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Abstract: We assume that a symplectic real-analytic map has an invariant normally
hyperbolic cylinder and an associated transverse homoclinic cylinder. We prove that
generically in the real-analytic category the boundaries of the invariant cylinder are
connected by trajectories of the map.

1. Introduction

A Hamiltonian dynamical system is defined with the help of a Hamilton function H :
M → R on a symplecticmanifoldM of dimension 2n. LetMc be a connected component
of a level set {H = c}. Since H remains constant along the trajectories of theHamiltonian
system, the set Mc is invariant. Depending on the Hamilton function H and the energy
c, the restriction of the dynamics onto Mc may vary from uniformly hyperbolic (e.g., in
the case of a geodesic flow on a surface of negative curvature) to completely integrable.

Since Poincarés works, it has been accepted that a typical Hamiltonian system does
not have any additional integral of motion independent of H (unless the system pos-
sesses some symmetries and the Noether theorem applies). On the other hand a generic
Hamiltonian system is nearly integrable in a neighbourhood of a totally elliptic equilib-
rium (a generic minimum or maximum of H ) or totally elliptic periodic orbit. Then the
Kolmogorov–Arnold–Moser (KAM) theory implies that the Hamiltonian system is not
ergodic (with respect to the Liouville measure) on some energy levels [72]. Indeed, the
KAM theory establishes that a nearly integrable system possesses a set of invariant tori
of positive measure.

Each of the KAM tori has dimension n. For n > 2 a KAM torus does not divide
Mc which has dimension (2n − 1), moreover, the complement to the union of all KAM
tori is connected and dense in Mc. Thus the KAM theory does not contradict to the
existence of a dense orbit in Mc. It is unknown whether such orbits really exist in nearly
integrable systems. The question goes back to Fermi [39] who suggested the following
notion: a Hamiltonian system is called quasi-ergodic if in every Mc any two open sets
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are connected by a trajectory. This property is equivalent to topological transitivity of the
Hamiltonian flow on Mc. This property can also be restated in slightly different terms:
(a) in every Mc there is a dense orbit or (b) in every Mc dense orbits form a residual
subset.

Fermi conjectured [39] that quasi-ergodicity is a generic property of Hamiltonian
systems, but proved a weaker statement only: if a Hamiltonian system with n > 2
degrees of freedom has the form

H = H0(I ) + εH1(I, ϕ, ε), (1)

where H0 is integrable and (I, ϕ) are action-angle variables, then genericallyMc does not
contain an invariant (2n−2)-dimensional hyper-surface that is analytic in ε. Obviously,
such surface would prevent the quasi-ergodicity. However, non-analytic invariant hyper-
surfaces cannot be excluded from consideration as it is not known whether they can
exist generically or not. So Fermi’s quasi-ergodic hypothesis remains unproved. The
recent papers [21,64,65,71,74] make an important step in the understanding of the
underlying dynamics by showing that for the generic (in a certain smooth category)
near-integrable case with 21

2 or more degrees of freedom, there are trajectories that visit
an a priori prescribed sequence of balls. The paper [52] provides examples of systems
having orbits whose closure contains a Lebesgue positive measure set of KAM-tori.

This problem is closely related to the problem of stability of a totally elliptic fixed
point of a symplectic diffeomorphism, or stability of a totally elliptic periodic orbit for a
Hamiltonian flow. It was proved in [35,36] that stability can be broken by an arbitrarily
small smooth perturbation. It is believed that a totally elliptic periodic orbit is generically
unstable but the time scales for this instability to manifest itself are extremely long, see
e.g. [15,59].

For ε = 0, the unperturbed system (1) is described by the Hamiltonian H = H0(I ).
Then the actions I are constant along trajectories, so the equation I = I0 defines an
invariant torus, and the angles ϕ are quasi-periodic functions of time with the frequency
vector ω0(I ) = H ′

0(I ). KAM theory implies that the majority of invariant tori survive
under perturbation. Tori with rationally dependent frequencies are called resonant and
are destroyed by a typical perturbation [2]. The frequency of a resonant torus satisfies a
condition of the form ω0(I ) ·k = 0 for some k ∈ Z

n\{0}. The resonant tori form a “res-
onant web”, typically (e.g. if ω0 is a local diffeomorphism) a dense set of measure zero.

Arnold’s example [1] shows that a trajectory of the perturbed system (1) can slowly
drift along a resonance. Arnold’s paper inspired a large number of studies in the long-
time stability of actions, the problem which is known as “Arnold diffusion”. It has been
attracting significant attention recently and we refer the reader to papers [11,31,33,40–
43,54,57,60–62,68–70,76,82,84] for a more detailed discussion.

It should be noted that the motion along the resonant web is very slow: Nekhoroshev
theory [14,78] provides a lower bound on the instability times in the analytic case. Let
{·, ·} denote the Poisson brackets. Then İ = {H, I } = ε{H1, I } is of the order of ε. On
the other hand, if the system satisfies assumptions of the KAM theory, |I (t) − I (0)|
remains small for all times and the majority of initial conditions, i.e., for the set of initial
conditions of asymptotically full measure. If H satisfies assumptions of the Nekhoro-
shev theory, there are some exponents a, b > 0 such that |I (t) − I (0)| < εa for all
|t | < exp ε−b and for all initial conditions. This estimate establishes an exponentially
large lower bound for the times of Arnold Diffusion in analytic systems.

It is important to stress that the upper bound on the speed of Arnold diffusion strongly
depends on the smoothness of the system. Indeed, the stability times are exponentially



Arnold Diffusion 509

large in ε−1 for analytic systems, but only polynomial bounds can be obtained in the
Ck category. In particular, papers [21,64,74] study the Arnold diffusion for non-analytic
Hamiltonians and therefore the bounds established by the analytical Nekhoroshev theory
are likely to be violated, see e.g. [13]. The problem of genericity of Arnold diffusion
in analytic category remains fully open. We believe the methods proposed in our paper
will help to advance the theory in the analytic case.

The normal form theory suggests that for small positive ε the system (1) has a nor-
mally hyperbolic cylinder with a pendulum-like separatrix located in a neighbourhood
of a simple resonance. Indeed, Bernard proved the existence of normally-hyperbolic
cylinders in a priori stable Hamiltonian systems [6], the size of such cylinder being
bounded away from zero for arbitrarily small size of the perturbation.

A model for this situation is often obtained by assuming that the integrable part of
the Hamiltonian already possesses a normally-hyperbolic cylinder and an associated ho-
moclinic loop (e.g. by considering H0 = P(p, q)+h0(I )where P is a Hamiltonian of a
pendulum). A system of this type is called a priori unstable. The drift of orbits along the
cylinder has been actively studied in the last decade[3–5,7–9,12,18–20,22,27,28,31–
34,70,87,88], including the problem of genericity of this phenomenon and instability
times. It should be noted that the Arnold diffusion can be much faster in this case.

In these studies, a drifting trajectory typically staysmost of the timenear the normally-
hyperbolic cylinder, occasionally making a trip near a homoclinic loop. The process can
be described using the notion of a scatteringmap introduced byDelshams et al. [32]. Ear-
lierMoeckel [75] suggested thatArnold diffusion can bemodelled by randomapplication
of two area-preserving maps on a cylinder (this approach was recently continued in [17,
46–49,53,66]). In this way the deterministic Hamiltonian dynamics is modelled by an it-
erated function system, and the obstacles to a drift along the cylinder appear in the formof
essential curveswhich are invariantwith respect to bothmaps simultaneously [67,75,77].

This problem is closely related to the Mather problem on the existence of trajecto-
ries with unbounded energy in a periodically forced geodesic flow [10,29]. The criteria
for the existence of trajectories of the energy that grows up to infinity are known for
sufficiently large initial energies [10,24,29,30,44,45,80,81]. The results of the present
paper can be used to establish the generic existence of orbits of unbounded energy for
all possible values of initial energy.

In our paper we depart from the near-integrable setting and study the dynamics of
an exact symplectic map in a homoclinic channel, a neighbourhood of a normally-
hyperbolic two-dimensional cylinder A along with a sequence of homoclinic cylinders
B at a transverse intersection of the stable and unstablemanifolds of A.We conduct a rig-
orous reduction of the problem to the study of an iterated function system and show that
the existence of a drifting trajectory (i.e. the instability of the Arnold diffusion type) is
guaranteed when the exact symplectic maps of the cylinder A that constitute the iterated
function system do not have a common invariant curve. The reduction scheme is in the
same spirit as in [50,77] while the setting and proofs are different. The completely novel
result is that the existence of drifting orbits is a generic phenomenon, i.e. it holds for an
open and dense subset of a neighbourhood, in the space of analytic symplectic maps,
of the given map with a homoclinic channel, provided the restriction of the map on the
cylinder A has a twist property. All the known similar genericity results for the Arnold
diffusion have been proven so far in the smooth category and use the non-analiticity of
the perturbations in an essential way.

In one respect, the situation we consider is more general than in the near-integrable
setting, as we do not assume the existence of a large set of KAM curves on the invariant
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cylinder A. On the other side, as one can extract from the example of [25], our assump-
tion of the strong transversality of the homoclinic intersections, which we need in order
to define the scattering maps that form the iteration function system, seems to fail for
a generic analytic near-integrable system in a neighbourhood of a resonance in the a
priori stable case. Therefore, our results do not admit an immediate translation to the a
priori stable case. Rather, the problem we consider here is related to the a priori chaotic
case, e.g. we assume certain transversality of invariant manifolds associated with the
normally hyperbolic cylinder.

The technical assumptions of our main theorem can be found in Sect. 2. As an exam-
ple, we can consider a 4-dimensional symplectic map that is a direct product of a twist
map and a standard map. Namely, Φ0 : (ϕ, I, x, y) �→ (ϕ̄, Ī , x̄, ȳ) where

ϕ̄ = ϕ + ω(I ), x̄ = x + ȳ,
Ī = I, ȳ = y + k sin x,

(2)

where k > 0 is a positive parameter and ω is an analytic function. We assume ϕ and x to
be angular variables, so the map is a symplectic diffeomorphism of (T × R)2. The map
Φ0 has a normally hyperbolic invariant cylinder A given by x = y = 0. The cylinder A
is filled with invariant curves as the map Φ0 preserves the value of the I variable. The
(x, y) component of Φ0 coincides with the standard map, which has transversal homo-
clinic points for all k > 0. Thus Φ0 verifies the assumptions of the main theorem. Then
a generic analytic perturbation of Φ0 produces orbits which connects neighbourhoods
of any two essential curves in A.

A more interesting example is obtained when the integrable twist map is replaced
by another standard map, so the new unperturbed map is given by Φ0 : (ϕ, I, x, y) �→
(ϕ̄, Ī , x̄, ȳ) where

ϕ̄ = ϕ + Ī , x̄ = x + ȳ,
Ī = I + k1 sin ϕ, ȳ = y + k2 sin x .

(3)

The cylinder A = {x = y = 0} is still invariant but it is no longer filled with invariant
curves. Instead the cylinder contains a Cantor set of invariant curves provided k1 is not
too large. These tori prevent trajectories ofΦ0 from traveling in the direction of the I axis.

The theory presented in this paper allows us to treat both cases equally and implies
that an arbitrarily small generic analytic perturbation creates trajectories which travel
between regions I < Ia and I > Ib for any Ia < Ib [provided ω′(I ) is separated from
0 for (2), and k2 > C(4|k1| + k21) for (3)]. Indeed, in order to apply Theorem 1 to these
examples, we note first, that the invariant cylinder A is normally hyperbolic. This cylin-
der has a stable and unstable separatrices Wu(A) and Ws(A) which coincide with the
product of A and the stable (reps., unstable) separatrix of the standard map Wu,s

sm , so we
can write (slightly abusing notation) Ws(A) = A×Ws

sm and Wu(A) = A×Wu
sm . This

product also describes the structure of the foliation of Wu,s(A) into strong stable and
strong unstable manifolds of points in A. For a point v ∈ A, we let Euu(v) = {v}×Wu

sm
and Ess(v) = {v} ×Ws

sm . The assumption k2 > C(4|k1| + k21) for (3) ensures that these
strong stable and strong unstable foliations remain C1-smooth after the perturbation.

It can be proved that the standard map has infinitely many transversal homoclinic
orbits for any k > 0. Let ph = (xh, yh) be one of these orbits. The cylinder B =
A × { ph } ⊂ Wu(A) ∩ Ws(A) is homoclinic to A. Since the strong stable and strong
unstable foliations of a point v ∈ A coincide with the product of the base point and the
separatrices of the standardmap, we see that (v, ph) ∈ Ess(v)∩Euu(v), and the cylinder
B satisfies the strong tansversality assumption described in the next section giving rise to
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a simple homoclinic intersection (defined in the next section). Then Theorem 2 implies
that generic perturbation of Φ0 has orbits traveling in the direction of the cylinder A.

Similar maps were considered in Easton et al. [37] (motivated by the “stochastic
pump model” of Tennyson et al. [89]). In [37] the existence of drift orbits was shown
for all non-integrable Lagrangian perturbations provided k2 is large enough (i.e. in the
“anti-integrable” limit). Our methods allow us to obtain the drifting orbits without the
large k2 assumption, i.e., without a detailed knowledge of the dynamics of the system.

2. Set-up, Assumptions, and Results

Consider a real-analytic diffeomorphism Φ : � → R
2d , d ≥ 2, defined on an open set

� ⊆ R
2d .We assume thatΦ preserves the standard symplectic formΩ , and thatΦ is ex-

act (e.g. the latter is always true if� is simply-connected). LetΦ have an invariant smooth
two-dimensional cylinder A diffeomorphic to S

1 × [0, 1] and ψ : S
1 × [0, 1] → � be

the corresponding embedding. Then the boundary of A consists of two invariant circles:
∂A = ψ

(
S
1 × {0}) ∪ ψ

(
S
1 × {1}). Let int(A) = A\∂A and F0 = Φ|A.

We assume that the cylinder A is normally-hyperbolic. More precisely, we assume
that at each point v ∈ A the tangent space is decomposed into a direct sum of three non-
zero subspaces: TvR

2d = R
2d = Nc

v ⊕Nu
v ⊕Ns

v , where N
c
v is the two-dimensional plane

tangent to A at the pointv. The subspaces Ns,u depend continuously onv and are invariant
with respect to the derivativeΦ ′ of themap, i.e.Φ ′Ns

v = Ns
F0(v) andΦ ′Nu

v = Nu
F0(v).We

note that Φ ′Nc
v = Nc

F0(v) as A is invariant with respect to Φ. We assume that for some
choice of norms in Ns,u,c there exist α > 1 and λ ∈ (0, 1) such that at every point v ∈ A

‖F ′
0(v)‖ < α, ‖(F ′

0(v))−1‖ < α, (4)

‖Φ ′(v)|Ns
v
‖ < λ, ‖(Φ ′(v)|Nu

v
)−1‖ < λ, (5)

where
α2λ < 1. (6)

Note that these assumptions are more restrictive in comparison with the standard defi-
nition of a normally hyperbolic manifold. In particular, the large spectral gap condition
(6) implies the C1-regularity of the strong stable and strong unstable foliations while in
the general case these foliations are Hölder continuous only (see e.g. [83]).

