiently small ε, the linearized map about the diagonal
orbit: (y(	t), y′(	t)) �→ (y(T −	t), y′(T −	t)) = B(y(	t), y′(	t)) satisfies

B =
(

1 + 2d
R

2d√
h
(1 + d

R )

2
R

√
h 1 + 2d

R

)
+ o(1). (3.8)

Proof. Fixing 	t and letting ε → 0, the diagonal periodic orbit γ (t) on the interval
[	t, T − 	t] approaches the boundary of the billiard domain only once, at t = T/2,
hitting the radius-R sphere �n+1 in the normal direction. This is a regular reflection,
therefore, according to [21]8, the flow map from any time moment before the reflection
to any moment after the reflection is close to the corresponding map for the billiard flow.
The closeness is along with k derivatives of the map (recall that V is Ck+1, k ≥ 1), i.e.
the derivative of the flow map from t = 	t to t = T − 	t tends to the derivative of
the billiard flow map as ε → 0. It is true for every fixed 	t , hence it remains true for a
sufficiently slowly tending to zero 	t .

Because of the symmetry of the diagonal orbit γ , the matrix of the derivative of the
smooth flow has a block-diagonal structure with one idempotent block that corresponds
to the variable s in (3.6) and the other blocks equal to B. The derivative matrix of the
billiard flow has the same structure; to find this matrix, consider the billiard flow of a
particle with a velocity

√
h which starts at a distance d from the sphere of radius R and

reflects in the normal direction back to its original position at T = 2d/
√

h. Then, by
direct computation, it can be shown that the i th block of the linearization of the billiard
flow map is of the form:

∂(yi (T − 0), ẏi (T − 0))

∂(yi (+0), ẏi (+0))
=
(

1 + 2d
R

2d√
h
(1 + d

R )

2
R

√
h 1 + 2d

R

)

and (3.8) follows from [21] as explained above (the same results can be achieved by
asymptotic integration of Eq. (3.2), namely following a simplified version of the con-
struction of C below). ��

Finding the form of C is more complicated, and requires the integration of (3.2) in
some asymptotic limits. In Appendix A, we prove the following:

Lemma 4. For any fixedµ ∈ (0, 1), small	t and sufficiently small ε, the linearized map
about the diagonal orbit near the corner: (y(−	t), y′(−	t)) �→ (y(	t), y′(	t)) =
C(y(−	t), y′(−	t)) satisfies

C =
(

s11 + σ s21(1 + o(1)) + o(1) s21 O(δσ 2) + O(δσ )
1
δ
(s21(1 + o(1)) + O(σ−1−α)) s22 + σ s21(1 + o(1)) + o(1)

)
, (3.9)

8 It is easy to verify that the conditions (2.6)–(2.7) on V suffice to guarantee that W (q, ε) satisfies the
conditions in [21].
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where δ, σ−1 are small scaling parameters (tending to 0 as ε → 0) such that δσ = 	t,
and S is a matrix which tends9, as ε → 0, to a smooth limit S0(µ).

Let us explain the meaning of the matrix S and the parameters that appear in (3.9). It
is shown in the Appendix that by rescaling time by δ = ε/µ, in the appropriate scaling
limit, only the third term of Eq. (3.3) matters and so Eq. (3.2) near the corner reduces to

d2

dτ 2 y + βV ′′(z(τ )) y = 0, (3.10)

where βV ′′ corresponds to the limit of the third term of (3.3) (multiplied by δ2), and
z(τ ) = ε−1(

√
1 + 2µν(τ) + ν(τ)2−1) solves, in the asymptotic limit, an equation which

is independent of ε and µ:

h

2
= (z′)2

2
+ V (z), z′(0) = 0. (3.11)

Notice that by (2.7) Eqs. (3.10)–(3.11) define a scattering matrix: it is shown in the
Appendix that the solutions z(τ ) to (3.11) run from +∞ through some minimal positive
value back to +∞ sufficiently rapidly and thus that (3.10) reduces, in the limit of τ →
±∞ to d2

dτ 2 y = 0. Then, as is usual in scattering theory, one may define two bases of
solutions at the two asymptotic limits. Let y±(τ ) denote the uniquely defined solutions
having the following asymptotic form as τ → ±∞ (respectively):

y±(τ ) = 1 + O(|τ |−α), y′±(τ ) = O(|τ |−1−α). (3.12)

Let ŷ±(τ )) denote solutions10 with asymptotic:

ŷ± = τ + O(|τ |1−α), y′±(τ ) = 1 + O(|τ |−α) (3.13)

so the Wronskians of (y−(τ ), ŷ−(τ )) and of (y+(τ ), ŷ+(τ )) are 1. Let S0 denote the
scattering matrix which sends the coefficients of the solution in the basis (y−(τ ), ŷ−(τ ))
into the coefficients of the same solution in the basis (y+(τ ), ŷ+(τ )). This matrix depends
only on β and h – the only two parameters that appear in the above limit equations. In
Appendix A, we derive the finite ε version of (3.10)–(3.11), the corresponding asymp-
totic bases and the scattering matrix S(µ, ε) which limits to S0(µ) as ε → 0 for any
fixed µ > 0.

Notice that δ, the small time rescaling parameter, appears as a denominator in the
C21 entry – this reflects the high sensitivity of y′(	t) to changes in y(−	t).

Using the formulae for B and C ((3.8) and (3.9)) with σδ = 	t tending to zero
sufficiently slowly and δ → 0, one obtains that the trace of the monodromy matrix
A = BC equals to

Tr(A) = 2d

δ
√

h

(
1 +

d

R

)
s21(1 + o(1)) + (s11 + s22)

(
1 +

2d

R

)
+ o(1). (3.14)

The periodic orbit is stable when | Tr(A)| < 2. Note that the main contribution to (3.14)
is given by the term that includes s21: since δ → 0 as ε → 0, if s21(µ, ε) stays bounded
away from zero, then for sufficiently small ε the trace of A is very large and positive for

9 Uniformly on any compact subset of µ > 0.
10 The functions ŷ±(τ )) are defined in a unique way in Appendix A.
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positive s21 and very large negative for negative s21. This means that if we fix h, n, d, R,
choose ε sufficiently small and change µ, then Tr(A), as a function of µ, will change
sign near the values of µ where s21(µ, 0) changes sign. Then Tr(A) is necessarily small
near these values of µ. Therefore, from these values of µ a wedge of parameter values
for which the periodic orbit γ is linearly stable emerges. We need to establish that there
is an infinite number of such values of µ.

By definition, s21 is determined as follows (see the Appendix): take the solution
y−(τ ) of (3.10) that tends to 1 as τ = −∞, then

s21 = dy−
dτ

(+∞), (3.15)

namely, the asymptotic properties of y−(τ ) determine s21. Next we establish a precise
relation between the asymptotic form of y−(τ ) and the zeroes of s21, and between the
number of zeroes of y−(τ ) and the sign of s21:

Lemma 5. The limit system (3.10) has a non-trivial bounded solution y−(τ ;µ∗) for all
τ ∈ (−∞,+∞) if and only if s21(µ

∗, 0) = 0. Furthermore,

ds21

dβ

∣∣∣∣
s21=0

=
{

−√
hI, β(µ∗) = 0,

− 1
βy−(+∞)

∫ +∞
−∞ y′−(s)2ds, β(µ∗) �= 0,

(3.16)

where

I = 1√
h

∫ +∞

−∞
V ′′(z(τ ))dτ = 2√

h

∫ +∞

V −1(h/2)
V ′′(z) dz√

h − 2V (z)
. (3.17)

If s21(µ, 0) �= 0, then sign s21 = (−1)N (y−) where N (y−) denotes the number of zeroes
of y−(τ ). Finally, if µ∗ < 1, or µ∗ = 1 and I > 0, then N (y−) is decreased by one
when µ changes from µ∗ − 0 to µ∗ + 0.