We also note that in (4) and (5) the same pair of exponents α and λ bound bothΦ ′ and
(Φ ′)−1, so we say that A is symmetrically normally-hyperbolic. The symmetric form of
the spectral gap assumption implies that the restriction of the symplectic form on A is
non-degenerate (see Proposition 4). Thus A is a symplectic submanifold of R

2d and the
map F0 = Φ|A inherits the (exact) symplecticity of Φ.

We have no doubts that our results can be extended to cover the case when λ and α of
inequalities (4) and (5) depend on the point v ∈ A. However, for the sake of simplicity,
we conduct the proofs for the case of constant λ and α only.

The points in a small neighbourhood of the normally-hyperbolic cylinder A, whose
forward iterations do not leave the neighbourhood and tend to A exponentially with the
rate at least λ, form a smooth (at leastC2 in our case) invariant manifold, the local stable
manifold Ws

loc ⊃ A, which is tangent to Ns ⊕ Nc at the points of A (see e.g. [56]). The
points whose backward iterations tend to A exponentially with the rate at least λ (and
without leaving the neighbourhood) form aC2-smooth invariantmanifoldWu

loc ⊃ A (the
local unstable manifold), which is tangent to Nu ⊕ Nc at the points of A. The invariant
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cylinder A is the intersection ofWu
loc andW

s
loc. The global stable and unstable manifolds

of A are defined by iterating the local invariant manifolds: Wu(A) := ⋃m≥0 ΦmWu
loc

and Ws(A) :=⋃m≥0 Φ−mWs
loc.

In each of the manifolds there exists a uniquely defined C1-smooth invariant folia-
tion transverse to A, the strong-stable invariant foliation Ess in Ws(A) and the strong-
unstable invariant foliation Euu in Wu(A), such that for every point v ∈ A there is a
unique leaf of Ess

v and a unique leaf of Euu
v which pass through this point and are tangent

to Ns
v and, respectively, Nu

v (see [86]). The C1-regularity of a foliation means that the
leaves of the foliation are smooth and, importantly, the field of tangents to the leaves
is also smooth, which implies that for any two smooth cross-sections transverse to the
foliation the correspondence defined by the leaves of the foliation between the points in
the cross-sections is a local diffeomorphism.

Let us discuss the question of the persistence of A at small perturbations. It is a
standard fact from the theory of normal hyperbolicity [56] that any strictly-invariant
normally-hyperbolic compact smooth manifold with a boundary can be extended to
a locally-invariant normally-hyperbolic manifold without a boundary. In our case this
means that the smooth embedding ψ that defines the invariant cylinder A = ψ(S1 ×
[0, 1]) can be extended onto S

1× I where I is an open interval containing [0, 1], and the
image Ã = ψ(S1 × I ) ⊃ A is normally-hyperbolic and locally-invariant with respect to
the map Φ. Here, by the local invariance we mean that there exists a neighbourhood Z
of Ã such that the iterations of each point of Ã stay in Ã until they leave Z . An important
property of the locally-invariant normally-hyperbolic manifold without a boundary is
that it persists at C2-small perturbations, i.e. for all maps C2-close to Φ there exists a
locally-invariant normally-hyperbolic cylinder Ã ⊂ Z . It is not defined uniquely, but
it can be chosen in such a way that it will depend on the map continuously as a C2-
manifold.1 The continuous dependence on the map implies that the cylinder Ã remains
symplectic and symmetrically normally-hyperbolic for all maps C2-close to Φ.

Note that the normal hyperbolicity implies that Ã contains all the orbits that never
leave Z . In particular, any invariant curve that lies in Z must lie in Ã. We call a smooth
invariant essential2 simple curve γ ⊂ Ã a KAM-curve if the map Φ restricted to γ is
smoothly conjugate to the rigid rotation to a Diophantine angle and the map F0 = Φ| Ã
near γ satisfies the twist condition. As the Lyapunov exponent at every point of γ is
zero, the gap with the contraction/expansion in the directions transverse to Ã is infinitely
large. Therefore, the cylinder Ã is of class Cr (for any given finite r ) in a sufficiently
small neighborhood of γ (see [38,56]). This holds true for every map Cr -close toΦ, i.e.
the map F0 staysCr -smooth and the twist condition also holds. Now, by applying KAM-
theory to themap F0, we conclude that the invariant curve γ persists for every symplectic
mapwhich is at leastC4-close toΦ. Namely, every suchmap has a uniquely defined, con-
tinuously depending on the map, invariant KAM-curve with the same rotation number.

We further assume that the boundary of A is a pair of KAM-curves. These curves
persist for all C4-small symplectic perturbations hence they lie in Ã and bound a com-
pact invariant sub-cylinder A ⊂ Ã. Every orbit in A stays in Z , so the same cylinder A
is a sub-cylinder of Ã for every choice of the cylinder Ã. This means that even though

1 Throughout this paper we assume the large spectral gap assumption (6) in the notion of normal hyper-
bolicity. This guarantees the C2-smoothness of the manifold, and the C1-smoothness of the corresponding
strong-stable and strong-unstable invariant foliations for every map C2-close to Φ.

2 I.e. non-contractible to a point.
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the cylinder Ã is not uniquely defined, the cylinder A is defined uniquely for all sym-
plectic maps C4-close to Φ, and it depends continuously on the map. The stable and
unstable manifolds and the strong-stable and strong-unstable foliations of A also depend
continuously, in the C1-topology, on the map.

We now assume that the symmetrically normally-hyperbolic cylinder A has a homo-
clinic, i.e., the intersection ofWu(A) andWs(A) has a point x outside A. IfWu(A) and
Ws(A) are transverse at x , the implicit function theorem implies that x has an open neigh-
bourhood Ux in Wu(A) ∩ Ws(A), which is diffeomorphic to a two-dimensional disk.

For any x ∈ Wu(A) ∩ Ws(A) there is a unique leaf of Euu
x and a unique leaf of

Ess
x which pass through this point. We call the homoclinic intersection at x strongly

transverse if
Tx Ess

x ⊕ Tx Euu
x ⊕ Tx (Wu(A) ∩ Ws(A)) = R

2d . (7)

This property is equivalent to the condition that the leaf Euu
x is transverse toWs(A) and

the leaf Ess
x is transverse to Wu(A) at the point x .

The holonomy maps π s : Ux → A and πu : Ux → A are projections along the
leaves of the foliations Ess and Euu , respectively. Since the foliations are smooth, the
strong transversality implies that the foliation Euu is transverse to the discUx inWu(A)

and the foliation Ess is transverse to Ux in Ws(A) provided Ux is sufficiently small.
Then πu : Ux → A and π s : Ux → A are local diffeomorphisms.

In this case, following [32], one can define the scattering map on πu(Ux ):

Fx = π s ◦ (πu)−1.

It is a local diffeomorphism which does not always extends to the whole cylinder A.
However, in this paper we consider the case where the scattering map can be globally
defined on a large portion of A.

Let Ā ⊂ int(A) be a compact invariant sub-cylinder in A, i.e. it is a closed region
in int(A) bounded by two non-intersecting invariant essential simple curves γ + and
γ −. Let the set of points homoclinic to A contain a smooth two-dimensional manifold
B ⊂ Wu(int(A)) ∩ Ws(int(A))\A. We call B a homoclinic cylinder, simple relative to
the cylinders Ā and A, if the following assumptions hold:

[S1] The strong transversality condition (7) holds for all x ∈ B.
[S2] For every point x ∈ Ā, the corresponding leaf of the foliation Euu intersects

the homoclinic cylinder B at exactly one point each, and no two points in B
belong to the same leaf of the foliation Ess . In other words, the scattering map
FB = π s

B ◦ (πu
B)−1 : Ā → int(A) is well-defined.

[S3] The image of Ā by the scattering map FB contains an essential curve.

Under these conditions the scattering map is a diffeomorphism Ā → FB( Ā) ⊂
int(A). Indeed, assumption [S1] implies that the projections π

s,u
B : B → int(A) are lo-

cal diffeomorphisms and assumption [S2] implies that the maps πu
B : (πu

B)−1( Ā) → Ā
and π s

B : B → π s
B(B) are bijective. Condition [S3] means that the scattering map is

homotopic to identity on Ā.
We conclude that FB( Ā) ⊂ A is a sub-cylinder bounded by two essential simple

curves FB(γ +) and FB(γ −). Obviously, FB(γ +) ∩ FB(γ −) = ∅. Proposition 7 implies
that FB is an exact symplecticmap. In particular, the cylinder FB( Ā) has the same area as
Ā, and FB( Ā)∩ Ā �= ∅.Note also that the fulfillment of condition [S2] depends onboth in-
variant cylinders, Ā and A, as the cylinder Amust be large enough to incorporate FB( Ā).
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If γ+ and γ− are KAM-curves, then the cylinder Ā bounded by these curves persists
for all C4-small symplectic perturbations. The transversality condition [S1] implies that
the C1-smooth homoclinic cylinder B also persists and remains simple relative to Ā and
A. Let VN be a set of real-analytic exact symplectic diffeomorphisms Φ : � → R

2d

such that:

– each map Φ ∈ VN has two invariant, bounded by KAM-curves, symmetrically
normally-hyperbolic, two-dimensional closed cylinders A and Ā such that Ā ⊂
int (A),

– eachmapΦ ∈ VN has N different3 homoclinic cylinders B1, . . . , BN simple relative
to Ā and A,

– the cylinders A, Ā, B1, . . . , BN depend continuously (as C2-smooth manifolds) on
the map Φ,

– for each Φ ∈ VN the map F0 = Φ|A has a twist property in some symplectic
coordinates (y, ϕ).4

We define the topology in the space of real-analytic exact symplectic diffeomorphisms as
follows. Take any compact K ⊂ R

2d and let an analyticity domain Q be a compact com-
plex neighbourhood of K . We consider exact symplectomorphisms K → R

2d which
admit a holomorphic extension onto some open neighbourhood of Q. Two such maps
are considered to be close if they are uniformly close on Q. For any given r , two holo-
morphic maps which are sufficiently close on Q are Cr -close on K . As we explained,
the C4-closeness is enough for the persistence of the cylinders A, Ā, B1, . . . , BN [if all
of their orbits by Φ lie in int (K )], so the set VN is open.

Theorem 1. (Main theorem) Let N ≥ 8. Then, there is an open and dense subset Ṽ of
VN , such that for each map Φ ∈ Ṽ for every two open neighbourhoods U− of γ − and
U+ of γ + the image of U− by some forward iteration of the map Φ intersects U+.

Remark 1. It is obvious that given any two open sets U+ and U− the set of maps whose
orbits connect U− and U+ is open. The theorem makes a stronger claim that the inter-
section of all these sets (over all possible choices of the neighbourhoods U− and U+ of
the given curves γ − and γ +) is open and dense in VN . The theorem implies that for any
map Φ ∈ VN there is an open set of arbitrarily small perturbations of Φ within VN such
that each of these perturbations creates, for each pair of neighbourhoods U− and U+ of
the curves γ ±, an orbit that connects U− and U+.

Note that the existence of at least 8 different homoclinic cylinders required by The-
orem 1 is not a restrictive condition. Namely, under an additional mild assumption the
existence of one homoclinic cylinder implies the existence of infinitely many different
homoclinic cylinders (see Sect. 3.3). Using this, we can infer the following result from
our main theorem.

Consider the set V of real-analytic exact symplectic diffeomorphisms Φ : � → R
2d

such that:

– eachmapΦ ∈ V has an invariant, boundedbyKAM-curves, symmetrically normally-
hyperbolic, two-dimensional closed cylinder A,

– in A there exist two invariant sub-cylinders Ā and Â such that Ā ⊂ int ( Â) ⊂ int (A),
each of them is bounded by KAM-curves,

3 I.e. none intersects any image of another by the iterations of the map Φ.
4 In these coordinates, Birkhoff theorem [55] implies that the boundary curves γ ± of the invariant sub-

cylinder Ā are graphs of Lipschitz functions, y = y±(ϕ).
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– Φ has a homoclinic cylinder B simple relative to Â and A,
– the cylinder B is simple relative Ā and Â; i.e. FB( Ā) ⊂ int Â,
– the map F0 = Φ|A has a twist property.

As all the invariant cylinders involved are bounded by KAM-curves, they persist at
C4-small symplectic perturbations. Thus the set V is an open subset of the space of
real-analytic symplectomorphisms. Let γ − and γ + be the boundary curves of Ā.

Theorem 2. In V there is an open and dense subset Ṽ such that for each map Φ̃ ∈ Ṽ
and for every two open neighbourhoods U− of γ − and U+ of γ + the image of U− by
some forward iteration of Φ̃ intersects U+.

Remark 2. Statements similar to Theorems 1 and 2 are known for non-analytic (smooth)
case, see e.g. [19,20,77]. The main difference between the analytic and smooth case
is that the class of perturbations small in the real-analytic sense is narrower than the
class of perturbations that are small in the C∞-sense. In particular, for a typical real-
analytic map the normally-hyperbolic invariant cylinder A is not analytic (it has only
finite smoothness), so no real-analytic perturbations can vanish on A. Consequently,
methods of [19,20,77] are not applicable in the analytic category (in the crucial part that
concerns removing the barriers to diffusion by a small perturbation). On the other hand,
the proofs of the present paper hold true for the case of Ck maps as well.

Remark 3. The symplectic diffeomorphism Φ can be a Poincare map of a certain cross-
section � for a Hamiltonian flow inside a level of constant energy. We do not need to
assume that the Poincare map Φ is defined outside a small neighbourhood of the in-
variant cylinder A in this case: the global stable and unstable manifolds of A, as well
as the global strong-stable and strong-unstable foliations on these manifolds are defined
by continuation of the corresponding local objects by the orbits of the Hamiltonian
system. As above, one defines scattering maps by the orbits homoclinic to A. One can
easily adjust the proof of the two main theorems in order to show that if the Poincare
map Φ and the scattering map (maps) for some Hamiltonian system satisfy the assump-
tions of theorem 1 or 2, then a generic small perturbation of the Hamiltonian function
H in the space of real-analytic Hamiltonians leads to creation of orbits that connect
U− to U+.

The strategy of the proof of our two main theorems is as follows. We show in Propo-
sition 2 that the existence of one homoclinic cylinder B which is simple relative to the
invariant cylinders Â and A where Â is such that Ā ⊆ Â and FB( Ā) ⊆ Â implies the
existence of infinitely many different secondary homoclinic cylinders which are simple
relative to Ā and A. Thus, Theorem 2 is immediately reduced to Theorem 1, and we
will further consider N ≥ 8 homoclinic cylinders B1, . . . , BN , all of which are simple
relative to the same pair of compact invariant cylinders Ā and A, and all are different in
the sense that Φm(Bi ) ∩ Bj = ∅ for all m and all i, j = 1, . . . , N such that i �= j . Let
Fn : Ā → int(A) denote the scattering map defined by the homoclinic cylinder Bn . By
condition [S1], Fn is a local diffeomorphism. By condition [S2] Fn is a bijection, hence
Fn is a diffeomorphism of Ā onto the set Fn( Ā). Obviously, condition [S1] implies that
the scattering maps are defined in an open neighbourhood A′ of Ā in A.

Take any map Φ ∈ V . Let (vs)ms=0 ⊂ A be a part of an orbit of the iterated function
system {F0, . . . , FN }, i.e. for each s = 0, . . . ,m − 1 there exists ns = 0, . . . , N such
that vs+1 = Fns (vs). In order to ensure that Fns (vs) is well-defined we assume that
vs ∈ A′ for ns �= 0. In Sect. 4 we show that for any such orbit and any ε > 0, there is
a point x0 and a positive integer � such that
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dist(x0, v0) < ε, and dist(Φ̃�(x0), vm) < ε

(see Lemma 4). Note that we do not use hyperbolicity or index arguments in this lemma.
We also do not use the symplecticity of the maps F1, . . . , FN , nor the twist property
of the map F0. However, the fact that the large cylinder A is an invariant domain for
the area-preserving map F0 is crucial, as we use the Poincare Recurrence Theorem in
an essential way (we first prove a certain weak shadowing result, Lemma 2, that holds
without this assumption on the map F0, then Lemma 4 is deduced from it in the case of
area-preserving F0).

According to this shadowing lemma (Lemma 4), in order to show that two open sets
are connected by a forward orbit of the map Φ, it is sufficient to show that the inter-
sections of these sets with A are connected by orbits of the iterated function system
{F0, . . . , FN }. A generalisation (Theorem 3) of a classical Birkhoff theorem states that
if Fn for n = 0, . . . , N are exact symplectomorphisms homotopic to identity, and F0
is a twist map, then for any two essential curves γ ± ⊂ A′ there is a trajectory of the
iterated function system with v0 ∈ γ − and vm ∈ γ + unless the functions Fn have a
common invariant essential curve.

Thus, if the maps F0, . . . , FN have no common invariant essential curves between
γ − and γ +, every pair of neighbourhoods, U− of γ − and U+ of γ +, is connected by
orbits of the map Φ. Theorem 3 also implies that the absence of a common invariant
essential curve is an open property.

Theorem 4, the most difficult part of the argument, establishes that this property is
also dense in V (provided N ≥ 8). Thus, for every map Φ from an open and dense
subset of V , the corresponding scattering maps F1, . . . , FN (N ≥ 8) and F0 do not have
any common essential invariant curve. As we just explained, this implies that every two
neighbourhoods U± of γ ± are connected by forward orbits of each such map Φ, and
Theorem 1 follows.

Theorem 4 is the crucial step in the proof of Theorem 1. An analogue of Theorem 4
for generic non-analyticmaps can be derived from [19,20,77]. However, the methods of
destroying common invariant curves that are used in those papers cannot be used in the
analytic case (as the real-analytic perturbations cannot, in general, vanish on the finitely
smooth normally-hyperbolic cylinder A; the same concerns C∞ perturbations, for that
matter). Therefore, we develop a completely different perturbation technique in order to
prove Theorem 4 for the analytic case.

3. Estimates in a Neighbourhood of a Symmetrically Normally-Hyperbolic
Invariant Cylinder

In this section we study dynamics in a small neighbourhood of a normally-hyperbolic
cylinder. This analysis does not require the map to be either symplectic or analytic.

3.1. Fenichel coordinates, cross form of the map, and estimates for the local dynamics.
Let A be a compact, symmetrically normally-hyperbolic, smooth, invariant cylinder of
a Cr -smooth map Φ (r ≥ 2). As we already mentioned, A can be extended to a larger,
smooth normally-hyperbolic locally-invariant cylinder Ã. Let us introduce coordinates
in a small neighbourhood of A such that this larger invariant cylinder is straightened.
Moreover, the local stable and unstable manifolds Ws,u

loc (A) are straightened as well,
along with the strong-stable and strong-unstable foliations Ess and Euu on them. Note
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that the foliations are at leastC1. The straightening of themanifolds and foliationsmeans
that one can introduce C1-coordinates (u, v, z) in a neighbourhood of A such that the
manifold Ws

loc will have equation z = 0, the manifold Wu
loc will be given by u = 0, and

the leaves of the foliations Ess and Euu will all have the form {z = 0, v = const} and
{u = 0, v = const} respectively (cf. [58]). The cylinder A thus lies in {u = 0, z = 0}.
Here v = (ϕ, y) with ϕ ∈ S

1 being the angular variable and y taking values from an
interval I of the real line.

Note that the manifolds Wu(A) and Ws(A) can be non-orientable. In this case we
use the same coordinates (u, v, z) with v = (ϕ, y) assuming that the hyperplanes ϕ = 0
and ϕ = 2π are glued together by means of a linear involution in the space of (v, z).
This modification does not affect our estimates.

In these coordinates the map Φ near A takes the form Φ : (u, v, z) �→ (ū, v̄, z̄),

ū = h1(u, v, z), z̄ = h2(u, v, z), v̄ = F0(v) + h3(u, v, z), (8)

where h1,2,3 and F0 are C1-functions such that

h1(0, v, z) ≡ 0, h2(u, v, 0) ≡ 0,
h3(0, v, z) ≡ 0, h3(u, v, 0) ≡ 0.

(9)

The identities Φ(0, v, z) = (0, v̄, z̄) and Φ(0, v, z) = (0, v̄, z̄) imply the first line of
(9). The second line follows from the observation that the v-component of Φ(0, v, z)
and Φ(u, v, 0) is independent of z and u respectively.

Differentiating Eq. (8) and taking into account that the local stable and unstable
manifolds are given by the equations z = 0 and, respectively, u = 0, we find that

∂h1
∂u

∣∣
∣∣
u=z=0

= Φ ′(v)|Ns
v
,

∂h2
∂z

∣∣
∣∣
u=z=0

= Φ ′(v)|Nu
v
.

Then the assumption (5) implies that in an appropriately chosen norm

∥∥∥
∥
∂h1
∂u

∥∥∥
∥ < λ,

∥∥∥
∥∥

(
∂h2
∂z

)−1
∥∥∥
∥∥

< λ.

The implicit function theorem implies that for small u and z the second equation of
(8) can be resolved with respect to z. Therefore there is a neighbourhood of the closed
invariant cylinder A, where the map Φ : (u, v, z) �→ (ū, v̄, z̄) can be written in the
following “cross” form:

ū = p(u, v, z̄), z = q(u, v, z̄), (10)

v̄ = F0(v) + f (u, v, z̄), (11)

where

p(0, v, z̄) ≡ 0, q(u, v, 0) ≡ 0, (12)

f (0, v, z̄) ≡ 0, f (u, v, 0) ≡ 0, (13)

‖F ′
0(v)‖ < α, ‖(F ′

0(v))−1‖ < α, (14)
∥
∥∥∥
∂p

∂u

∥
∥∥∥ < λ,

∥
∥∥∥
∂q

∂ z̄

∥
∥∥∥ < λ, (15)

α2λ < 1, 0 < λ < 1 < α. (16)
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These estimates follow from the upper bounds (4)–(6) and the equalities (8), (9) provided
the neighbourhood is sufficiently small.

Let Zδ denote a δ-neighbourhood of A.

Lemma 1. There is δ0 > 0 such that for any δ ∈ (0, δ0) and any k ≥ 0 the following
statements hold.

1. Any trajectory of length k such that (ui , vi , zi ) := Φ i (u0, v0, z0) ∈ Zδ for i =
0, . . . , k satisfies the following estimates for i = 0, . . . , k:

‖ui‖ ≤ δλi , ‖zi‖ ≤ δλk−i , (17)

‖vi − Fi
0(v0)‖ ≤ δ(αλ)k/2, ‖vi − Fi−k

0 (vk)‖ ≤ δ(αλ)k/2. (18)

2. The orbit (ui , vi , zi ) is determined in a unique way for any given u0, v0, zk such
that ‖u0‖, ‖zk‖ ≤ δ and v0 ∈ A, as well as for any given u0, vk , zk such that
‖u0‖, ‖zk‖ ≤ δ and vk ∈ A.

3. Moreover, as k → +∞,
∥∥∥∥

∂z0
∂(u0, v0)

∥∥∥∥ +
∥∥∥∥
∂(uk, vk)

∂zk

∥∥∥∥→ 0,

∥∥∥∥
∂uk

∂(vk, zk)

∥∥∥∥ +
∥∥∥∥
∂(v0, z0)

∂u0

∥∥∥∥→ 0, (19)

uniformly for all ‖u0‖, ‖zk‖ ≤ δ and all vk ∈ A or v0 ∈ A.
4. We also have for all k large enough

∥∥∥
∥
∂z0
∂zk

∥∥∥
∥ ≤ λk,

∥∥∥
∥
∂(uk, vk)

∂(u0, v0)

∥∥∥
∥ ≤ αk (20)

[at any given (u0, v0) in the first inequality, and at any given zk in the second one],
and ∥∥∥

∥
∂uk
∂u0

∥∥∥
∥ ≤ λk,

∥∥∥
∥
∂(v0, z0)

∂(vk, zk)

∥∥∥
∥ ≤ αk, (21)

[at any given (vk, zk) in the first inequality, and at any given u0 in the second one).

Proof. Using (10) and (11), we get

ui+1 = p(ui , vi , zi+1), zi = q(ui , vi , zi+1), vi+1 = F0(vi ) + f (ui , vi , zi+1), (22)

for all i = 0, . . . , k − 1. For a trajectory inside Zδ Eqs. (12) and (15) imply

‖ui+1‖ = ‖p(ui , vi , zi+1)‖ ≤ λ‖ui‖, ‖zi‖ = ‖q(ui , vi , zi+1)‖ ≤ λ‖zi+1‖. (23)

Since ‖u0‖, ‖zk‖ ≤ δ, it follows that the orbit {(ui , zi , vi )}ki=0 satisfies (17).
For the future convenience let us define

C0(δ) = sup
Zδ

{‖p′
v‖, ‖p ′̄

z‖, ‖q ′
u‖, ‖q ′̄

z‖, ‖ f ′
u‖, ‖ f ′

v‖, ‖ f ′̄
z‖
}
. (24)

Note that C0(δ) can be made as small as we need by decreasing δ because (12) and (13)
imply that p′

v = 0, p ′̄
z = 0, q ′

u = 0, q ′
v = 0, f ′

u = 0, f ′
v = 0, f ′̄

z = 0 at (u = 0, z = 0),
for all v ∈ A.



Arnold Diffusion 519

In order to prove inequalities (18), let Vi := vi − Fi
0(v0). In particular V0 = 0.

Equation (22) implies

‖Vi+1‖ ≤ sup
v∈A

‖F ′
0(v)‖ · ‖Vi‖ + ‖ f (ui , vi , zi+1)‖. (25)

Then Eq. (13) implies

‖ f (ui , vi , zi+1)‖ ≤ sup
(u,v,z)∈Zδ

‖ f ′
u‖ · ‖ui‖ ≤ C0(δ)‖ui‖ ,

‖ f (ui , vi , zi+1)‖ ≤ sup
(u,v,z)∈Zδ

‖ f ′
z‖ · ‖zi+1‖ ≤ C0(δ)‖zi+1‖.

Using Eq. (17) we get

‖ f (ui , vi , zi+1)‖ ≤ δC0(δ) min{λi , λk−i−1}. (26)

Now using Eqs. (14), (26) and (25) we conclude that

‖Vi+1‖ ≤ α‖Vi‖ + δC0(δ) min{λi , λk−i−1}.
Using V0 = 0 and inequalities (16) we find that for all 1 ≤ j ≤ k

‖Vj‖ ≤ δC0(δ)
∑

0≤i≤ j−1

α j−i−1 min{λi , λk−i−1} ≤ δC0(δ)
∑

0≤i≤k−1

αk−i−1 min{λi , λk−i−1}

= δC0(δ)

⎧
⎨

⎩

∑

0≤i≤(k−1)/2

(αλ)k−i−1 + αk−1
∑

(k−1)/2<i≤k−1

(λ/α)i

⎫
⎬

⎭
≤ δ(αλ)k/2,

when δ0 is chosen small enough to ensure
C0(δ)√

αλ

[
1

1 − αλ
+

λ

α − λ

]
≤ 1. The first of

inequalities (18) is proved. The second inequality follows immediately by the symmetry
of the problem (if we replace the map Φ by its inverse, then F0 changes to F−1

0 , i to
(k − i), (u0, zk) to (zk, u0) and v0 to vk).

Given u0, v0, zk , the orbit {(ui , zi , vi )}ki=0 is a fixed point of the operator

Q : {(ui , vi , zi )}ki=0 �→ {(ûi , v̂i , ẑi )}ki=0,

which acts on a sequence {(ui , vi , zi )}ki=0 by
⎧
⎪⎨

⎪⎩

ûi+1 = p(ui , vi , zi+1), ẑi = q(ui , vi , zi+1),

v̂i+1 = F0(vi ) + f (ui , vi , zi+1) for i = 0, . . . , k − 1,

û0 = u0, v̂0 = v0, ẑk = zk .

(27)

Recall that v = (y, ϕ), where ϕ ∈ S
1, and y runs an interval I such that for all

sufficiently small δ the points in the δ-neighbourhood Zδ of the cylinder A have the y-
coordinates strictly inside I . It is convenient to extend the functions p, q, F0, f in (10)
and (11) to all y ∈ R

1 in such a way that they remain smooth, have uniformly continuous
derivatives, moreover the identities (12) and (13) hold, and the estimates (14) and (15)
remain true with a margin of safety. We assume that the functions p, q, F0, f are not
changed for all points with y ∈ I . If a sequence {(ui , vi , zi )}ki=0 is a fixed point of the
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extended operator Q and lies entirely in Zδ , then this sequence is also an orbit for the
original map Φ.

It is convenient to consider the lift of the original map so that ϕ runs the whole real
axis and the functions p, q and F0 + f − v are periodic in ϕ. So, in the analysis of the
operator Q given by (27), we assume v ∈ R

2.
Denote by X = Xk,u0,v0,zk the set of all sequences {(ui , vi , zi )}ki=0 with the given

value of (u0, v0, zk), which also satisfy ‖ui , zi‖ ≤ δ for all i = 0, . . . , k. By (23), if
‖ui , zi‖ ≤ δ for all i = 0, . . . , k, then ‖ûi , ẑi‖ ≤ δ for all i = 0, . . . , k as well, thus
QX ⊆ X . Let us show that the operator Q is contracting on X in the norm

‖{(ui , vi , zi )}ki=0‖α = max
i=0,...,k

α−i‖ui , vi , zi‖.

Indeed, in this norm

‖Q′‖α ≤ max

{
α−1
∥∥
∥
∥

∂p

∂u

∥∥
∥
∥ + α−1

∥∥
∥
∥

∂p

∂v

∥∥
∥
∥ +
∥∥
∥
∥

∂p

∂ z̄

∥∥
∥
∥ ,
∥∥
∥
∥

∂q

∂u

∥∥
∥
∥ +
∥∥
∥
∥

∂q

∂v

∥∥
∥
∥ + α

∥∥
∥
∥

∂q

∂ z̄

∥∥
∥
∥ ,

α−1 ∥∥F ′
0

∥∥ + α−1
∥
∥∥
∥

∂ f

∂u

∥
∥∥
∥ + α−1

∥
∥∥
∥

∂ f

∂v

∥
∥∥
∥ +
∥
∥∥
∥
∂ f

∂ z̄

∥
∥∥
∥

}

≤ max
{
α−1λ + α−1C0(δ) + C0(δ), 2C0(δ) + αλ, α−1 ∥∥F ′

0

∥∥ + α−1C0(δ) + 2C0(δ)
}
,

where, for the derivatives in the right-hand side, we use the supremum norm taken over
all (u, v, z̄) such that ‖u, z̄‖ ≤ δ, and C0(δ) is defined by (24). By (12)–(16), if δ is
sufficiently small, then ‖Q′‖α < 1 uniformly for every element from X , independently
of the value of k ≥ 0. Since the set X is convex, it follows that the operator Q is indeed
contracting.