Proof. Using the definition of the scattering matrix (see (3.12), (3.13)), y− has the fol-
lowing asymptotic as τ → +∞ (uniformly on any compact subset of positive values of
µ):

y− = s21(τ + O(τ 1−α)) + s11(1 + O(τ−α)),
y′− = s21(1 + O(τ−α)) + O(τ−1−α), (3.18)

It thus follows immediately that if s21vanishes, then y−(τ ) is bounded. To prove the
converse, notice that non-trivial bounded solutions must be proportional to y−(τ ) as
τ → −∞, and therefore, if s21 �= 0, these cannot remain bounded as τ → +∞.

Next, we establish (3.16). Define u = dy−/dβ. By definition (see (3.15))

ds21

dβ
= u′(+∞). (3.19)

By differentiating (3.10) with respect to β we find that u is the solution of

u′′ + βV ′′(z(τ ))u = −V ′′(z(τ ))y−(τ ),
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which satisfies u(−∞) = u′(−∞) = 0. By the variation of constants formula (recall
that the Wronskian of y−(τ ) and ŷ−(τ ) is 1):

u(τ ) = y−(τ )
∫ τ

−∞
V ′′(z(s))y−(s)ŷ−(s)ds − ŷ−(τ )

∫ τ

−∞
V ′′(z(s))y−(s)2ds. (3.20)

It follows that

u′(+∞) = y′−(+∞)

∫ +∞

−∞
V ′′(z(s))y−(s)ŷ−(s)ds − ŷ′−(+∞)

∫ +∞

−∞
V ′′(z(s))y−(s)2ds.

If s21 = 0, then we have y′−(+∞) = 0 and ŷ′−(+∞) = y−1− (+∞) (since the Wronskian
is 1). Thus,

ds21

dβ
= − 1

y−(+∞)

∫ +∞

−∞
V ′′(z(s))y−(s)2ds at s21 = 0. (3.21)

At β �= 0 we have V ′′(z)y− = −β−1 y′′−, hence, integrating by parts, we find
∫ ∞

−∞
V ′′(z(s))y−(s)2ds = 1

β

∫ +∞

−∞
y′−(s)2ds, (3.22)

which gives the second line of (3.16).
At β = 0 the scattering matrix of system (3.10) is the identity so s21(1, 0) = 0. In

this case (3.10) has the bounded solution y(τ ) = 1 and by (3.21) the first line of (3.16)
is obtained, or equivalently

ds21

dµ
|µ=1 = 2

n − 1

√
hI. (3.23)

Finally, let us relate the number of zeroes of the fundamental solution y−,N (y−), and
the sign of s21. By (3.15), if y− → +∞ as τ → +∞, then s21 > 0, and if y− → −∞ as
τ → +∞, then s21 < 0. Recall that y−(−∞) = 1 is always positive. Clearly, if s21 > 0,
then y− has an even number of zeros, and if s21 < 0, then the number of zeros of y− is
odd so sign s21 = (−1)N (y−) as claimed.

Note that y− cannot have multiple zeros, as it is a non-trivial solution of a second
order linear homogeneous equation. It follows that as µ varies, the number of zeros of
y− can increase only when some zeros come out of +∞.

It follows from (3.18), and the fact that s2
21 + s2

12 is bounded away from zero by
preservation of the Wronskian, that y− may have only one zero at large τ . Therefore, if
N (y−) changes at some µ > 0, the increase/decrease in the value of N equals exactly
to 1.

It follows from (3.20) and (3.18) that at s21 = 0 (i.e. when y−(τ ) is bounded)

d

dβ
y−(τ ) = u(τ ) = τu′(+∞) + o(τ )τ→+∞.

Hence, it follows from (3.19), and from (3.16) with µ∗ < 1, or µ∗ = 1 and I > 0, that
for all τ sufficiently large

sign
d

dµ
y−(τ ) = sign

ds21

dµ
= signy−(+∞) = (−1)N (y−), (3.24)

so it follows that N (y−) decreases when µ increases through µ∗. ��
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It follows from the trace formula (3.14), that to complete the proof of Theorem 2,
we need to show that the coefficient s21 of the scattering matrix for the limit equation
(3.10), (3.11) changes its sign infinitely many times. By the above lemma, we need to
examine the bounded solutions of (3.10) and their number of zeroes.

Now, notice that independently of the choice of V and of the value of h there are two
values of µ at which the bounded solutions are easily identified. At µ = 1 we have the
bounded solution y− = 1 which has no zeroes. At µ = µ1 = n−1/2 there is a bounded
solution with one zero: y(τ ) = z′(τ ), where z is the solution of (3.11). It follows from
(3.16) that when11 I > 0, s21 changes sign from negative to positive when µ increases
through µ = 1 (recall that β ′(µ) < 0 for µ < 1), and when I < 0 (this is the case e.g.
of Gaussian potential (2.9) at h close to 2) s21 changes sign from positive to negative.
It follows from (3.24) that at µ = µ1 + 0 we have s21 < 0. Hence, using (3.23) we see
that if I < 0, there exists µ = µ0 < 1 for which s21 = 0 (so there is a non-constant
positive bounded solution at µ0). This is the tip of the 0th stability zone. Furthermore,
since for µk < 1 the number of zeros of y− always decreases by one when µ changes
from µk − 0 to µk + 0, it follows that for I < 0 there is only one such µ0 value in the
interval (n−1/2, 1), whereas for I > 0 we set µ0 = 1.

We conclude that for k ≥ 1, the tip µ = µk of the kth stability zone corresponds to
the existence of a bounded solution of (3.10), which has exactly k zeros. To establish
that there is a countable infinity of values of such µk , recall that there is a non-empty
interval of values of τ for which V ′′(z(τ )) is strictly positive (by (2.6) and (2.7)). Since
the coefficient β of V ′′(z)y grows to +∞ asµ → +0, it follows that the number of zeros
of every solution of (3.10) on this interval grows to infinity as µ → +0. In particular,
the number of zeros of y− – hence the number of sign changes in s21 – grows to infinity
as µ → +0, as required.

This completes the proof of Theorem 2. ��
Notice that the points µk where the stability zones touch the axis ε = 0 are deter-

mined by the behavior of the limit system (3.10)–(3.11) only. In particular, depending
on the form of V and h there are the corresponding βk values at which the stability zones
appear, and these are independent of n, d and R. Thus, we conclude from (3.7) that

µk = (1 + βk(n − 1))−1/2,

where the numbers βk → +∞ depend only on h and on the potential function V . If
I > 0 then β0 = 0. For all V and h we have β1 = 1.

Note that in the proof of Theorem 2 the limit of fixed µ > 0 and ε → 0 was con-
sidered. It follows that for any finite k value a stability zone will appear near µk for
sufficiently small ε (non-uniformly in k). In the Appendix we prove that an infinite
number of these stability zones extend towards the ε axis:

Lemma 6. Let L be a continuous curve in the region (µ ≥ 0, ε > 0) of the (µ, ε)-plane,
which starts at (µ = 0, ε = 0). Then L intersects the region of stability of the diagonal
periodic orbit γ in an infinite sequence of intervals converging to (µ = 0, ε = 0).