Thus, by contractionmapping principle, given any (u0, v0, zk) such that ‖u0, zk‖ ≤ δ

there exists indeed a unique length-k orbit with the given values of u0, v0 and zk . We
already proved that this orbit must satisfy (17) and (18). Since v0 ∈ A implies Fi

0v0 ∈ A
for all i = 0, . . . , k by the invariance of A with respect to F0, estimates (17) and (18)
imply that the orbit lies in Zδ as required.

By the symmetry of the problem, given any (u0, vk, zk) such that ‖u0, zk‖ ≤ δ and
vk ∈ A, there exists a unique length-k orbit with the given values of u0, vk and zk , and
this orbit lies in Zδ .

As a fixed point of a smooth contracting operator, the obtained orbit must depend
smoothly on all data on which the operator depends smoothly. So (ui , vi , zi ) depend
smoothly on (u0, v0, zk) (and, by the symmetry of the problem, on (u0, vk, zk) as well).
To complete the proof of the lemma, it remains to prove estimates (19)–(21).

We prove only the first limit in (19), as the second one follows from the first one due
to the symmetry of the problemwith respect to change ofΦ toΦ−1. It is enough to prove
(20) only, as (21) also follows by the symmetry. Denote βi = ‖∂(ui , vi )/∂(u0, v0)‖,
γi = ‖∂zi/∂(u0, v0)‖, where the derivatives are taken at zk fixed. By differentiating
(22), we obtain

βi+1 ≤
∥∥
∥∥
∂(p, F0 + f )

∂(u, v)

∥∥
∥∥ βi +

∥∥
∥∥
∂(p, f )

∂ z̄

∥∥
∥∥ γi+1, γi ≤

∥∥
∥∥
∂q

∂ z̄

∥∥
∥∥ γi+1 +

∥∥
∥∥

∂q

∂(u, v)

∥∥
∥∥ βi ,

where the derivatives are taken at (u, v, z̄) = (ui , vi , zi+1). Since ui and zi satisfy (17),
we obtain from (12) to (15) that for sufficiently small δ (independent of i and k)

βi+1 ≤ (α − ρ)βi + μiγi+1, γi ≤ (λ − ρ)γi+1 + μk−i−1βi , (28)
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where ρ is a small positive constant, and

μ j = sup
‖u‖≤δλ j , (u,v,z)∈Zδ

∥∥∥
∥
∂(p, f )

∂ z̄

∥∥∥
∥ + sup

‖z‖≤δλ j , (u,v,z)∈Zδ

∥∥∥
∥

∂q

∂(u, v)

∥∥∥
∥ . (29)

It follows from (12) and (13) that

μ j → 0 as j → +∞. (30)

Recall also that, by definition,
β0 = 1, γk = 0. (31)

Define the sequence Mj by the rule

Mj+1 = αλMj + μ j , (32)

for an arbitrarily chosen M0. As αλ < 1, it follows from (30) that

Mj → 0 as j → +∞. (33)

By (28)

γi − Mk−iβi ≤ λ − ρ

1 − μi Mk−i−1
(γi+1 − Mk−i−1βi+1)

+

[
μk−i−1 − Mk−i + α

λ − ρ

1 − μi Mk−i−1
Mk−i−1

]
βi .

As the sequences μ j and Mj both tend to zero, it follows that

lim
k→+∞ max

i=0,...,k−1
μi Mk−i−1 = 0. (34)

If k is large enough, then μi Mk−i−1 < ρ/λ < 1 for all i = 0, . . . , k − 1. Thus,

γi − Mk−iβi ≤ λ(γi+1 − Mk−i−1βi+1) +
[
μk−i−1 − Mk−i + αλMk−i−1

]
βi ,

which, by (32), implies

γi − Mk−iβi ≤ λ(γi+1 − Mk−i−1βi+1),

hence, for all k large enough, for every i = 0, . . . , k − 1

γi − Mk−iβi ≤ λk−i (γk − M0βk), (35)

in particular
γ0 − Mkβ0 ≤ λk(γk − M0βk). (36)

Now, by (31), we have γ0 ≤ Mk , so (33) implies ∂z0/∂(u0, v0) → 0 as k → +∞, which
agrees with (19). Note also that by (35) we have γi+1 ≤ Mk−i−1βi+1. By (28), (34), this
gives us that for all k large enough, for every i = 0, . . . , k − 1

βi+1 ≤ αβi ,

which [see (31)] implies the second inequality in (20).
It remains to estimate ∂(uk, vk, z0)/∂zk as k → +∞. To this aim, let βi =

‖∂(ui , vi )/∂zk‖ and γi = ‖∂zi/∂zk‖, where the derivatives are taken at (u0, v0) fixed.
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Then by differentiating (10), (11), wewill obtain the inequalities (29), hence the estimate
(36) holds at all sufficiently large k for the newly defined γi , βi . However, instead of
(31) we have now

β0 = 0, γk = 1.

Thus, we find from (36) that

γ0 ≤ λk, βk ≤ 1/M0

for all k sufficiently large. This immediately gives us the first inequality in (20), and
since M0 can be taken arbitrary, we also obtain that ∂(uk, vk)/∂zk → 0 as k → +∞,
which completes the proof of (19). ��

Estimates provided by this lemma are close to those obtained by Shilnikov in [85].

3.2. “Lambda-lemma”. The following analogue of the “lambda-lemma” [23,79] fol-
lows from Lemma 1.

Proposition 1. If L ⊂ Zδ is a surface of the form u = w(v, z), where w is a smooth
function defined for all v ∈ A and all small z, then the images Φm(L) ∩ Zδ converge
to Wu

loc(A) ∩ Zδ as m → +∞ in the C1-topology. If L ⊂ Zδ is a surface of the form
z = w(v, u), where w is a smooth function defined for all v ∈ A and all small u, then
the images Φ−m(L) ∩ Zδ converge to Ws

loc(A) ∩ Zδ as m → +∞ in the C1-topology.

Proof. By the symmetry of the problem, it is enough to consider only the case where L is
a surface of the form u = w(v, z). By Lemma 1, given any (u0, vk, zk) the corresponding
orbit (ui , vi , zi ) is defined uniquely. Denote as ηk the operator that sends (u0, vk, zk) to
(v0, z0), and as ξk the operator that sends (u0, vk, zk) to uk . The point (u, v, z) belongs
to Φk L if and only if u0 = w(v0, z0), i.e. the equation of Φk L is

uk = ξk(u0, vk, zk) (37)

where u0 is defined from
u0 = w(ηk(u0, vk, zk)). (38)

By (17) and (19),

‖ηk‖ + ‖∂ηk/∂u0‖ → 0 as k → +∞,

therefore at each k large enough equation (38) defines u0 uniquely as a smooth function
of (vk, zk). It follows from (21) that

‖∂u0/∂(vk, zk)‖ = O(αk).

Thus, Eq. (37) defines uk as a smooth function wk(vk, zk), for all ‖zk‖ ≤ δ and vk ∈ A.
By (17), ‖uk‖ → 0 as k → +∞. Moreover, since by (21) and (19) we have ‖∂ξk/∂u0‖ =
O(λk) and ‖∂ξk/∂(vk, zk)‖ → 0 as k → +∞, it follows that
∥∥
∥∥

dwk

d(vk, zk)

∥∥
∥∥ ≤
∥∥
∥∥

∂ξk

∂u0

∥∥
∥∥ ·
∥∥
∥∥

∂u0
∂(vk, zk)

∥∥
∥∥ +
∥∥
∥∥

∂ξk

∂(vk, zk)

∥∥
∥∥ = O((αλ)k) +

∥∥
∥∥

∂ξk

∂(vk, zk)

∥∥
∥∥→ 0

as k → +∞ (recall that αλ < 1). We see that for all k large enough the surface Φk L is
given by the equation u = wk(v, z)wherewk tends to zero along with the first derivative
as k → +∞. Since equation of Wu

loc is u = 0, this proves the proposition. ��
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3.3. Secondary homoclinic cylinders. Using Proposition 1 we can establish a sufficient
condition for the existence of infinitely many independent homoclinic cylinders. Let Ā
and Â be compact invariant cylinders such that Ā ⊂ Â ⊂ A. Let the intersection of
Wu(A) and Ws(A) contain a homoclinic cylinder B which is simple relative to Â and
A, and FB( Ā) ⊆ Â, i.e.

Wu( Ā) ∩ B ⊆ Ws( Â) ∩ B. (39)

Proposition 2. There are infinitely many homoclinic cylinders Bi , each corresponds to
a simple (relative to Ā and A) intersection of Wu(A) with Ws(A), and none of the
cylinders belongs to the orbit of another cylinder: Bi ∩ Φm(Bj ) = ∅ for every m and
every i �= j .

Proof. Since the manifolds Wu(A) and Ws(A) are invariant with respect to Φ, the
cylinder Φm(B) lies in Wu(A) ∩ Ws(A) for all m ∈ Z. This homoclinic sequence of
cylinders Φm(B) tends to A as m → ±∞. Therefore, there are positive numbers m+
and m− such that the cylinders B− = Φ−m−(B) and B+ = Φm+(B) belong to a small
neighbourhood of A.

It is easy to show that if B is a simple homoclinic cylinder relative to Â and A
then the cylinder Φm(B) with any m also has this property. Indeed, conditions [S1]
and [S2] follow directly from the invariance of the foliations Ess and Euu and the
invariance of the cylinders Â and A. Moreover, the invariance of the foliations implies
Φ(π s(x)) = π s(Φ(x)) and Φ(πu(x)) = πu(Φ(x)) for every point x in Ws(A) and
Wu(A) respectively. Then

π
s,u
Φ(B) = Φ ◦ π

s,u
B ◦ Φ−1 (40)

and the scattering map takes the form

FΦ(B) = F0 ◦ FB ◦ F−1
0 (41)

where F0 = Φ|A. Consequently, the scattering maps, which correspond to any two
cylinders such that one is the image of the other by an mth iteration of Φ, are conjugate
to each other by means of the mth iteration of F0. Condition [S3] follows immediately
as F0 maps an essential curve to an essential curve. Thus the fulfilment of the simplicity
conditions for the cylinder B implies the fulfilment of the simplicity conditions for all
its iterations by Φ.

Thus, the cylinders B− and B+ satisfy B− ⊂ Wu
loc(A) and B+ ⊂ Ws

loc(A), and they
are simple relative to Â and A. In the Fenichel coordinates, Wu

loc(A) has the equation
u = 0 and the leaves of the foliation Euu in Wu

loc(A) are given by {u = 0, v = const}.
By the simplicity conditions [S1] and [S2], each leave of Euu in Wu

loc( Â) intersects the
cylinder B− at a single point and is transverse to Ws(A) at this point. It follows that
there is a piece W of the manifold Ws(A) which contains the homoclinic cylinder B−
and has the form z = w(v, u) where w is a smooth function defined for all v from some
neighbourhood of Â and all small u.

Proposition 1 (where the invariant cylinder A is replaced by the invariant cylinder
Â) implies that the images Wi = Φ−i (W ) by the backward iterations of Φ accumulate
on Ws

loc( Â) in C1. Equation (39) implies that each of Wi with i sufficiently large has a
non-empty and transverse intersection with Wu( Ā) near B+. Since Wi are, by construc-
tion, pieces of Wu(A), this gives us the sought infinite set of homoclinic cylinders Bi
converging to the cylinder B+; obviously none of them belongs to the orbit of another
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one. Since Wi are C1-close to Ws
loc( Â) near B+, it follows from the relative to Â sim-

plicity of B+ that Wi intersect transversely each leaf of the foliation Euu in Wu( Ā), the
uniqueness of the intersections is also inherited.

Thus, the scattering maps Fi : Ā → int(A) are defined for each of the cylinders Bi .
In order to check the simplicity of the homoclinic intersection at Bi , we need to show
that the projections π s

Bi
: Bi → int(A) by the leaves of the strong-stable foliation are

injective for all i (condition [S2]), and that the scattering maps are homotopic to identity
(condition [S3]). To check the injectivity, notice that

π s
Φi (Bi )

= Φ i ◦ π s
Bi ◦ Φ−i (42)

by (40). So, it is enough to show the injectivity of π s
Φi (Bi )

. To do this, note that the

cylinders Φ i (Bi ) are close to B− at large i , so the maps π s
Φi (Bi )

are close to π s
B− , and

the latter map is injective by the simplicity of the homoclinic intersection at B−.
It remains to show that the scattering maps Fi are homotopic to identity. As we just

mentioned, the maps π̂ s
i = π s

Φi (Bi )
◦ (π s

B−)−1 are close to identity at large i . The same

is true for the maps π̂u
i = πu

B+ ◦ (πu
Bi

)−1. Using (42), we find

FBi = π s
Bi ◦ (πu

Bi )
−1 = Φ i ◦ π̂ s

i ◦ FB− ◦ πu
B− ◦ Φ−i ◦ (π s

B+)
−1 ◦ FB+ ◦ π̂u

i , (43)

where FB+ = π s
B+ ◦ (πu

B+)
−1 and FB− = π s

B− ◦ (πu
B−)−1 are the scattering maps corre-

sponding to the cylinders B+ and B−. By the simplicity of the homoclinic intersection at
B, these maps are homotopic to identity diffeomorphisms. The map Φ i in formula (43)
acts in a small neighbourhood Z of A and is homotopic to identity in Z . The maps π s

B+

and πu
B− are projections along the foliations in the local stable and unstable manifolds,

so they are homotopic to identity in Z . Thus, all the maps in the right-hand side of
formula (43) are homotopic to identity, which implies that the scattering maps FBi are
homotopic to identity for all i large enough. The proposition is proved. ��

This proposition shows that the assumptions of Theorem 2 imply the existence of an
infinite series of different homoclinic cylinders which are simple relative to Ā and A,
i.e. Theorem 2 reduces to Theorem 1. For our purposes, the existence of N ≥ 8 such
cylinders is enough, so it will be our standing assumption for the rest of the paper. We
do not need the auxiliary invariant cylinder Â anymore.

4. Shadowing in the Homoclinic Channel

4.1. Homoclinic channel. Let B1, . . . , BN be homoclinic cylinders, each corresponds
to a simple homoclinic intersection relative to the compact invariant subcylinder Ā of
A, and none of the cylinders Bn belongs to the orbit of another cylinder. Let us repeat
the definition of the scattering maps Fn . Since the homoclinic intersections are simple,
it follows that two maps, πu

n and π s
n , from Bn into int(A) are defined for every n by

the leaves of the foliations Euu and Ess , respectively. Namely, v = πu
n (x) if the points

x ∈ Bn and v ∈ A belong to the same leaf of the foliation Euu , and v = π s
n(x) if x ∈ Bn

and v ∈ A belong to the same leaf of the foliation Ess . The smoothness of the maps π s
n

and πu
n and their inverse maps follows from the transversality of the intersections of the

leaves with Bn . By assumption, Ā ⊂ πu
n (Bn). Thus, for each homoclinic cylinder Bn

we have a diffeomorphism Fn = π s
n ◦ (πu

n )−1 which acts from Ā into int(A). In fact, as
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the strong transversality condition [S1] is open, there is a neighbourhood A′ of Ā such
that all the scattering maps F1, . . . , FN are diffeomorphisms of A′ into int(A).

Take sufficiently large positivem+ andm− such that all the cylinders B+
n = Φm+(Bn)

and B−
n = Φ−m−(Bn) (n = 1, . . . , N ) lie in the δ-neighbourhood of A, where δ is small

enough. As B+
n ∈ Ws

loc and B−
n ∈ Wu

loc, it follows that in the Fenichel coordinates
z = 0 on B+

n , and u = 0 on B−
n . Since the homoclinic cylinders are simple, the cylinder

B+
n intersects the leaves {v = const} of the foliation Ess in Ws

loc transversely, no more
than at one point each, hence B+

n is a graph of a function, B+
n = {u = u+n(v), z = 0},

where u+ is a smooth function whose domain of definition contains Ā. Analogously,
B−
n := {z = z−n (v), u = 0} for a smooth function z−. Thus, points on B+

n and B−
n

are uniquely determined by their v-coordinates. Since in the Fenichel coordinates the
projections πu and π s do not change the v-components of a point, we may formally
treat the maps Fn , n = 0, . . . , N , as acting from B−

n to B+
n in the same way these maps

act on A.
Since the foliations Ess and Euu are invariant with respect to the map Φ, it follows

that Φ(Euu
v ) = Euu

F0(v) and Φ(Ess
v ) = Ess

F0(v). Consequently, for any x ∈ Bn the points

F−m−
0 ◦πu

n (x) andΦ−m−(x) have the same v-coordinate. The same is true for the points
Fm+
0 ◦ π s

n(x) and Φm+(x). Thus, in the v-coordinates, we have

Φm++m−|B−
n

= Fm+
0 ◦ Fn ◦ Fm−

0 (44)

Denote by Tn : (u, v, z) �→ (ū, v̄, z̄) the map Φm++m− from a sufficiently small neigh-
bourhood of B−

n to a small neighbourhood of B+
n . The transversality condition im-

plies that the image by the map Tn of any leaf of the foliation Euu in Wu
loc, given by

{u = 0, v = const}, is transverse toWs
loc = {z̄ = 0}. Consequently the derivative ∂ z̄/∂z

is invertible. Therefore, given any small (u, z̄) and v ∈ Ā we have a uniquely defined
(ū, z, v̄) such that (ū, z̄, v̄) = Tn(u, z, v). So, we may write the map Tn in the following
form:

ū = pn(u, v, z̄), v̄ = Gn(u, v, z̄) = F̄n(v) + fn(u, v, z̄), z = qn(u, v, z̄), (45)

where pn , qn , fn are smooth functions defined for small (u, z̄) and for v from a small
neighbourhood A′′ of Ā in A. We define F̄n of (45) in such a way that

fn(0, v, 0) ≡ 0. (46)

As u = 0 corresponds to an initial point in Wu
loc, and z̄ = 0 corresponds to the image

of this point (by Tn) that lies in Ws
loc, the equalities u = 0 and z̄ = 0 correspond to an

initial point in B−
n which has its image in B+

n . Thus, by (44), we have

F̄n = Φm++m−|B−
n

= Fm+
0 ◦ Fn ◦ Fm−

0 , (47)

where Fn is the scattering map. Since the cylinder Ā is invariant with respect to F0, the
maps F̄n are defined in a neighbourhood of Ā, as the scattering maps Fn are. Thus, we
will further assume that the open neighbourhood A′′ of Ā in A is chosen such that the
modified scattering maps F̄n are all defined there, and theay are homotopic to identity
diffeomorphisms of A′′ into A, moreover

F−m−
0 (A′) ⊆ A′′ (48)
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where A′ is a small neighbourhood of Ā in A where the scattering maps Fn are defined.5

Let us denote by T0 the map Φ restricted to the δ-neighbourhood Zδ of A. Let us call
the union of the δ-neighbourhood of A with certain, sufficiently small neighbourhoods
of the cylinders Φ̃(B−), . . . , Φ̃m++m−−1(B−) a homoclinic channel. For every finite
orbit in the homoclinic channel with the initial point P0 ∈ Zδ there is a uniquely defined
sequence of points (Ps)2J+1s=0 of this orbit which lie in Zδ and satisfy

P2 j+1 = T
k j
0 P2 j for j = 0, . . . , J ,

P2 j = Tn j P2 j−1 for j = 1, . . . , J ,

where n j may take values from 1, . . . , N and k j ≥ 0. We call the sequence Pj a channel
orbit, and the sequence ω = (k0, n1, k1, . . . , nJ , kJ ) is called the code of the orbit.
Given a code ω, we say that a sequence (v∗

s )
2J
s=0 of points in A is a shadow orbit, if

v∗
2 j+1 = F

k j
0 (v∗

2 j ) and v∗
2 j = F̄n j (v

∗
2 j−1). In the last definition, we assume that

v∗
2 j−1 ∈ A′′ for j = 1, . . . , J , (49)

so these points belong to the domain of F̄n j and the sequence is well defined. We note
that it is possible that some codes do not correspond to any shadow orbit. On the other
hand, any channel orbit (Ps)2Js=0 has a code ω and defines a shadow orbit with the code
ω and v∗

0 equal to the v-coordinate of P0.

4.2. Shadowing orbits of proper codes. Our next goal is to estimate the deviation of the
channel orbit Ps from its shadow. In this section we restrict our attention to orbits which
correspond to a special class of codes. Namely, a finite code is called proper if for all s

ks ≥ k̄ and ks ≥ γ ks+1 + D, (50)

for some k̄ ≥ 0, D ≥ 0 and γ > 1. In other words, ks is a sufficiently fast decreasing
sequence of sufficiently large numbers.

Lemma 2. Given any sufficiently large k̄, γ and D, for any shadow orbit v∗
0 , . . . , v

∗
2J+1

with a proper code k0, {ns, ks}1≤s≤J , given any uin and zout such that ‖uin‖ ≤ δ,
‖zout‖ ≤ δ, in the δ-neighbourhood of A′ there exists a uniquely defined channel orbit
(Ps)2J+1s=0 with Ps = (us, vs, zs) such that u0 = uin, v0 = v∗

0 , z2J+1 = zout , and

P2 j+1 = T
k j
0 P2 j , P2 j = Tn j P2 j−1. Moreover,

‖vs − v∗
s ‖ ≤ 2δ(αλ)kJ /2 ≤ 2δ(αλ)k̄/2, (51)

and
‖u2J+1‖ ≤ δλk̄, ‖z0‖ ≤ δλk̄ . (52)

Remark 4. Usual shadowing results would require hyperbolicity (or its topological ana-
logues) from the maps F0 and F1, . . . , FN , see e.g. [26]. We, however, do not make any
assumption on the dynamics of these maps in this lemma (e.g. we have not assumed the
symplecticity so far). Therefore we need to restrict here the class of shadow orbits to
those with proper codes only; we believe any significantly stronger shadowing statement
can not hold in this situation without further assumptions.

5 As F0( Ā) = Ā ⊂ A′′, the inclusion (48) can always be achieved by choosing A′ to be close enough to Ā.
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Proof of the lemma. For J = 0 the statement of the lemma is contained in Lemma 1,
so we will proceed by induction in J . Suppose that for any z̃ with ‖z̃‖ ≤ δ there is a
unique sequence (us, vs, zs), s = 0, . . . , 2J − 1 with the code k0, n1, . . . , kJ−1, which
satisfies the condition u0 = uin , v0 = v∗

0 and z2J−1 = z̃ and such that the inequalities

‖vs − v∗
s ‖ ≤ 2δ(αλ)

kJ−1/2 (53)

hold for all s ≤ 2J − 1. In order to shorten our notation we suppress dependence on uin

and v∗
0 which are assumed to be fixed. Then u2J−1 = τ(z̃) and v2J−1 = φ(z̃) for some

functions τ and φ respectively. Equations (49) and (53) imply that

φ(z̃) ∈ A′′
ρ for any ρ > 2δ(αλ)k̄/2, (54)

where A′′
ρ is the closed ρ-neighbourhood of A′′.

Since (u2J−1 , v2J−1 , z̃) = T
kJ−1
0 (u2J−2 , v2J−2 , z2J−2), equation (17) of Lemma 1 im-

plies that

‖τ‖ ≤ δλ
kJ−1 ≤ δλk̄ . (55)

We will also include in our induction assumption a bound for the derivatives:

‖τ ′, φ′‖ ≤ ν (56)

for some sufficiently small constant ν. Thus, in order to carry out the induction, when we
prove that the sought sequence (u j , v j , z j ) is uniquely defined for all j = 0, . . . , 2J +1
we must also show that

‖∂(u2J+1 , v2J+1)/∂z
out‖ ≤ ν (57)

with the same ν.
Since (u2J+1 , v2J+1 , z

out ) = T
kJ
0 (u2J , v2J , z2J ), Lemma1 implies that z2J is a uniquely

defined smooth function of (u2J , v2J ) and zout . We denote it by σ : (u2J , v2J , z
out ) �→

z2J . Equations (17) and (19) imply

‖σ‖ ≤ δλkJ ≤ δλk̄, (58)

and
‖σ ′‖ ≤ ν, (59)

for any ν > 0 chosen in advance (if k̄ is large enough), and

‖∂σ/∂zout‖ ≤ λkJ . (60)

Taking into account that (u2J , v2J , z2J ) = TnJ (u2J−1, v2J−1, z2J−1) where the map
Tn j has the form (45) with n = nJ , we obtain the following system of equations

u2J = pnJ
(τ (z2J−1), φ(z2J−1), σ (u2J , v2J , z

out )),

v2J = GnJ
(τ (z2J−1), φ(z2J−1), σ (u2J , v2J , z

out )),

z2J−1 = qnJ
(τ (z2J−1), φ(z2J−1), σ (u2J , v2J , z

out )).

(61)
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In order to show that this system has a unique solution (u2J , v2J , z2J−1) for every zout

we use the contraction mapping theorem. Indeed, take any zout with ‖zout‖ ≤ δ and
consider the map

ū = pn(τ (z), φ(z), σ (u, v, zout )),
v̄ = Gn(τ (z), φ(z), σ (u, v, zout )),
z̄ = qn(τ (z), φ(z), σ (u, v, zout )),

(62)

where ‖z‖ ≤ δ, ‖u‖ ≤ δ and v ∈ A′′
ρ (for some ρ small enough).

The functions pn , qn , Gn are defined by Eq. (45). By (54), (55), and (58), if k̄ is
sufficiently large, then the values of τ and σ can be made arbitrarily small, and the range
of values of φ can be confined to an arbitrarily small neighbourhood of A′′, i.e. (τ, φ, σ )

belong to the domain of definition of (pn · qn,Gn), and the map (62) is well-defined.
As the functions pn , qn , Gn are smooth, their derivatives are bounded:

‖p′
n, q

′
n,G

′
n‖ ≤ C.

We chose ν in (56) and (59) such that Cν < 1. Then ‖z̄‖ ≤ δ, ‖ū‖ ≤ δ and v̄ ∈ A′′
ρ . The

first two inequalities hold as pn and qn are components of the map Tn which acts from a
small neighbourhood of the cylinder B−

n to a small neighbourhood of the cylinder B+
n ,

and both cylinders belong to the δ-neighbourhood of A. In order to show that v̄ ∈ A′′
ρ we

note that the induction assumption (53) implies ‖φ(z) − v∗
2J−1

‖ ≤ 2δ(αλ)
kJ−1/2. Since

Gn := F̄n + fn , and v∗
2J

= F̄n(v∗
2J−1

), it follows that

‖Gn(τ, φ, σ ) − v∗
2J

‖ ≤ C‖φ − v∗
2J−1

‖ + ‖ fn(τ, φ, σ )‖.
Taking into account that fn vanishes at τ = 0, σ = 0 [see (46)], we obtain

‖ fn‖ ≤ C‖τ, σ‖ ≤ CλkJ

due to (55) and (58). Combining these inequalities, we find that

‖v̄ − v∗
2J

‖ ≤ Cδ
(
2(αλ)

kJ−1/2 + λkJ
)

. (63)

Since kJ > k̄ and k̄ is large, we obtain that

‖v̄ − v∗
2J‖ ≤ ρ.

Since v∗
2J ∈ A′′, we have v̄ = Gn(τ, φ, σ ) ∈ A′′

ρ .
Thus the map (62) maps the set ‖z̄‖ ≤ δ, ‖ū‖ ≤ δ and v̄ ∈ A′′

ρ into itself. The
chain rule together with the bounds (56) and (59) imply that this map is a contraction.
Consequently, system (61) has a unique solution (u2J , v2J , z2J−1) as required.

Moreover, after differentiating Eq. (61) and using (60) we obtain

‖∂(u2J , v2J )/∂z
out‖ ≤ C

1 − Cν
λkJ = o(α−kJ ) (64)

where the last bound follows fromαλ < 1 [see (16)]. Recalling that (u2J+1 , v2J+1 , z
out ) =

T
kJ
0 (u2J , v2J , z2J ) and using (19), (20) and (64), we find that ‖∂(u2J+1 , v2J+1)/∂z

out‖ can
be made as small as we need by taking kJ large enough. Thus (57) holds true indeed for
k̄ large enough.
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So we have proved the existence and uniqueness of the sequence (us, vs, zs) with
s = 0, . . . , 2J + 1. It remains to demonstrate inequalities (51) and (52).

For s ≤ 2J − 1, inequality (51) follows from the induction assumption (53) as
kJ−1 > kJ . For j = 2J inequality (51) follows from (63) applied to the fixed point of
the map. In order to check (51) for s = 2J + 1, we recall that (u2J+1 , v2J+1 , z2J+1) =
T
kJ
0 (u2J , v2J , z2J ) and v∗

2J+1
= F

kJ
0 (v∗

2J
). Then Eqs. (14), (18) and (63) with v̄ = v2J

imply
∥
∥v2J+1 − v∗

2J+1

∥
∥ ≤ ‖FkJ

0 (v2J ) − FkJ
0 (v∗

2J )‖ + δ(αλ)kJ /2

≤ ‖v2J − v∗
2J‖αkJ + δ(αλ)kJ /2

≤ Cδ
(
2(αλ)

kJ−1/2 + λkJ
)

αkJ + δ(αλ)kJ /2.

This inequality implies (51) for s = 2J + 1 provided the first term in the last line is
not larger than the second one, i.e.,

2C(αλ)kJ /2
(

(αλ)
(kJ−1−kJ )/2(α/λ)kJ /2 +

1

2

)
≤ 1.

Taking into account (50) we see that this inequality can be achieved if 2C(αλ)k̄/2 ≤ 1
and (αλ)(γ−1)kJ+D(α/λ)kJ ≤ 1

4 . The first inequality holds if k̄ is sufficiently large and
the second one follows from

γ > 2 ln
1

λ

/
ln

1

αλ
, (αλ)D ≤ 1

4
.

Finally, inequality (52) is an immediate corollary of (17). ��

4.3. Replacinga codewith aproper code. Since thediffeomorphism F0 is area-preserving,
the Poincare Recurrence Theorem implies that recurrent (Poisson stable) orbits of F0
are dense in the invariant cylinder A. This fact, as the following lemma shows, allows
an arbitrary orbit of the iterated function system {F0, F1, . . . , FN } to be approximated
by a shadow with a proper code. We recall that F0 : A → A is the restriction of the map
Φ onto A, and Fn : A′ → int(A) with n ≥ 1 are scattering maps.