11 This is always the case if V ′′ > 0 for all z, e.g. for the power-law potentials (2.8), where the following
explicit formula for I may be established:

I = 2(α + 1)(h/2)1/α
∫ π/2

0
(cos θ)

2
α +1 dθ > 0. (3.25)
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Proof. See Appendix A. After calculating the form of the matrix C in this limit of small
(µ, ε), which involves deriving a rescaled system similar to (3.10), it is shown that the
trace of A changes between ±2 whenever the number of zeroes of the bounded solutions
of this rescaled system are changed. Then, we again argue that the number of zeros of
this system tends to infinity as (µ, ε) → 0. ��

3.1. Estimates of the stability wedges width. We have thus established that for any finite
dimension n there is an infinite number of wedges of linear stability zones emanating
from µ values at (0, 1). Next we estimate their width in the (µ, ε)-plane at β values that
are near β0 = 0 (corresponding to either µ close to 1 or to large n):

Proposition 1. If I > 0 (see (3.17)), then the diagonal periodic orbit γ is stable for
(µ, ε) values in the wedge enclosed by the two curves

ε+
0 = I

1 − µ2

(n − 1)µ2

(
1 +

1

d + R

)−1

+ o

(
1 − µ2

(n − 1)µ2

)
(3.26)

and

ε−0 = I
1 − µ2

(n − 1)µ2

(
1 +

1

d

)−1

+ o

(
1 − µ2

(n − 1)µ2

)
. (3.27)

Proof. See Appendix A, where formula (3.14) is expanded in β, ε near (0, 0) at which
S limits the identity matrix. ��

The other limit in which we are able to obtain analytical results regarding the stability
wedges width corresponds to µ = 0, i.e. it is the limit of the zero angle between the
spheres�1, . . . , �n at the corner point. We prove that for sufficiently large k, the stability
zone emanating from (µk, ε = 0) extends towards the ε-axis as shown in Fig. 4:

Proposition 2. Consider the power-law potential V (Q, ε) =
(
ε
Q

)α
. Then, for suffi-

ciently small ε and µ, there exists an infinite number of disjoint stability tongues in
the (µ, ε) plane at which γ (t;µ, ε, n) is linearly stable. For sufficiently large k the kth

stability zone emanates from the µ axis near the bifurcation value:

µk ≈ 1

k

√
2(α + 1)

α(n − 1)
, (3.28)

and extends up to the ε-axis, intersecting it near

εk ≈ (h/2)1/α
(α + 1)

α(n − 1)

4

π2k2

(∫ π/2

0
(sin θ)1/αdθ

)2

, (3.29)

at a stability interval of length

(	ε)k ≈ 4εk

πkG(0, α)d(1 + d
R )

(
4α(α + 1)

n − 1

(2εk)
α

h

)1/2(α+1)

, (3.30)

where G(0, α) > 0 depends only on α and is defined by (B.12).
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Fig. 4. Bifurcation diagram for the power-law potential. Left: real part of the eigenvalue λ(ε) at µ = 0; note
that λ changes very fast as nε changes. Right: Wedges of stability in (µ, nε) space (note that the ε-axis is scaled
with n). The stability wedges lie between the saddle-center bifurcation curves (dotted lines) and the period
doubling bifurcation curves (solid lines). The asymptotic predictions (thin lines) of formulae (3.27),(3.26) for
the first wedge are shown.

Proof. See Appendix B for details. It is proved that any curve of the form

LM = {(µ, ε) : 2εM = µ2(1 − M)}, (3.31)

with M ∈ [0, 1] considered as a fixed parameter, intersects the stability wedges an infi-
nite number of times. Moreover, the location and width of these intersections is evaluated
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along a parameterization of LM by an auxiliary parameter ρ:

ρ =
√

2ε + µ2. (3.32)

Thus, formula (3.28) is established by applying formula (B.14) along LM=1, whereas
formulae (3.29), (3.30) are established by applying (B.14) and (B.15) along LM=0 (using
(B.3) and (B.5)). ��

As described next, the asymptotic formulae are in excellent agreement with our num-
erics.

4. Numerical Computations

4.1. Stability of the periodic orbit. In general, the numerical computation of a periodic
trajectory and its stability in a steep n-dimensional potential is, for large n, a difficult
problem; a high-dimensional scheme for locating the periodic trajectory is needed, and
the search involves the integration of a nonlinear, stiff, high-dimensional system. Once
the periodic orbit is found, the numerical computation of the linearized system and its
Floquet multipliers for large n may be a formidable task.

Here we use Lemmas 1 and 2 and some proper rescaling to reduce this problem to a
simpler computational task. The search for the periodic orbit is unnecessary by Lemma 1
(using symmetry and proper parameters) and the need to compute eigenvalues of large
matrices is demolished by Lemma 2: for all n we find the solutions of one second-order
non-linear equation (2.15) and the monodromy matrix of one second-order linear equa-
tion (3.2), (3.3) which depends on n as a parameter. The steep limit is handled as in [20]:
we fix ε and increase the size of the billiard domain (r in (2.2)) to get an effectively
small ε = ε/r without running into stiffness problems (in the bulk of the domain the
motion is essentially inertial and non-stiff).

To find the stability regions, as shown in Fig. 4, we use the continuation scheme which
was developed in [20]; first we compute the stability of γ (t) at µ = 0 (the case of a
cusp created by n tangent spheres) along the ε-axis (see Fig. 4 left12). By symmetry (see
Lemma 2), Re(|λn(µ = 0, ε))|) > 1 always corresponds to real eigenvalue (i.e. saddle-
foci do not appear) and thus the values of ε = ε±k (n) at which Re(λn(µ = 0, ε)) = ±1
correspond to degenerate saddle-center and degenerate period-doubling bifurcations
respectively. Then, we use the values of ε = ε±k (n) as the starting point for a contin-
uation scheme in µ to locate the kth wedge of stability in the (µ, ε) plane (see Fig. 4
right).

In accordance with a Theorem 2 and Propositions 1, 2, these calculations (performed
for the Gaussian, exponential and power-law potentials, and shown here only for the
power-law case) demonstrate that for any given n, at µ = 0, the stability of γε,n,µ= 0(t)
rapidly changes as ε → 0+, whereas for any µ ∈ (0, 1), there is a finite number of
intervals of ε in which γε,n,µ(t) is stable.

Next, we demonstrate that the asymptotic formulae provided in these propositions
are in good agreement with the numerics; in all the numerical simulations shown below
we fix h = 1, R = 10 and d = 2 , consider the power-law case (2.8) with α = 1, and
study, for each n, how the stability of γ (t) depends on µ and ε.

12 Note that the curves in this diagram represent the graph of Re(λ(µ = 0, ε)) so they are not horizontal.
Their horizontal appearance reflects the rapid large oscillation of λ in the small ε limit.
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Fig. 5. The intersection of the first and second wedges of stability with the ε-axis (ε±0,1(n)) is shown to scale
like 1/n.

Figure 4 shows that the estimates (3.26), (3.27) of Proposition 1 for the stability
boundary of the first wedge and their numerical calculation agree when either 1 − µ is

small or n is large (recall the o
(

1−µ2

(n−1)µ2

)
correction term in (3.26), (3.27)).

The origin of the second stability zone at ε = 0 is found, by Theorem 2, to be given
by µ1 = 1/

√
n, so µn=3

1 ≈ 0.577 and µn=10
1 ≈ 0.33, which agrees with the numerical

data at Fig. 4.
The behavior near µ = 0 is examined next. In Fig. 5 we plot ε±0,1(n), the first and

second ε value at which γε,n,µ=0(t) becomes stable, as a function of n − 1. It shows

that ε±k (n) ≈ β±
k

n−1 (k = 0, 1) in accordance with (3.29), even though k is not sufficiently
large for the asymptotic estimates to hold.

For larger k values, the oscillatory behavior in log ε of Re(λn(µ = 0, ε)) is shown
in Figs. 6 and 7.