Lemma 3. Let v0, . . . , v2J+1 be a sequence of points, i j ≥ 0 and n j ∈ {1, . . . , N }, such
that

v2 j+1 = F
i j
0 (v2 j ) j = 0, . . . , J,

v2 j = Fn j (v2 j−1) j = 1, . . . , J,
(65)

v2 j−1 ∈ A′ and v2 j ∈ int(A). Let U0,U2J+1 be open subsets of A such that v0 ∈ U0

and v2J+1 ∈ U2J+1 . Then for any positive k̄, γ and D, there exists a sequence of points
v∗
s ∈ int(A) such that v∗

0 ∈ U0, v∗
2J+1

∈ U2J+1 and

v∗
2 j+1 = F

k j
0 (v∗

2 j ) j = 0, . . . , J,

v∗
2 j = F̄n j (v

∗
2 j−1) j = 1, . . . , J,

with the same n j as in (65), v∗
2 j−1 ∈ A′′ (the domain of the maps F̄n) for j = 1, . . . , J ,

and the numbers k j form a proper sequence in the sense of (50).
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Proof. The definition of the modified scattering maps F̄n [see (47)] implies that it is
enough to show that there exists a sequence of points v̂s such that v̂0 ∈ U0, v̂2J+1 ∈ U2J+1 ,
and

v̂2 j+1 = F
k̂ j
0 (v̂2 j ) ( j = 0, . . . , J ),

v̂2 j = Fn j (v̂2 j−1) ( j = 1, . . . , J )
(66)

where n j are taken from (65), v̂2 j−1 ∈ A′ for j = 1, . . . , J , and the numbers k̂ j are
such that numbers k j = k̂ j − (m+ +m−) for 0 ≤ j ≤ J − 1 and kJ = k̂ J − m+ form a
proper sequence. Then the sequence v∗

s is defined by the following equations

v∗
0 = v̂0, v∗

2J+1
= v̂2J+1 , v∗

2 j−1 = F−m−
0 v̂2 j−1, v∗

2 j = Fm+
0 v̂2 j ( j = 1, . . . , J ).

Note that (48) implies v∗
2 j−1 ∈ A′′.

We construct the sequence v̂ j by induction in J . Let J = 0. Since v0 ∈ U0 and

v1 = Fi0
0 (v0) ∈ U1, there is Û ⊂ U1, a small open neighbourhood of v1 in A′ such that

F−i0
0 Û ⊂ U0. The Poincaré recurrence theorem implies that for any K there is k > K

such that F−k
0 Û ∩ Û �= ∅. Let K = k̄ − i0 + m+ + m− and k̂0 = k + i0. Then

k0 = k̂0 − m− − m+ ≥ k̄. (67)

Moreover, for any v̂0 ∈ F−k−i0
0 Û ∩ F−i0Û �= ∅, we have v̂0 ∈ U0 and v̂1 := Fk̂0

0 (v̂0) ∈
U1.

Now let J ≥ 1. The induction assumption implies that for any open subset U2 ⊂ A′
such that v2 ∈ U2 there is a point v′ ∈ U2 such that F(v′) ∈ U2J+1 , where F =⎛

⎝
∏

2≤ j≤J

F
k̂ j
0 ◦ Fn j

⎞

⎠ ◦ Fk̂1
0 and the numbers k̂ j are such that the sequence k j defined by

kJ = k̂ J − m+ and k j = k̂ j − m− − m+, 2 ≤ j ≤ J − 1, (68)

is proper.
There is a small open neighbourhood U1 of v1 in A′ such that F ◦ Fn1(U1) ⊆ U2J+1 .

Since v0 ∈ U0 and v1 = Fi0
0 (v0) ∈ U1, there is Û ⊂ U1, a small open neighbourhood

of v1 in A′ such that F−i0
0 Û ⊂ U0. The Poincaré recurrence theorem implies that for

any K there is k > K such that F−k
0 Û ∩ Û �= ∅. Let K = γ k1 + D − i0 +m+ +m− and

k̂0 = k + i0. Then
k̂0 − m− − m+ ≥ γ k1 + D, (69)

where k1 given by (68). Let k0 = k̂0 − m+ − m−. Then the sequence k0, . . . , kJ is
proper [see (50)], and Eq. (66) define a sequence v̂s such that v̂2J+1 ∈ U2J+1 , as v̂2J+1 =
F ◦ Fn1(v̂1) ∈ F ◦ Fn1(U

′) ⊆ U2J+1 . ��
We say that two points v0 and vm are connected by an orbit of the iterated function

system {F0, . . . , FN } if v2J+1 is an image of v0 by a certain sequence of maps Fn .
Obviously, this means that v0 and vm are the first and the last points in a sequence of
points vs constructed by the rule (65) withm = 2J +1. Since the corresponding sequence
v∗
s constructed in Lemma 3 is a shadow of proper code, we may use Lemma 2. Thus,
combining Lemmas 3 and 2, we obtain the following statement.

Lemma 4. Let the map F0 be area-preserving. Let two points v0 ∈ A and vm ∈ A be
connected by an orbit of the iterated function system {F0, . . . , FN }. Then, for any ε > 0
the ε-neighbourhoods of v0 and vm in R

2d are connected by an orbit of the map Φ.
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5. Symplectic Properties of Scattering Maps

Let N ⊂ M be an open subset of a smooth symplectic manifold M endowed with a
closed non-degenerate symplectic form Ω . We consider a diffeomorphism Φ : N →
Φ̃(N ) ⊂ M which preserves Ω . We assume that A ⊂ N is a symmetrically normally
hyperbolic invariant manifold. An important example is M = R

2d and A is a two-
dimensional compact cylinder bounded by two invariant curves of Φ. We review some
properties of the manifold A, its stable and unstable manifolds, and homoclinics to A.
Similar results can be found e.g. in [32].

We start with establishing some useful geometric properties of the stable and un-
stable manifolds and the scattering maps. These properties are based on a symplectic
orthogonality property of the next proposition.

Proposition 3. If A is a symmetrically normally-hyperbolic invariant manifold and x ∈
A, then TyWs(A) ⊥Ω TyEss(x) for any y ∈ Ess(x) and Ty Euu(x) ⊥Ω TyWu(A) for
any y ∈ Euu(x).

Proof. Let y ∈ Ws(A). Take any w ∈ TyEss(x) and u ∈ TyWs(A). Since the map Φ

preserves the form Ω , we have for any m ∈ N:

Ω(w, u) = Ω((Φ ′)mw, (Φ ′)mu) = (αλ)mΩ(α−m(Φ ′)mw, λ−m(Φ ′)mu)=O((αλ)m).

Taking the limitm → +∞, we find thatΩ(w, u) = 0, i.e. u ⊥Ω v. Thus, we have proved
TyEss(x) ⊥Ω TyWs(A). In a similar way we conclude that TyEuu(x) ⊥Ω TyWu(A)

for any y ∈ Wu(A). ��
Proposition 4. The restriction of the symplectic form Ω to the symmetrically normally-
hyperbolic invariant manifold A is non-degenerate.

Proof. If the proposition is not true and the restriction of the symplectic form is degen-
erate, then there are x ∈ A and a non-zero vectorw ∈ Tx (A) such thatw ⊥Ω Tx (A). On
the over hand w ∈ Tx A = TxWs(A) ∩ TxWu(A) implies that w ⊥Ω Tx Ess

x and w ⊥Ω

Tx Euu
x . The normal hyperbolicity assumptions imply that TM = Tx Ess

x ⊕Tx Euu
x ⊕Tx A

for any x ∈ A. Consequently, w ⊥Ω TxM , which contradicts to the non-degeneracy of
Ω , and the proposition follows immediately. ��

We remind that a homoclinic intersection ofWu(A) andWs(A) at a point y is strongly
transverse if Euu

y is transverse to Ws(A) and Ess
y is transverse to Wu(A) at the point y.

Proposition 5. If y ∈ Euu(x1)∩Ess(x2) for some x1, x2 ∈ A and TyM = TyEuu(x1)⊕
TyWs(A) then TyM = TyEss(x2)⊕ TyWu(A) and, consequently, the homoclinic inter-
section at y is strongly transverse.

The proof of this proposition is completely straightforward: it is sufficient to note
that under the assumptions of the proposition any vector from TyEss(x2) ∩ TyWu(A) is
Ω-orthogonal to all vectors due to Proposition 3. The proposition implies that the strong
transversality is equivalent to the transversality of the strong stable leaves to the unstable
manifold (or the transversality of the strong unstable leaves to the stable manifold). This
property reduces the number of conditions which are necessary to verify the strong
transversality of a homoclinic intersection.

For every y ∈ Ws(A) there is a unique x ∈ A such that y ∈ Ess(x). We define
the projection π s : Ws(A) → A by setting π s(y) = x . Let v = (v1, v2, . . .) be some
coordinates on A defined in a small neighbourhoodU of the point x . Define coordinates
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(u, v) in (π s)−1(U ) such that u = 0 corresponds to a point in A and v = const
corresponds to a strong-stable leave of Ess . In these coordinates π s : (u, v) �→ (u, 0).

Since TyEss(x) ⊥Ω TyWs(A), we see that in these coordinates Ω|Ws (A)

= ∑i, j ai j (u, v)dvi ∧ dv j . On the other hand, the symplectic form is closed, i.e.,

dΩ = 0. So we have dΩ|Ws (A) =∑i, j,k
∂ai j
∂uk

duk ∧ dvi ∧ dv j = 0. Consequently the
coefficients ai j do not depend on u and Ω|Ws (A) =∑i, j ai j (v)dvi ∧ dv j .

Let B be any section of Ws(A) transverse to the strongly stable leaves. Then the
restriction π s |B : B → A is a local diffeomorphism. Moreover, since the projection
is the identity in the coordinates u, we find that π s |B is a symplectomorphism, i.e. it
transforms Ω|B into Ω|A. In particular, Ω|B is non-degenerate, i.e. B is a symplectic
manifold.

Obviously, a similar statement is true for the stablemanifolds replaced by the unstable
ones: for any section B ofWu(A) transverse to the strongly unstable leaves, the projection
πu : B → A by the strongly unstable leaves is locally a symplectomorphism. Thus, we
obtain the following

Proposition 6. If y ∈ Ws(A)∩Wu(A) is a strongly transverse homoclinic point and B is
a sufficiently small neighbourhood of y inside Ws(A)∩Wu(A), then the scattering map
FB = π s |B ◦ (πu |B)−1 : Bu → Bs is a symplectomorphism, where Bu,s = πu,s(B) ⊂
A.

We can define the scattering map FB relative to any connected subset B of Ws(A) ∩
Wu(A) that consists of strongly transverse homoclinic points. When B is not a small
neighbourhood of a single point, the scatteringmap FB does not need to be single-valued
nor injective (eventhough every branch of it is a local diffeomorphism). In this paper we
assume B to be a simple homoclinic cylinder. Then the scattering map is single-valued
and injective, so it is a symplectic diffeomorphism defined on a large open subset A′ of
A.

Assume the symplectic form is exact, i.e., Ω = dϑ , where ϑ is a differential 1-form.
For example, in the case of our interest, M = R

2d , Ω = dp ∧ dq, and ϑ = pdq. The
symplectic map Φ is exact if

∫

γ

ϑ =
∫

Φ(γ )

ϑ

for every smooth closed curve γ . Obviously, the exactness of Φ implies the exactness
of the map F0 = Φ|A.
Proposition 7. Let A′ ⊆ A be a region such that the scattering map FB is a diffeomor-
phism A′ → FB(A′) ⊆ A. If for each point x ∈ A′ the corresponding leaves Euu(x)
and Ess(FB(x)) intersect B exactly at one point, then the restriction of FB on A′ is
exact.

Proof. Let us prove that the map (πu |B)−1 is exact on A′. The proof of the exactness
of the map (π s |B)−1 on FB(A′) is exactly the same, so the exactness of FB will follow
immediately. Take any smooth closed curve γ ⊂ A′. By assumption, for any x ∈ γ

there is a unique point y(x) ∈ B such that y ∈ Euu(x), the union of the points y(x)
over all x ∈ γ gives the curve (πu |B)−1γ = γ̃ ⊂ B. As the strongly unstable leaves are
simply-connected [each is a diffeomorphic copy of R

k where 2k = dim(M) − dim(A)]
and depend smoothly on the base point x , one can connect each point x ∈ γ with the
corresponding point y(x) ∈ γ̃ by a smooth arc �(x) that lies in Euu(x) so that the union
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of these arcs forms a smooth two-dimensional surface S ⊂ Wu(A), an annulus bounded
by γ and γ̃ . By Stokes theorem,

∫

γ

ϑ −
∫

γ̃

ϑ =
∫

S
Ω.

At every point y ∈ S the tangent plane contains a vector tangent to one of the curves
�(x) which lies in the Euu(x), so Ω vanishes on TyS by Proposition 3. Thus,

∫
S Ω = 0,

which gives us the required identity
∫
γ

ϑ = ∫
γ̃

ϑ for every smooth closed curve γ in
A′. ��

Note that, surprisingly, the exactness of the scattering map in the statement above
does not require the exactness of the map Φ itself.

6. Transport in an Iterated Functions System and Obstruction Curves

The symplecticity of the map F0 = Φ|A established in Proposition 4 means that this
map is area-preserving (with the area of a domain obtained by integrating Ω|A over this
domain). Therefore, as shown in Sect. 4.3, for two open sets to be connected by an orbit
from the homoclinic channel it is enough for these sets to be connected by the orbits of
the iterated function system {F0, F1, . . . , FN }. As we showed in Sect. 5 all these maps
are exact symplectomorphisms. The diffeomorphism F0 is defined everywhere on the
cylinder A which is invariant with respect to F0, i.e. F0(A) = A. The scattering maps
Fn , n = 1, . . . , N , are defined on a subset A′ of the cylinder A and, as follows from
the simplicity assumptions [S1]–[S3], they are homotopic to identity diffeomorphisms
A′ → A. The exact symplecticity of the maps Fn implies that the area between any
curve γ and its image Fn(γ ) is zero. Hence, Fn(γ ) ∩ γ �= ∅ for any simple essential
curve γ ⊂ A′.

We assume that there exist coordinates v = (y, ϕ) in A such that the map F0 :
(y, ϕ) �→ (ϕ̄, ȳ) in these coordinates satisfies the twist condition, i.e.

∂ϕ̄

∂y
�= 0

everywhere in this cylinder (we assume that ϕ ∈ S
1 is the angular variable).

Let Ā be a compact cylinder in A′ bounded by two simple essential curves γ + and
γ − such that γ − ∩ γ + = ∅ (we no longer need to assume that Ā is invariant). Let
γ + corresponds to larger values of y than γ − does. The set A\int( Ā) consists of two
connected components, the upper component A+ contains γ + and the lower component
A− contains γ −. If Ā contains an essential curve γ ∗ which is invariant for all of the maps
Fn , n = 0, . . . , N , then the curve γ ∗ divides the cylinder Ā into two invariant parts, so
no trajectory of the iterated function system {F0, F1, . . . , FN } which starts within A−
can get to A+. In other words, the absence of essential common invariant curves in Ā
is a necessary condition for the orbits of iterated function system to connect A− with
A+. The following theorem shows that this condition is also sufficient. This theorem
generalises a result by Moeckel [75].