Indeed, in the proof of Proposition 2, it is established that for the power-law potential,
at α = 1 (see Appendix B):

Tr(A) = G(0, 1)

(
h(n − 1)

ε

) 1
4

d

(
1 +

d

R

)
sin

(
2

√
h

ε(n − 1)
+ 2ϕ(0, 1)

)
+ · · · (4.1)

with G(0, 1), ϕ(0, 1) some constants, and thus, using (3.1), λn(µ = 0, ε) may be
estimated in this asymptotic limit; Fig. 7 shows the agreement between the numeri-
cal computation and the asymptotic form for sufficiently small ε; we fitted G(0, 1) =
1.85, ϕ(0, 1) = 1.1π for the n = 3 case and used these for the n = 10 case, suggesting
that these constants are indeed independent of n as predicted by (4.1).

Figure 6 shows the ε dependence of the envelope of Re(λn(µ = 0, ε)) for finite n. We
observe an ε−0.29 envelope, whereas (4.1) suggests an ε−0.25 envelope for the power-law
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potential13. The discrepancy may be the result of finite ε effects. For the n = 1000 case
we do not observe enough oscillations for (4.1) to be meaningful. This finding shows that
for very small ε values, approaching the cusp limit, the orbit γε,n,µ=0(t) has increasingly
large multipliers that grow, on the appropriately defined subsequence of ε values, as a
power law in (n/ε).

4.2. Non-linear stability – Phase space plots. To support the claim that for (µ, ε) val-
ues inside the stability wedges the linearly stable periodic orbit γε,µ(t) is surrounded
by an island of effective stability (i.e. that KAM tori survive in its neighborhood), we

13 Similar fitting for the Gaussian case gives rise to an ε−0.61 envelope.
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choose parameter values inside the wedges (using Fig. 4 right) and integrate the 2n
equations of motion directly. The (x1, p1) projection of the return map to the section
ξs = L−R

2 for the power-law potential with n = 10 is shown14 in Fig. 8 (left column).
The islands of effective stability are clearly observed in this projection. To examine the
non-degeneracy of these islands to asymmetric perturbations, we introduce the following
family of potentials:

V pert
k (x; ε) = Vk(x; ε) + δak Vk(x; ε), (4.2)

where ak are uniformly distributed on the unit interval (i.e. we consider the case by
which each sphere has a slightly different potential). The phase portraits of the per-
turbed motion with δ = 0.001 are shown in the right column of Fig. 8 (we do verify that

the projection plots of X = ‖x − γ (0)‖ , P =
∥∥∥

·
x − γ̇

∥∥∥ remain bounded, namely that

there is no instability in any direction of the 20-dimensional phase space).

5. Discussion

We have constructed a set of examples that show that for an n-dimensional dispersing
billiard, for any finite n, symmetric corners with n faces can produce islands of effective
stability when the billiard is replaced by a more realistic model of a particle moving in a
steep repelling potential, for arbitrarily high values of the steepness of the potential. In

14 Notice that the wedges emanating from µk < 1 or those corresponding to larger n values (where our
theoretical predictions for the wedges are in better agreement with the numerics) correspond to much smaller
ε values, see 4 right. For such small ε’s, the computation of the phase portraits, in which long integrations that
include many collisions are performed, becomes more prone to numerical errors.



520 A. Rapoport, V. Rom-Kedar, D. Turaev

0.36 0.365 0.37 0.375

0.216

0.218

0.22

0.222

x
1

p 1

µ=0

0.36 0.365 0.37 0.375

0.216

0.218

0.22

0.222

x
1

p 1

0.375 0.38 0.385 0.39
0.224

0.226

0.228

0.23

0.232

x
1

p 1

µ=0.1

0.375 0.38 0.385 0.39
0.224

0.226

0.228

0.23

0.232

x
1

p 1

0.395 0.4 0.405

0.232

0.234

0.236

0.238

x
1

p 1

µ=0.2

0.395 0.4 0.405
0.23

0.232

0.234

0.236

0.238

x
1

p 1

without perturbation with perturbation (δ=0.001)

Fig. 8. Islands in a 20 dimensional symmetric (left) and asymmetric (right) systems. Parameter values are
chosen inside the first wedge of stability (see Fig. 4): ε = 0.0625, µ = 0, 0.1, 0.2. Return map projection to
the (x1, p1) plane is shown for the power-law potential with α = 1. On the right panel the potentials (4.2)
with δ = 0.001 are used.

particular, for a certain symmetric geometry, we have found a specific (diagonal) peri-
odic orbit for which we proved that for any n there is a countable set of wedges in the
parameter plane where the periodic orbit is linearly stable. As the steepness parameter,
ε−1, tends to infinity, these stability zones do not disappear and remain in a finite region
of the parameter plane up to ε = 0 that corresponds to the (dispersing) billiard limit.
Moreover, we were able to estimate the width and location of these wedges for the power-
law potentials. The qualitative results and the asymptotic formulae were supported by
numerical computations for the power-law, the Gaussian and the exponential potentials.
Finally, we conjecture that for most parameter values in the wedges, where the periodic
orbit is linearly stable, a region of effective stability is created (namely, KAM-tori exist,
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i.e. despite the symmetric form of the potential, the behavior near the elliptic points is
similar to the behavior near generic elliptic points). This conjecture15 is supported by
numerical simulations for several n values, for both the power-law and the Gaussian
potentials: in these simulations islands of effective stability surviving small symmetry
breaking perturbations of the potential are clearly seen (see Fig. 8, where projections of
islands in 20-dimensional phase space are shown for the power-law potential).

From the mathematical point of view, one generally expects that smooth Hamiltonian
systems will have islands of stability. Here, we go beyond genericity type results – we
identified specific mechanisms by which the ergodicity and hyperbolicity of the under-
lying dispersing billiard are destroyed, and a stable motion is created in the problem
of a particle moving in a smooth, steep repelling n-dimensional potential. The proofs
construction includes estimates for the scaling of the stability zones with the control
parameters and a description of the bifurcation sequence associated with their creation–
such explicit results may be of interest in specific applications.

Admittedly, the presented construction has two limitations that we hope to abolish in
future works; the first is the strong symmetry under which the example is constructed;
it leads to a highly degenerate spectra – in fact all the non-trivial Floquet multipliers
collapse onto only one pair (λ, 1/λ), (which is shown to belong to the unit circle in the
intervals of stability). Thus, in the symmetric case resonance phenomena must be stud-
ied. When the symmetry is slightly broken, either all the eigenvalues remain on the unit
circle, or some of them may bifurcate in quadruples to a Hamiltonian Hopf bifurcation.
Such possibility may pose difficulties in proving that the periodic orbit remains stable
(though one would expect that even in this case stable regions will be created, see [8,9]).
The other limitation is that the constructed mechanism for the creation of islands requires
an n-corner – it corresponds to the intersection of n truly n-dimensional strictly dispers-
ing scatterers in an n-dimensional space. Currently, the most interesting applications of
high-dimensional billiards (n > 3) are concerned with the problem of N particles in a
d dimensional box. In this case the scatterers in the n = Nd-dimensional configuration
space are cylinders with only d − 1 dispersing directions [33,27], and the phase space
structure may prohibit the appearance of the symmetric n-corners considered here.

We believe that both of these issues may be resolved in future works. Indeed, the
main ingredient in our construction is the concurrent singularity in n − 1 directions
which is induced by the n-corner. We conjecture that it is possible to produce islands
(non-degenerate elliptic orbits) in any smooth dispersing billiard family in which singu-
lar orbits are controlled by n − 1 independent parameters (here the angles between the
n faces of the corner). The symmetric settings are simply convenient for collapsing the
number of independent control parameters (here to one). Furthermore, we conjecture
that the set of billiards having singular orbits that produce elliptic islands16 are dense
in the family of Sinai billiards17. Hence, while we did not prove yet that a system of N
soft particles in a d-dimensional box is non-ergodic, we can now state that it is likely
to be true – if strictly dispersive geometries give rise to elliptic islands, semi-dispersing

15 To establish these results analytically one may consider the symmetry breaking terms as perturbations
that introduce small coupling to the linearized equations (3.5) and study under what conditions the degeneracy
of the spectrum unfolds and remains on the unit circle. Proving that the orbit is non-linearly stable appears to
be even more challenging.

16 Here other singularities such as multiple tangencies to the billiard boundary and multiple visits to k-corners
with k < n need to be included.

17 The recent results of [4], in which hyperbolicity is proved for finite range potentials that have discontin-
uous derivatives at their outer perimeter, is consistent with these conjectures – we propose that in that work
the hyperbolicity is linked to the lack of smoothness of the potentials.
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geometries should do so as well. The methodologies we develop might shed light on the
scaling of the non-ergodic components with N and ε, supplying interesting insight on
the Boltzmann ergodic hypothesis: while in the hard sphere case Sinai’s works show that
there is no need to consider the large N limit (which is a major ideological cornerstone in
Boltzmann’s argument), N does enter into the estimates of the non-ergodic component
volume (and possibly their stickiness properties) in the smooth case.
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Appendix A. Linearized Behavior near the Corner

Here we construct the linearized reflection matrix near the corner in the finite µ case
and establish Proposition 1 regarding the stability wedge width in this limit. Then we
consider the limit of µ → 0+: we construct the reflection matrix C in this limit and
establish Lemma 6.

First we present the proof of Lemma 4 regarding the form of C , the matrix corres-
ponding to the linearized map near the corner: (y(−	t), y′(−	t)) �→ (y(	t), y′(	t)) =
C(y(	t), y′(	t)) in the limit of small ε and fixed µ > 0:

Proof. On the time interval [−	t,	t] we scale time t → δ · τ , where

δ = ε/µ. (A.1)

Note that ẏ(t) then changes to y′(τ )δ−1, hence

C =
(

1 0
0 δ−1

)
Ĉ

(
1 0
0 δ

)
, (A.2)

where Ĉ is the matrix of the linear map

(
y(−σ)
y′(−σ)

)
�→
(

y(σ )
y′(σ )

)
= Ĉ

(
y(−σ)
y′(−σ)

)

defined by the rescaled Eq. (3.2):

y′′ + δ2a(τδ)y = 0, (A.3)

on the interval τ ∈ [−σ, σ ], where we denote

σ = 	t/δ. (A.4)

Note that σ tends to +∞ as o(ε−1), because we assume that 	t = o(1)ε→0. Let us
introduce a new variable z by the rule

√
1 + 2µν + ν2 = 1 + εz, (A.5)

i.e. z is a rescaled distance to the corner. Recall that we choose our parameterization of
time along γ in such a way that t = 0 corresponds to the point nearest to the corner.
Hence, we have from (2.13 ), (2.14), (A.5), (2.7) that

h

2
= V (z) + O(εα),
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i.e. z(0) stays uniformly bounded for all ε. As the velocity ν̇ is bounded from above by
virtue of (2.13), (2.6), it follows that ν(t)− ν(0) = O(	t) at |t | ≤ 	t , so z(t)− z(0) =
O(	t/ε), i.e. z = o(ε−1) for all t from this interval.

It is easy to see that Eq. (A.3) (see also (3.3)) takes the following form after the
rescaling:

y′′ +

(
1 − µ2

(n − 1)µ2 V ′′(z) + εã(z, ε)

)
y = 0, (A.6)

where ã is uniformly bounded and

ã = O
(
|z|−1−α) , (A.7)

uniformly for all z such that εz is small. Equation (2.13) changes to

h

2
= (z′)2

2
(1 + φ(z, ε)) + V (z) + Ṽ (z, ε), (A.8)

where
Ṽ = O(εα), and φ = o(1)ε→0. (A.9)

As we mentioned, we consider Eqs. (A.6), (A.8) at z ≤ z∗ with some z∗ = o(ε−1).
Therefore, at z > z∗ we may define φ and Ṽ in an arbitrary way, and we define there
φ(z) = φ(z∗) and Ṽ (z) = Ṽ (z∗)(z∗/z)α . Then, by virtue of (2.7), (A.9), the potential
in the right-hand side of (A.8) uniformly (for all small ε) tends to zero as z → +∞.
Hence, uniformly for all small ε,

z(τ ) = τ
(√

h + o(1)
)

as τ → ±∞.

By plugging this into (A.6), and defining ã(z) = ã(z∗)(z∗/z)2+α we see from (2.7),
(A.7) that Eq. (A.6) has the form

y′′ + Q(τ, ε)y = 0 where, uniformly for all ε, Q = O(|τ |−2−α) as τ → +∞.

(A.10)
Moreover, Q is continuous with respect to ε and has a limit (uniformly for all z) as
ε → 0: the limit system is

y′′ + βV ′′(z) y = 0,

β = 1 − µ2

(n − 1)µ2 , (A.11)

where z(τ ) solves
h

2
= (z′)2

2
+ V (z). (A.12)

It is a routine fact that every solution y(τ ) of equation of type (A.10) grows at most
linearly as τ → ±∞; and that there exists a limit for the derivative y′:

y′(τ ) = D±
1 + O

(|τ |−α) , (A.13)

uniformly for any bounded set of initial conditions and for all small ε. Moreover, the
solution is bounded as τ → +∞ if and only if D+

1 = 0; and the solution stays bounded
as τ → −∞ if and only if D−

1 = 0. Among the solutions bounded as τ → +∞, there



524 A. Rapoport, V. Rom-Kedar, D. Turaev

exists exactly one solution y+ which tends to 1. Analogously, there exists exactly one
solution y− which tends to 1 as τ → −∞:

y±(τ ) = 1 + O(|τ |−α), y′±(τ ) = O(|τ |−1−α). (A.14)

We also take a pair ŷ+(τ ) and ŷ−(τ ) of solutions such that

ŷ′−(−∞) = 1, ŷ′
+(+∞) = 1, (A.15)

hence
ŷ± = τ + O

(
|τ |1−α) . (A.16)

The solutions ŷ± are not uniquely defined, therefore we now fix a certain canonical
choice of them, in order to ensure that they will depend continuously on ε and other
parameters of the problem. To do that, let ϕ(τ) denote the solution of (A.10) with initial
conditions ϕ(0) = 1, ϕ′(0) = 0, and let ψ(τ) be the solution with initial conditions
ψ(0) = 0, ψ ′(0) = 1 (we deal with time-reversible equations, and in this setting ϕ and
ψ are, respectively, the even and odd solutions of (A.10); we do not use this in the proof
of this theorem). Recall that

det

(
ϕ ψ

ϕ′ ψ ′
)

= 1 (A.17)

for all τ , by Wronsky formula. As y+ is defined uniquely (by condition (A.14)), there
exist uniquely defined constants K1 and K2 such that

y+ = K1ϕ − K2ψ (A.18)

(one can show that K1 = ψ ′(+∞) and K2 = ϕ′(+∞), but we do not use this informa-
tion). We will choose

ŷ+ = K2

K 2
1 + K 2

2

ϕ +
K1

K 2
1 + K 2

2

ψ. (A.19)