Theorem 3. Let F1, . . . , FN be exact symplectomorphisms A′ → A, homotopic to iden-
tity. Let A be invariant with respect to a symplectic diffeomorphism F0 which satisfies
the twist condition on A. Suppose no essential curve in Ā is a common invariant curve
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for the maps Fn with n = 0, 1, . . . , N. Then there is a finite trajectory (vi )
m
i=0 ⊂ Ā

of the iterated function system {F0, F1, . . . , FN } that starts on γ − and ends on γ + (i.e.
v0 ∈ γ −, vm ∈ γ +, and vi+1 = Fki (vi ) for some sequence of ki ∈ { 0, . . . , N }).
Remark 5. As the common invariant curve is, in particular, an invariant curve of the twist
map F0, the Birkhoff theory implies that it is necessarily a graph of a Lipschitz function
y = y∗(ϕ), so it is sufficient to verify the absence of common invariant Lipschitz curves.

Remark 6. Our statement makes an important change in the setup of the problem com-
pared to e.g. [67,75] as we do not ask the boundaries γ − and γ + to be invariant with
respect to any of the maps Fn , n = 0, . . . , N . Indeed, it is not natural to assume that the
scattering maps preserve the boundaries as this would require certain non-transversality
of stable and unstable manifolds associated with theΦ-invariant curves on the boundary.

Proof of Theorem 3. We say that a map F : A′ → A has a strong intersection property
if F(γ )∩γ �= ∅ for any simple essential curve γ ⊂ A′ and, moreover, if F(γ ) �= γ , then
F(γ ) has points in both components of A\γ . The symplectomorphisms Fn : A′ → A,
which are exact and homotopic to identity, have the intersection property.

The boundary of the F0-invariant cylinder A consists of two non-intersecting essential
curves.We refer to the boundary curve with larger values of the coordinate y as the upper
boundary of A. Let γ ⊂ A′ be a simple essential curve and let γ n be the boundary of
the connected component of A\(γ ∪ Fn(γ )) adjacent to the upper boundary of A. This
is also a simple essential curve. Denote by Fn the operator that replaces the curve γ

by γ n . By construction, Fn(γ ) has no points below γ and the intersection property of
Fn implies that γ ∩ Fn(γ ) �= ∅. If Fn(γ

−) ∩ γ + �= ∅ for some n, we have found a
connecting orbit. Indeed, take v1 ∈ Fn(γ

−) ∩ γ + and let v0 = F−1
n (v1).

We continue by induction. Let m = 0, γ0 = γ −. Let us construct, inductively, a
sequence of simple essential curves γm ⊂ Ā, such that each point of γm can be reached
by a trajectory which starts on γ − and has the length not larger thanm. Suppose we have
constructed such γm for some m ≥ 0. If Fn(γm) ∩ γ + �= ∅ for some n, the inductive
process is terminated as the intersection point belongs to a trajectory which starts on γ −
and finishes on γ + as required. Otherwise define γm+1 as the boundary of that connected
component of A\(∪nFn(γm)) which is adjacent to the upper boundary of A. Obviously,
γm+1 is a simple essential curve. The intersection property implies Fn(γm) ∩ γm �= ∅.
Then taking into account that for every n the curve Fn(γm) has no points below γm and
does not intersects γ +, we conclude that the curve γm+1 belongs to a cylinder bounded
by γm and γ +. So γm+1 ⊂ Ā.

We claim that this process terminates after a finite number of steps because otherwise
the maps Fn would have a common invariant essential curve in Ā.

Indeed, suppose that the process does not terminate. Then the curves γm ⊂ Ā form a
“bounded and monotone” sequence. Namely, if we denote as γ +

0 the upper boundary of
A, then the closed cylinders [γm, γ +

0 ] bounded by the curves γm and γ +
0 form amonotone

sequence of closed sets (as γm+1 has no points below γm). Then Ũ∗ = ∩m≥0[γm, γ +
0 ]

is closed and has non-empty interior since [γ +, γ +
0 ] ⊂ Ũ∗. Let U∗ be the connected

component of int(Ũ∗) adjacent to the upper boundary γ +
0 . Let γ

∗ = ∂U∗cγ +
0 (i.e. ∂U∗

is the disjoint union of γ ∗ and γ +
0 ).

Let us show that γ ∗ is an essential curve, invariant with respect to F0. First, we
note that for any point p∗ ∈ γ ∗ there is a sequence of points pm ∈ γm such that
limm→∞ pm = p∗. Indeed, otherwise there is an open neighbourhood Q of p∗ and an
unbounded subsequence mk such that γmk ∩ Q = ∅. Then Q ⊂ int[γmk , γ

+
0 ] (recall
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that Q intersects γ ∗ and γ ∗ ⊂ [γmk , γ
+
0 ] for each mk). Since the sequence of cylinders

is monotone, it follows that Q ⊂ int[γm, γ +
0 ] for all m. Thus Q ⊂ int(Ũ∗), which

contradicts to p∗ ∈ γ ∗.
We can approximate the sequence pm by a sequence of points p′

m → p∗ such that
p′
m lies outside [γm, γ +

0 ] (below γm) for each m, i.e. p′
m �∈ Ũ∗. Thus, each point of γ ∗

is a limit of a sequence of points which do not lie in U∗, i.e. γ ∗ forms the boundary of
the closure of U∗ (a priori, some points of the boundary of an opens set may not lie in
the boundary of the closure of the set).

It also follows that Fn(γ ∗) ∩ U∗ = ∅ for all n. Indeed, suppose Fn(p∗) ∈ U∗ for
some p∗ ∈ γ ∗. Then, since p∗ is a limit of points lying in the curves γm andU∗ is open,
there is pm ∈ γm such that Fn(pm) ∈ U∗, which is impossible as, by the construction,
Fn(γm) lies below γm+1 and, hence, has no points inside U∗.

In particular, we have F0(γ ∗) ∩U∗ = ∅, which means that U∗ ⊆ F0(U∗) and

cl(U∗) ⊆ F0(cl(U
∗)). (70)

Would the image of any point q ∈ cl(U∗) by the map F0 lies outside cl(U∗), then the
images of all points fromU∗ which are close enough to q would also lie outside cl(U∗),
i.e. the set F0(cl(U∗)) would have an open subset outside of cl(U∗) (recall that U∗ is
open). Thus, the Lebesgue measure of F0(cl(U∗)) would be strictly greater than the
measure of cl(U∗), which is a contradiction with the area-preservation property of F0.
Therefore, it follows from (70) that, in fact, F0(cl(U∗)) = cl(U∗), i.e.U∗ is an invariant
domain for the twist map F0. Now, Birkhoff theorem implies that the boundary γ ∗ of
U∗ is a simple essential curve, invariant with respect to F0.

The setU∗ is one of the two connected components of A\γ ∗. Since Fn(γ ∗)∩U∗ = ∅
for all n, the strong intersection property implies that Fn(γ ∗) = γ ∗ for all n. We have
proved that the non-existence of a connecting trajectory is equivalent to the existence of
a common invariant curve. ��

Theorem 3 is valid for any two non-intersecting essential curves in A′: either they are
connected by an orbit of the iterated function system, or there is an essential curve γ ∗
between them which is invariant with respect to all maps Fn . It follows that the absence
of a common invariant essential curve in Ā is equivalent to the existence of an orbit of
the iterated function systems which connects int(A+) with int(A−) (move the curves
γ + and γ − inside int(A+) and, respectively, int(A−), and apply Theorem 3 to these
curves). Since the existence of such orbit is an open property, Theorem 3 implies that
the cylinder Ā contains no essential curve invariant with respect to all maps F0, . . . , FN
for an open set of maps from VN . In the next Section we show that this set of maps is
also dense in VN . This will finish the proof of theMain Theorem: it follows immediately
from Theorem 3 and Lemma 4 that for any map Φ from this open and dense set any two
neighbourhoods of γ − and γ + are connected by Φ.

7. Simultaneous Destruction of All Obstruction Curves

We finish the proof of the Main Theorem by showing that for a map Φ from a dense
subset of the set VN the corresponding maps F0, F1, . . . , FN do not have a common
essential invariant curve, provided N ≥ 8. As F0 is a twist map, we can restrict the
problem to Lipshitz invariant curves only. Recall that for any map Φ from VN there
exists a compact normally-hyperbolic invariant cylinder A. We introduce coordinates



536 V. Gelfreich, D. Turaev

(y, ϕ)on A such that the restriction F0 ofΦ on A has a twist property. In these coordinates
F0 : (y, ϕ) �→ (ȳ, ϕ̄) and

∂ ȳ

∂ϕ
�= 0

for all (y, ϕ) ∈ A. By the Birkhoff theorem, every essential invariant curve of F0 is
Lipschitz:

y = y(ϕ), |y(ϕ1) − y(ϕ2)| ≤ L|ϕ1 − ϕ2|,
where the Lipschitz constant L satisfies

L ≤ sup
v∈ Ā

max

{∣∣∣∣
∂ϕ̄

∂ϕ

∣∣∣∣ /
∣∣∣∣
∂ϕ̄

∂y

∣∣∣∣ ,
∣∣∣∣
∂ ȳ

∂y

∣∣∣∣ /
∣∣∣∣
∂ϕ̄

∂y

∣∣∣∣

}
.

Given map Φ ∈ VN , we can choose the constant L the same for all maps from a
neighbourhood of Φ in VN (since the maps which are close in VN are also C1-close,
and the corresponding cylinders A are C1-close as well).

By the assumptions of the Main Theorem, we have a compact subcylinder Ā in
A such that N ≥ 8 scattering maps are defined on a neighbourhood A′ of Ā. The
cylinder Ā depends continuously on the map Φ, so we can choose A′ to be the same (in
appropriately chosen coordinates (y, ϕ)) for all maps close to Φ. We can also assume
that the maps F1, . . . , FN are defined in some neighbourhood of the closure of A′. Note
that the scattering maps depend continuously on the map Φ in the following sense: if
two maps Φ are C2-close, then the corresponding scattering maps are C1-close.

Theorem 4. Arbitrarily close to any map Φ, in VN there exists a map for which the cor-
responding scattering maps F1, . . . , F8 have no common L-Lipschitz invariant curves
in A′.

Proof. Consider the space of all L-Lipshitz (periodic) functions y = y(ϕ) endowedwith
the C0-metric. Let L be the subset of this space which consists of all functions whose
graphs lie in the closure of A′ and are invariant, simultaneously, for all the scattering
maps F1, . . . , F8 generated by the map Φ. If L = ∅, there is nothing to prove. If L �= ∅,
we note that L is compact, so given any δ > 0 there is a finite set of L-Lipshitz curves
C1, . . . ,Cq such that each of them is invariant with respect to all the maps F1, . . . , F8
and every other common invariant L-Lipshitz curve lies in the δ-neighbourhood of one
of the curvesCs , i.e. it belongs to the cylinder As := {|y− ys(ϕ)| ≤ δ}where y = ys(ϕ)

is the equation of the curve Cs . Moreover, the set of the L-Lipshitz common invariant
curves of the scatteringmaps depends upper-semicontinuously on the mapΦ [if we have
a sequence of maps Φ(k) that converges to Φ in C2, then the corresponding scattering
maps F (k)

j converge to the scattering maps Fj in C1; and if the maps F (k)
j each have an

L-Lipshitz invariant curve, then the set of the limit points of these curves as k → +∞
is the union of a set of L-Lipshitz curves each of which is invariant with respect to the
scattering maps Fj ]. Thus, for all maps from VN which are sufficiently close toΦ, every
common invariant L-Lipshitz curve of the scattering maps that lies in A′ lies entirely in
one of the cylinders A1, . . . , Aq .

Below [see (73)] we will fix, once and for all, a certain value of δ > 0 which will
give us a finite set of these cylinders As . We will show for each such cylinder As that
arbitrarily close to Φ in VN there exists a map for which the corresponding scattering
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maps F1, . . . , F8 have no common L-Lipschitz invariant curves in As . This will prove
the theorem. Indeed, the absence of the common invariant L-Lipshitz curves in any
given (open) cylinder is an open property. So, we first perturb the map Φ to get rid
of all common invariant L-Lipshitz curves in the cylinder A1, then we add another
small perturbation to kill all common invariant L-Lipshitz curves in A2—by choosing
the perturbation small enough we guarantee that no new common invariant L-Lipshitz
curves emerge in A1, etc. Then, after finitely many steps of the procedure, we will have
all the cylinders A1, . . . , Aq cleaned of common invariant L-Lipshitz curves.

Let R > 1 be a constant that bounds the derivatives of the scattering maps:
∥∥∥
∥

∂Fj

∂(y, ϕ)

∥∥∥
∥ < R (71)

for all (y, ϕ) ∈ A′, j = 1, . . . , 8, and all maps that are close enough to Φ in VN . Recall
that ϕ is an angular variable that runs a circle S

1; we assume that the length of the circle is
2π . Choose 4 arcs Ji � S

1, i ∈ {1, 2, 3, 4}, such that J1∪ J2 = J3∪ J4 = S
1. Moreover,

denote Jik = Ji\Jk and let us assume that J12, J34, J21 and J43 are disjoint and located
in the circle in the same order as they are listed here (following the orientation of the
circle). Neither of the arcs Ji constitutes the whole circle, so their lengths are smaller
than 2π . Choose any L-Lipshitz curve C : y = yC (ϕ) which is invariant with respect
to all maps F1, . . . , F8. Each arc Ji corresponds to an arc Ĵi : {y = yC (ϕ), ϕ ∈ Ji } of
the curve C . Since C is invariant with respect to each of the maps Fj , the image Fj ( Ĵi )

also lies in C . Hence it is given by Fj ( Ĵi ) := {y = yC (ϕ), ϕ ∈ J̄ j
i } where J̄ j

i is an arc
in S

1 which does not cover the whole of S
1, so its length is strictly less than 2π . Since

the set L of all common invariant L-Lipshitz curves is compact, we have

K = max
C∈L

max
i, j

length( J̄ j
i ) < 2π. (72)

Now, we choose

δ = 2π − K

R
> 0. (73)

As it was explained above, the compactness ofL implies that every possible common
invariant L-Lipshitz curve lies in one of a finitely many cylinders As ; each of these
cylinders is the δ-neighbourhood of some invariant L-Lipshitz curve Cs : {y = ys(ϕ)}.
Take any of these cylinders. Note that, by virtue of (71), the image Fj (As ∩{ϕ ∈ Ji }) lies
inside the (Rδ)-neighbourhood of the curve Fj (Cs ∩{ϕ ∈ Ji }). This curve is a subset of
the invariant curve Cs , and it corresponds to an interval of ϕ values such that the length
of this interval does not exceed the constant K defined by (72). Thus, by (73),

Fj (As ∩ {ϕ ∈ Ji }) ⊂ {|y − ys(ϕ)| < Rδ, ϕ ∈ Ĵsi j } (74)

where Ĵsi j is a certain arc whose length is strictly less than 2π , i.e. it does not cover the
entire S

1. As Fj depends continuously on the map Φ, inclusion (74) holds for all maps
from VN which are close enough to Φ.

Now, let us imbed the map Φ into a two-parameter analytic family of maps Φμ1,μ2

from VN such that Φ0 = Φ. We will show (Lemmas 5, 6) that this family can be chosen
such that there exist arbitrarily small values of μ = (μ1, μ2) for which the scattering
maps F1, . . . , F8 defined by the map Φμ have no common L-Lipschitz invariant curves
in the cylinder As . The map Φμ that corresponds to a small value of μ is a small
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perturbation of Φ, so this gives us the required arbitrarily small perturbations that clear
the cylinder As of the common L-Lipshitz invariant curves of the scattering maps. By
performing this perturbations consecutively for each of the cylinders A1, . . . , Aq we
will obtain the result of the theorem.