Note that (y+, ŷ+) are related to (ϕ, ψ) by a linear transformation with the determinant
equal to 1. Therefore, by virtue of (A.17),

det

(
y+ ŷ+
y′

+ ŷ′
+

)
= 1 (A.20)

for all τ . By taking a limit as τ → +∞, we obtain from this formula (see also (A.14),
(A.13)) that ŷ′

+(+∞) = 1, i.e. thus defined ŷ satisfies (A.15), (A.16), as required. Anal-
ogously one can fix the choice of ŷ−; note that

det

(
y− ŷ−
y′− ŷ′−

)
= 1. (A.21)

As y+ and ŷ+ are linearly independent, every solution is a linear combination of them:

y(τ ) = D+
0 y+ + D+

1 ŷ+. (A.22)

The same solution can be written as

y(τ ) = D−
0 y− + D−

1 ŷ−. (A.23)
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It follows that the solutions of (A.3) define a continuously depending on ε scattering
matrix S(ε): (

D+
0

D+
1

)
= S

(
D−

0
D−

1

)
. (A.24)

Moreover, the matrix Ĉ of the map

(
y(−σ)
y′(−σ)

)
�→
(

y(σ )
y′(σ )

)
is given by

Ĉ =
(

y+(σ ) ŷ+(σ )

y′
+(σ ) ŷ′

+(σ )

)
· S(ε) ·

(
ŷ′−(−σ) −ŷ−(−σ)

−y′−(−σ) y−(−σ)
)
. (A.25)

Recall that σ → +∞. By (A.2), (A.25 ), (A.14), (A.16), (A.13),

C =
(

s11 + o(1) + σ s21(1 + o(1)) s21 O(δσ 2) + O(δσ )
1
δ
(s21(1 + o(1)) + O(σ−1−α)) s22 + o(1) + σ s21(1 + o(1))

)
. (A.26)

where si j (ε) are the entries of the scattering matrix. ��
The proof of Proposition 1, regarding the width of the stability wedges for small β

values is established next:

Proof. The stability zone corresponds to | Tr(A)| < 2. By (3.14), (A.1 ) the boundary
Tr(A) = 2 is given by

ε(2 − (s11 + s22)

(
1 +

2d

R

)
+ o(1)ε→0) = 2√

h
d

(
1 +

d

R

)
s21, (A.27)

and the boundary Tr(A) = −2 is given by

ε(−2 − (s11 + s22)

(
1 +

2d

R

)
+ o(1)ε→0) = 2√

h
d

(
1 +

d

R

)
s21, (A.28)

where si j are the entries of the scattering matrix S(µ, ε) of Eq. (A.6). At β = 1−µ2

(n−1)µ2 =
0, ε = 0 Eq. (A.6) (the finite ε version of (3.10)) degenerates into y′′ = 0, and the
scattering matrix is equal to the identity. Thus, at β close to 0 and small ε, we find that

s11 + s22 = 2 + o(1) (A.29)

and
s21 = q1β + q2ε + o (|ε| + |β|) , (A.30)

where

q1 = ∂s21

∂β
|
(β = 0,ε= 0)

and

q2 = ∂s21

∂ε
|
(β = 0,ε= 0) .

(While S may be non differentiable in ε for general β, it can be shown, using (A.6), that
at β = ε = 0 the expansion (A.30) is valid.) Thus, by plugging (A.29), (A.30), (3.23)
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into (A.27), (A.28), we find the following equations for the boundaries of the stability
zone near (β = 0, ε = 0):

ε

(
2
√

h

d + R
+ q2

)
+ o(ε) = −√

hIβ + o(β)

and

ε

(
2
√

h

d
+ q2

)
+ o(ε) = −√

hIβ + o(β).

As we see, in order to prove the lemma, it remains to show that

q2 = 2
√

h. (A.31)

By definition, s21 equals to y′−(+∞), where y−(τ ) is the solution of (A.6) that satisfies
y−(−∞) = 1. Let us write (A.6) in the form (A.10). By differentiating (A.10) we find
that the derivative u(τ ) = ∂

∂ε
y−(τ ) satisfies

u′′ + Qu = −∂Q

∂ε
y−.

As Q = 0 and y− = 1 for all τ at β = 0, ε = 0, we obtain that

q2 = u′(+∞)|(β = 0,ε= 0) = −
∫ +∞

−∞
∂Q

∂ε
dτ.

From (A.6), (A.3), (3.3), we find

∂Q

∂ε
|
(β = 0,ε= 0) = ã(z, 0)|β = 0 = V ′(z).

This gives us (see also (3.11))

q2 = −
∫ +∞

−∞
V ′(z(τ ))dτ =

∫ +∞

−∞
z′′(τ ))dτ = z′(+∞)− z′(−∞) = 2

√
h,

as required. ��
Next we find the form of C in the limit at which both µ and ε are small. Here, as in

Lemma 4, on the time interval [−	t,	t] we scale time t → δ · τ, yet here we choose
a different scaling coefficient δ (compare with (A.1)):

δ = ε√
2ε + µ2

. (A.32)

Obviously, δ → 0 (at least as O(
√
ε)) as ε and µ tend to zero. Then, the matrix C is

given by formula (A.2), where Ĉ is the corresponding matrix for system (A.3) obtained
from (3.2) by the new time-scaling.

With such scaling, system (A.3) gets the form

y′′ +
1

2ε + µ2

(
1 − µ2

n − 1
V ′′(z) + εã(z, ε)

)
y = 0, (A.33)
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where ã is uniformly bounded and satisfies (A.7) for all z such that εz is small. The
equation for z(τ ) changes from (A.8) to

(z′)2

2
(1 + εz)2 =

(
h

2
− V (z)− Ṽ (z, ε)

)
(M + (1 − M)z(1 + εz/2)) , (A.34)

where

M(ε, µ) = µ2

µ2 + 2ε
, (A.35)

and Ṽ satisfies (A.9). Like in the proof of Lemma 4, we consider only the interval z ≤ z∗
with z∗ = o(ε−1), so outside this interval we may replace the terms εz with εz∗ both in
the right- and left-hand side of (A.34), and replace Ṽ (z, ε) with Ṽ (z∗, ε)(z∗/z)α . Then
z(τ ) tends to +∞ linearly with τ or faster, with the velocity bounded away from zero.
It follows that like in Lemma 4, the system (A.33), (A.34) belongs to the class (A.10),
hence the matrix Ĉ is expressed by formula (A.25) via the scattering matrix S(ε, µ)
defined by (A.24).

Lemma 7. For small 	t and sufficiently small µ and ε, the linearized map about
the diagonal orbit near the corner C : (y(−	t), y′(−	t)) �→ (y(	t), y′(	t)) =
C(y(	t), y′(	t)) is of the form

C = K 2
1 − K 2

2

K 2
1 + K 2

2

(
1 + O((δ/	t)α) O(	t)
O(δα(	t)1+α) 1 + O((δ/	t)α)

)
+ K1 K2C̃, (A.36)

where δ → 0 as ε → 0, C̃ is a matrix whose exact form is irrelevant here and K1, K2
are the coefficients of the even and odd components of the solution y−(τ ) of Eq. (A.33)
with z solving (A.34).

Proof. Here we will use the time-reversibility of Eq. (A.33), (A.34): if y(τ ) is its solu-
tion, then y(−τ) is a solution as well. It follows that

y−(τ ) = y+(−τ),
hence, by (A.18),

y−(τ ) = K1ϕ(τ) + K2ψ(τ), (A.37)

where ϕ andψ are, respectively, the even and odd solutions of (A.33). Then, analogously
to (A.19),

ŷ+ = − K2

K 2
1 + K 2

2

ϕ +
K1

K 2
1 + K 2

2

ψ. (A.38)

From (A.18), (A.19), (A.37), (A.38), (A.22), (A.23), (A.24) we obtain the following
formula for the scattering matrix:

S =

⎛

⎜⎜⎜⎝

K 2
1 − K 2

2

K 2
1 + K 2

2

− 2K1 K2

(K 2
1 + K 2

2 )
2

2K1 K2
K 2

1 − K 2
2

K 2
1 + K 2

2

⎞

⎟⎟⎟⎠ . (A.39)

By (A.2), (A.25), (A.14), (A.16), (A.13), (A.4), (A.39) the required form of C , namely
(A.36) is found. ��
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Finally we establish Lemma 6 regarding the stability wedges in this limit:

Proof. As before, we represent the monodromy matrix A as the product of the two
matrices B and C . Since B corresponds to the regular part of the diagonal orbit and is
independent of µ, Lemma 3 applies in this small µ and ε limit as well and the matrix B
is given by (3.8). As δ and 	t tend to zero, while 	t does this sufficiently slowly, we
find from (A.36), (3.8) that

Tr(A) =
{−2(1 + 2d

R ) + o(1)(ε,µ)→0 < −2 at K1 = 0,
2(1 + 2d

R ) + o(1)(ε,µ)→0 > 2 at K2 = 0.
(A.40)

The sought stability intervals on the curve L correspond to | Tr(A)| < 2. Therefore, by
virtue of (A.40), we will prove the lemma if we show that there exists a converging to
zero sequence of values of (ε, µ) ∈ L which corresponds to K1 = 0 and a converging
to zero sequence of values of (ε, µ) ∈ L for which K2 = 0.

By (A.39), vanishing of K1 or K2 corresponds to vanishing of s21, i.e. to the bound-
edness of the solution y− of (A.33). At K1 = 0 we have from (A.37) that y− = ψ , i.e.
the bounded solution is odd, while at K2 = 0 the bounded solution y− = ϕ is even.
Thus, K1 = 0 corresponds to the existence of a bounded solution y− with an odd number
of zeros, and K2 = 0 corresponds to the existence of a bounded solution with an even

number of zeros. It remains to note that the coefficient
1 − µ2

(n − 1)(2ε + µ2)
of V ′′(z)y in

(A.33) tends to +∞ as (ε, µ) → 0. From that, exactly like in the proof of Theorem 2, we
obtain that the number of zeros of y− tends to infinity as (ε, µ) → 0. We also showed
in the proof of Theorem 2 that each time the number of zeros changes, the increase is
exactly 1. Now, the required existence of a converging to zero sequence of values of
(ε, µ) ∈ L which corresponds to the existence of a bounded solution with odd number
of zeros (i.e. K1 = 0) and a converging to zero sequence of values of (ε, µ) ∈ L which
corresponds to the existence of a bounded solution with even number of zeros (K2 = 0)
follows immediately. ��

Appendix B. The Power-Law Potential

To establish Proposition 2, we integrate Eq. (A.33) with the power-law potential in the
asymptotic limit of small (ε, µ). In fact, we show below that by parameterizing the (µ, ε)
plane by the parameters

(ρ,M) =
(√

2ε + µ2,
µ2

2ε + µ2

)
(B.1)

we obtain estimates to the width of the wedge for all sufficiently small ρ uniformly in M .
We first introduce some notations. Recall that the parabolas emanating from the origin
LM = {(µ, ε) : 2εM = µ2(1 − M)} were defined for a fixed parameter M ∈ [0, 1] and
that ρ is used to parameterize these curves. Let

J (M) =
∫ +∞

(2/h)1/α

dz

z
√
(hzα − 2)(M + (1 − M)z)

. (B.2)

In particular,

J (1) = π√
2α

and J (0) =
(

h

2

)1/2α √
2

α

∫ π/2

0
(sin θ)1/α dθ, (B.3)
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and at α = 1, J (0) = √
h. Let

P(ρ,M) = √
Mh

(
καρ2 n − 1

α(α + 1)

) 1
α+2

, (B.4)

where κ = κ(ρ,M) solves the equation
(

h
1 − M

4
κ1+ α

α+2 +
√

Mhκ
α
α+2

)α+2

ρ2 = α(α + 1)

n − 1
. (B.5)

Note that κ → +∞ as ρ → 0, while P(ρ,M) remains bounded: P ∈ [0, 1]. Moreover,
one can rewrite (B.5) in the following form (recall that δ = ε

ρ
and

√
M = µ

ρ
, see (A.32),

(A.35)):
h

2
κδ + µ

√
h = (ρ/κ)α/(α+2)

(
α(α + 1)

n − 1

)1/(α+2)

, (B.6)

from which it follows immediately that

κδ = κ
ρ(1 − M)

2
= o(1). (B.7)

Consider an equation

y′′(θ) +
1

((1 − P)θ2 + Pθ)α+2 y(θ) = 0 (B.8)

defined at θ > 0. In the limit θ → +0, the coefficient of y in (B.8) tends to +∞, which
produces fast oscillations in y: every solution has the asymptotic given by

y(θ) ≈ E1((1 − P)θ2 + Pθ)
α+2

4 cos

(∫ +∞

θ

dθ

((1 − P)θ2 + Pθ)1+α/2

)
−

E2((1 − P)θ2 + Pθ)
α+2

4 sin

(∫ +∞

θ

dθ

((1 − P)θ2 + Pθ)1+α/2

)
(B.9)

with some constant E1,2. The asymptotic behavior as θ → +∞ is given by (A.22),
(A.16), (A.14), (A.20) i.e.

y(θ) = F0(1 + O(θ−α)) + F1θ(1 + O(θ−α)) (B.10)

with some constant F0,1. Thus, solutions of (B.8) define the scattering matrix Ŝ(P, α):
(

F0
F1

)
= Ŝ

(
E1
E2

)
. (B.11)

For convenience of later computation we use the following general form for Ŝ:

Ŝ(P, α) =
( √

g cos ζ
√

g sin ζ√
G cosϕ

√
G sin ϕ

)
. (B.12)

Notice that det Ŝ = 1 by construction, hence
√

Gg sin(ϕ − ζ ) = 1, (B.13)

where G, g, ϕ, ζ depend only on P and α.
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Proposition 3. In the case of the power-law potential V (Q, ε) =
(
ε
Q

)α
, every curve

LM , M ∈ [0, 1], intersects infinitely many stability tongues; the intersections happen
near (see (B.2))

ρ = ρk = 2J (α,M)
√
α(α + 1)

πk
√

n − 1
, (B.14)

and the length of the intervals is given by (see (B.4), (B.5) and (B.7))

(	ρ)k ≈ ρk

πk

√
h

G (P(ρk,M), α) d
(
1 + d

R

) ρkκ(ρk,M)(1 − M). (B.15)

Proof. As before, we need to estimate the scattering matrix S for the rescaled Eq. (A.33).
For the power-law potential we have V ′′ > 0, so the coefficient of y is positive at small
ε for all z. Thus, we may represent Eq. (A.33) in the form

y′′ +�2(τ, ε, µ)y = 0, (B.16)

We consider Eq. (B.16) separately on the interval |τ | ≤ R, and on the intervals
|τ | > R, where R(ε, µ) tends sufficiently slowly to infinity as (ε, µ) → 0 (i.e. as
ρ → 0). R is chosen so that for |τ | ≤ R the frequency � is large, hence y is highly
oscillatory, and so its envelope is found below by the method of averaging. Then, we
show that on the intervals |τ | > R (B.16) limits, after some rescaling, to (B.8). Thus,
the scattering matrix of (A.33) is found by composing the rescaled Ŝ with the oscillatory
solution envelope and then with the rescaled Ŝ−1. Once S is found, the stability regions
are found from trace A.

Let R(ε, µ) be chosen such that� tends to +∞ uniformly on the interval |τ | ≤ R, as
(ε, µ) → +0 (it tends to +∞ indeed on any finite interval of τ — hence it tends to +∞
on any sufficiently slowly growing interval as well). Then, there exists a limit of (A.33)
and (A.34) by which

lim
ρ→0

ρ2�2 = α(α + 1)

(n − 1)zα+2 , (B.17)

with z(τ ) solving

(
h

2
− 1

zα
)(M + (1 − M)z) = (z′)2

2
, z′(0) = 0. (B.18)

Let us apply an averaging procedure to (B.16) on the interval τ ∈ [−R, R]: define
(r, φ) by

√
� y = √

r cosφ,
1√
�

y′ = √
r sin φ.

Then, Eq. (B.16) takes the form

r ′ = �′(τ )
�

r cos 2φ, φ′ = −�− �′(τ )
2�

sin 2φ,

or, after we introduce the fast and slow phases

η =
∫
�(τ)dτ, � = φ + η, (B.19)
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the following form

dr

dη
= ωr cos 2(�− η),

d�

dη
= −ω

2
sin 2(�− η), (B.20)

where ω := �′(τ )/�2(τ ); by (B.17) (and since z′ is bounded by (B.18))

ω = O(
√

2ε + µ2), (B.21)

uniformly for |τ | ≤ R (provided R grows sufficiently slowly). Sinceω in (B.20) is small,
by virtue of the averaging principle, the solutions of (B.20) are close to the solutions of
the averaged (with respect to η) system for every o(ω−2)-long interval of values of η.

In fact, the total change in η cannot exceed
∫ +∞
−∞ �(τ)dτ = O(ρ−1) = o(ω−2) (see

(B.19 ), (B.17), (B.21)). Hence, for all τ ∈ [−R, R], the solutions of (B.20) remain
close to the solutions of the system averaged with respect to η, which is simply

dr

dη
= 0,

d�

dη
= 0.

Thus, the evolution from τ = −R to τ = R is, to the leading order, just a rotation
by the angle − ∫ R

−R �(τ)dτ . Denote:

Srot (a, b) =

⎛

⎜⎜⎝
cos
∫ b

a
�(τ)dτ sin

∫ b

a
�(τ)dτ

− sin
∫ b

a
�(τ)dτ cos

∫ b

a
�(τ)dτ

⎞

⎟⎟⎠ . (B.22)

So the values of y and y′ at τ = ±R are related by:
⎛

⎝

√
�(R) y(R)

1√
�(R)

y′(R)

⎞

⎠ ≈ Srot (−R, R) ·
⎛

⎝

√
�(R) y(−R)

1√
�(R)

y′(−R)

⎞

⎠ (B.23)

(by time-reversibility, �(R) = �(−R)).
Let us now consider the behavior of solutions of (A.33) on the interval τ > R. Here

τ is large, and we estimate the solution of (A.34) as

z(τ )(1 + εz(τ )/2) = h
1 − M

4
τ 2(1 + O(τ−α)) +

√
Mhτ(1 + O(τ−α)).

Recall that we are interested only in the behavior for |τ | ≤ 	t/δ, which corresponds to
z = o(ε−1) (see (A.32) and (A.35)), so we may write

z(τ ) = h
1 − M

4
τ 2 (1 + o(1)ρ→0

)
+

√
Mhτ

(
1 + o(1)ρ→0

)

on the interval τ > R. After scaling the time τ = κθ , where κ is given by (B.5), we find
(after some algebraic manipulations) that Eq. (A.33) on this interval transforms into

y′′(θ) +
1 + o(1)

(
(1 − P)θ2 + Pθ(1 + o(1))

)α+2 y(θ) = 0, (B.24)
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where P(ρ,M) is given by (B.4). Since Eq. (B.24) limits to (B.8) asρ → 0, its scattering
matrix is well approximated by the scattering matrix Ŝ of (B.8). Thus, returning to the
time τ = κθ , we obtain from (B.11), (B.9), (B.10) that

(
D+

0
κD+

1

)
= Ŝ

(
E1
E2

)
≈ Ŝ · Srot (τ,∞) ·

⎛

⎝

√
κ�(τ)y(τ )
1√
κ�(τ)

κy′(τ )

⎞

⎠ , (B.25)

where D+
0,1 are the coefficients of the expansion (A.22) for the solutions of (A.33).

By time-reversibility, for the interval τ < −R we have

(
D−

0−κD−
1

)
≈ √

κ Ŝ · Srot (−∞, τ ) ·
⎛

⎝

√
�(τ)y(τ )

− 1√
�(τ)

y′(τ )

⎞

⎠ , (B.26)

namely,
⎛

⎝

√
�(τ)y(τ )
1√
�(τ)

y′(τ )

⎞

⎠ ≈ 1√
κ

(
1 0
0 −1

)
· S−1

rot (−∞, τ ) · Ŝ−1
(

D−
0−κD−

1

)

= 1√
κ

Srot (−∞, τ ) ·
(

1 0
0 −1

)
· Ŝ−1

⎛

⎝
D−

0

−κD−
1

⎞

⎠ . (B.27)

From (B.23), (B.25) and (B.27) we find
(

D+
0

κD+
1

)
≈ Ŝ · Srot (R,∞) · Srot (−R, R) · Srot (−∞, R) ·

(
1 0
0 −1

)
· Ŝ−1

(
D−

0
−κD−

1

)

= Ŝ

(
cos
∫ +∞
−∞ �(τ)dτ sin

∫ +∞
−∞ �(τ)dτ

− sin
∫ +∞
−∞ �(τ)dτ cos

∫ +∞
−∞ �(τ)dτ

)(
1 0
0 −1

)
Ŝ−1

(
1 0
0 −1

)(
D−

0
κD−

1

)
.

By (B.12), this gives us the following formula for the scattering matrix S : (D−
0 ,

D−
1 ) → (D+

0 , D+
1 ):

S ≈
(√

Gg sin(� + ϕ + ζ ) κg sin(ψ + 2ζ )
G
κ

sin(� + 2ϕ)
√

Gg sin(� + ϕ + ζ )

)
, (B.28)

where

� =
∫ +∞

−∞
�(τ)dτ ≈ 2J

ρ

√
α(α + 1)

n − 1
, (B.29)

and G, g, ϕ, ζ are the coefficients of the scattering matrix Ŝ that depend only on P and
α (see (B.17), (B.18), (B.2)).

Now, like in the proof of Theorem 2, by virtue of (A.2), (A.25), (A.14), (A.16), (A.13),
(3.8), (B.7), (B.28), we obtain the following formula18 for the trace of the monodromy
matrix A = BC :

Tr(A) = 2G√
hδκ

d

(
1 +

d

R

)
sin(�+2ϕ)(1+o(1))+2

√
Gg sin(�+ϕ+ζ )

(
1 +

2d

R

)
+o(1).

(B.30)

18 In particular, setting µ = 0 and α = 1 in (B.30) (so M = P = 0, δ = √
ε/2, ρ = √

2ε, κ =
(

1
ε

1
n−1

) 1
4
(

4
h

) 3
4
, J (0) = √

h) gives formula (4.1).
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Equating T r(A) to ±2 supply the stability intervals (B.14), (B.15); since δκ is small
(see (B.7)) and G is non-zero (by (B.13)), only the first term is of importance, and the
stability intervals are created when � + 2ϕ ≈ πk, which gives (B.14) (see (B.29)).
Formula (B.15) is found from:

	ρ

∣∣∣∣
d�

dρ

∣∣∣∣
2G√
hδκ

d

(
1 +

d

R

)
≈ 4.

��
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