Note that the invariant cylinder A, its stable and unstable manifolds, as well as
the strong stable and strong unstable foliations depend smoothly on μ, therefore the
scattering maps also depend smoothly on μ. This means that for all small μ we can
introduce coordinates (y, ϕ) on the μ-dependent cylinder A such that the maps Fj ,
j = 0, . . . , N , will be given each by a pair of smooth functions Y j , Ψ j of (y, ϕ, μ):

Fj : (y, ϕ) �→ (Y j (y, ϕ, μ), Ψ j (y, ϕ, μ)).

Let our family Φμ be chosen such that for all (ϕ, y) ∈ As
∥∥∥∥

∂Ψ j

∂(μ1, μ2)

∥∥∥∥ < 1 for all j = 1, . . . , 8, (75)
∣∣∣
∣
∂Y1,2,3,4

∂μ2

∣∣∣
∣ < 1,

∣∣∣
∣
∂Y5,6,7,8

∂μ1

∣∣∣
∣ < 1, (76)

j = 1, 2: ∂Y j

∂μ1
> 2(L + 1) and

∂Y j+4

∂μ2
> 2(L + 1) whenΦ j (ϕ, y, μ) ∈ J j ,

(77)

j = 3, 4: ∂Y j

∂μ1
< −2(L + 1) and

∂Y j+4

∂μ2
< −2(L + 1) whenΦ j (ϕ, y, μ) ∈ J j ,

(78)

where L is the Lipschitz constant in the condition of the theorem, and J j are the four
arcs defined above. Lemma 6 establishes the existence of a family Φμ which satisfies
these properties. Then the main theorem follows from the following statement.

Lemma 5. For every family of maps Φμ, μ = (μ1, μ2), such that the derivatives of the
scattering maps F1, . . . , F8 satisfy estimates (75)–(78) for all (ϕ, y) ∈ As, the set of
parameter values for which the scattering maps F1, . . . , F8 have an L-Lipshitz common
invariant essential curve in As has measure zero. In particular, there exist arbitrarily
small values of μ for which the maps F1, . . . , F8 have no L-Lipshitz common invariant
essential curves in the cylinder As.

Proof. Take any two, may be equal, values of μ: μ = μ∗ and μ = μ∗∗, such that at
μ = μ∗ the maps F1, . . . , F8 have a common L-Lipschitz invariant curve L∗ : {y =
y∗(ϕ), ϕ ∈ S

1} ⊂ As and at μ = μ∗∗ they have a common L-Lipschitz invariant curve
L∗∗ : {y = y∗∗(ϕ), ϕ ∈ S

1} ⊂ As . Let us show that the following condition holds:

‖μ∗ − μ∗∗‖ ≤ R|y∗(0) − y∗∗(0)|, (79)

where R is defined in (71) and ‖μ‖ = max{|μ1|, |μ2|}.
We note that without losing in generality we may assume that

y∗(0) ≥ y∗∗(0), (80)

|μ∗
2 − μ∗∗

2 | ≤ |μ∗
1 − μ∗∗

1 | and μ∗
1 ≥ μ∗∗

1 . (81)

If necessary, these inequalities can be achieved by swapping y and (−y), μ and (−μ),
F1 ↔ F3, F2 ↔ F4, F5 ↔ F7, F6 ↔ F8, as well as μ1 ↔ μ2 and F1,2,3,4 ↔ F5,6,7,8.
Conditions (75)–(78) are symmetric with respect to these changes.
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Now suppose (79) is not true, i.e.

0 ≤ y∗(0) − y∗∗(0) <
�μ

R
, (82)

where

�μ = μ∗
1 − μ∗∗

1 > 0.

Since J3 ∪ J4 = S
1, we have that ϕ = 0 lies at least in one of the arcs J3 or J4. For

definiteness, we assume 0 ∈ J3. Let (ϕ∗, ȳ∗) = F3(0, y∗(0), μ∗) and (ϕ∗∗, ȳ∗∗) =
F3(0, y∗∗(0), μ∗∗), i.e.

ϕ∗ = Ψ3(0, y∗(0), μ∗), ȳ∗ = Y3(0, y∗(0), μ∗),
ϕ∗∗ = Ψ3(0, y∗∗(0), μ∗∗), ȳ∗∗ = Y3(0, y∗∗(0), μ∗∗).

Standard estimates based on the mean value theorem and formulas (71), (75), (76), (78),
(81), (82) imply that

|ϕ∗∗ − ϕ∗| < 2�μ, ȳ∗ − ȳ∗∗ < −2L�μ.

Since the curves y = y∗(ϕ) and y = y∗∗(ϕ) are invariant with respect to F3 (at μ = μ∗
and μ = μ∗∗ respectively), it follows that ȳ∗ = y∗(ϕ∗), ȳ∗∗ = y∗∗(ϕ∗∗). Because of
the L-Lipschitz property, we find that

y∗(ϕ∗) − y∗∗(ϕ∗) = ȳ∗ − ȳ∗∗ + y∗∗(ϕ∗∗) − y∗∗(ϕ∗) < −2L�μ + 2L�μ < 0.

Then taking into account (80) we conclude that

L∗ ∩ L∗∗ �= ∅.

Recall that the cylinder A depends on μ, so the two curves L∗ and L∗∗ lie, strictly
speaking on different cylinders. Therefore, in order to stay completely rigorous, when
we say that these two curves intersect, we mean that there is a value of ϕ such that
y∗(ϕ) = y∗∗(ϕ).

Now, let us call an arc I ⊂ S
1 positive if y∗(ϕ) > y∗∗(ϕ) for all ϕ ∈ int(I ) and

y∗(ϕ) = y∗∗(ϕ) at the end points of I . We call an arc negative, if y∗(ϕ) = y∗∗(ϕ) at
its end points and y∗(ϕ) < y∗∗(ϕ) on its interior. It is convenient to allow arcs to have
empty interiors, i.e. any point from L∗ ∩ L∗∗ is considered to be both a positive and a
negative arc at the same time.

We have just proved that there is at least one negative and at least one positive arc.
For a positive arc I , let L∗

I = {y = y∗(ϕ), ϕ ∈ I } and L∗∗
I = {y = y∗∗(ϕ), ϕ ∈ I }

be the corresponding pieces of the curves L∗ and L∗∗, and let DI = {y∗(ϕ) ≥ y ≥
y∗∗(ϕ), ϕ ∈ I } be the region bounded by L∗

I and L∗∗
I . Let us show that if I ⊆ J j for

j = 1 or j = 2, then, with this j , the image of L∗
I by the map Fj at μ = μ∗ lies strictly

inside L∗
I ′ which corresponds to a positive arc I ′ and

length(I ′) > �μ > 0, (83)

area(DI ′) > area(DI ). (84)

Indeed, denote as F∗
j the map Fj at μ = μ∗ and F∗∗

j the map Fj at μ = μ∗∗. Take any
point M = (ϕ, y∗(ϕ)) ∈ L∗

I , so ϕ ∈ I . Let M∗ = (ϕ∗, y∗(ϕ∗)) ∈ L∗ be the image of
M by the map F∗

j , and M ′ = (ϕ′, y′) ∈ F∗∗
j (L∗

I ) be the image of M by the map F∗∗
j .
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Since I is a positive arc, we have that for any ϕ ∈ I the point M is either on the curve
L∗∗ or above it. Since L∗∗ is invariant with respect to F∗∗

j , the point M ′ also does not
lie below L∗∗, i.e.

y′ ≥ y∗∗(ϕ′). (85)

We have

ϕ′ = Ψ j (ϕ, y∗(ϕ), μ∗∗), y′ = Y j (ϕ, y∗(ϕ), μ∗∗),
ϕ∗ = Ψ j (ϕ, y∗(ϕ), μ∗), y∗(ϕ∗) = Y j (ϕ, y∗(ϕ), μ∗).

Then inequalities (75)–(77) imply that

|ϕ∗ − ϕ′| < �μ, y∗(ϕ∗) − y′ > (2L + 1)�μ

(recall that we assume I ⊆ J j , hence ϕ ∈ J j ). By (85) and the L-Lipschitz property of
L∗∗ we obtain

y∗(ϕ∗) − y∗∗(ϕ∗) > (L + 1)�μ > 0, (86)

and
y∗(ϕ′) − y′ > (L + 1)�μ > 0. (87)

Denote F̃j (ϕ) = Ψ j (ϕ, y∗(ϕ), μ∗), i.e., F̃j is the restriction of the map F∗
j on the

invariant curve L∗. We have just showed that if ϕ ∈ I , where I ⊆ J j is a positive arc,
then ϕ∗ = F̃j (ϕ) satisfies (86), i.e. it is inside some positive arc I ′. Moreover, at the
end points of I ′ we must have y∗ − y∗∗ = 0 while at the points of F̃j (I ) � I ′ we have
y∗ − y∗∗ > L�μ by (86), hence the length of I ′ is bounded from below as in (83), by
virtue of the 2L-Lipschitz property of the function y∗(ϕ) − y∗∗(ϕ).

We have shown that F∗
j (L∗

I ) ⊂ L∗
I ′ and F∗∗

j (L∗∗
I ) ⊂ L∗∗

I ′ where I ′ is a positive arc.
As the point M runs L∗

I , the point M
′ runs the curve L′ = F∗∗(L∗

I ), and it follows from
(85), (87) that the curve L′ lies between L∗ and L∗∗, strictly below L∗. Since the end
points of L′ coincide with the end points of F∗∗

j (L∗∗
I ) and the latter lie inside L∗∗

I ′ , it
follows that L′ lies between L∗

I ′ and L∗∗
I ′ , strictly below L∗

I ′ . Therefore the area of the
region F∗∗

j (DI ) bounded by the curves L′ and F∗∗
j (L∗∗

I ) is strictly smaller than the area
of the regionDI ′ bounded by the curves L∗

I ′ and L∗∗
I ′ . As the map Fj is area-preserving,

area(F∗∗
j DI ) = area(DI ), and (84) follows.

Thus, we start with any positive arc I which is contained entirely inside J1 or J2 and
obtain a sequence Is of positive arcs such that I0 = I and F̃js (Is) ⊂ Is+1, where we
chose js = 1 if Is ⊆ J1, and js = 2 if Is ⊆ J2 and Is �⊆ J1. If for some s the arc Is is not
entirely contained neither in J1 nor in J2, the sequence is terminated. By (84), the area of
the regionDIs is a strictly increasing function of s, so the arcs with different s can never
coincide. The definition of a positive arc implies that the intersection of interiors for two
different positive arcs is always empty. Thus, the arcs int (Is) are mutually disjoint. By
(83), no more than 2π

�μ
of such arcs can coexist in S

1. We conclude that the sequence
Is must terminate. This means the last arc in the sequence is not contained entirely
neither in J1 nor in J2, i.e. we have proved that there is a positive arc I + such that both
I + ∩ J12 �= ∅ and I + ∩ J21 �= ∅.

Similarly, one proves that there exists a negative arc I− such that I− ∩ J34 �= ∅ and
I− ∩ J43 �= ∅. Since J12, J34, J21 and J43 are placed on S

1 in this order, we find that
the interiors of I + and I− intersect, which is impossible by the definition of positive and
negative arcs. Thus, by contradiction, we have established estimate (79).
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Let M ⊂ R
2 be the set of all μ such that the maps F1, . . . , F8 have at least one

common L-Lipschitz invariant curve in the cylinder As . Let Y be the set which consists
of all intersection points of these curves with the axis ϕ = 0. By (79), for each y0 ∈ Y
there is exactly one μ ∈ M such that the corresponding system of scattering maps has
a common L-Lipshitz invariant curve that lies in As and intersects the line ϕ = 0 at
y = y0. Estimate (79) also implies that y0 �→ μ is an R-Lipschitz function Y → M.
For any Lipschitz function from a subset of R to R

2, the Lebesgue measure of the image
vanishes. Thus, as Y is a subset of an interval, it follows that mes(M) = 0. The lemma
is proved. ��

We stress that Lemma 5 holds for any family of symplecticmapsΦμ which satisfy the
conditions (75)–(78). In order to finish the prove of the main theorem, it remains to show
that such family can be constructed inside the space VN of analytic exact-symplectic
maps. This is given by the lemma below.

Lemma 6. Any map Φ ∈ VN can be imbedded into an analytic family of analytic exact-
symplectic maps Φμ that satisfies conditions (75)–(78).

Proof. We define Φμ = Xμ ◦ Φ, where Xμ is an analytic family of exact-symplectic

maps such that X0 = id. We set Xμ = X (1)
μ1 ◦ X (2)

μ2 where X (i)
μi is the time-μi shift along

the orbits of the vector field defined by an analytic Hamiltonian function Hi (i = 1, 2).
Since we are interested in small μ, it is enough to check the conditions (75)–(78) at
μ = 0 only. Therefore the family Φμ = Xμ ◦ Φ satisfies (75)–(78) for all small μ,
provided the conditions

∣∣∣
∣
∂Ψ j

∂μi

∣∣∣
∣
μi=0

< 1 ( j = 1, . . . , 8),

for all ϕ ∈ S
1: ∣∣∣∣

∂Y j

∂μi

∣∣∣∣
μi=0

< 1 ( j = 9 − 4i, . . . , 12 − 4i),

(88)

for all ϕ ∈ J j with j = 1, 2:
∂Y j+4(i−1)

∂μi

∣∣
∣∣
μi=0

> 2(L + 1),

for all ϕ ∈ J j with j = 3, 4:
∂Y j+4(i−1)

∂μi

∣∣∣
∣
μi=0

< −2(L + 1),

(89)

are satisfied by the scattering maps for the families Φ
(i)
μi = X (i)

μi ◦ Φ, i = 1, 2, for all
(ϕ, y) ∈ As .

Let us construct a family of maps X (1)
μ1

for which these conditions are satisfied (the
construction for i = 2 is essentially the same). Inequalities (88) and (89) are strict and
involve only the first derivatives of the scattering maps. AC2-small change of the family
Φ

(1)
μ1

leads to a C1-small change of the strong-stable and strong-unstable foliations and,

therefore, a C1-small change of the scattering maps. Thus, it is enough to build a C2-
smooth family of maps X (1)

μ1
[generated by aC3-smooth Hamiltonian H (1)] such that the

corresponding scattering maps satisfy (88) and (89). Then for any sufficiently C3-close
approximation of H (1) by an analytic Hamiltonian [the analiticity of H (1) and H (2) is
needed for the family Φμ to be analytic, i.e. lie in VN ] conditions (75) and (78) will still
be satisfied (the idea of constructing analytic perturbations by approximating smooth
parametric families of perturbations can be traced back to [16], it was also used in [51]).
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We construct the C3-smooth Hamiltonian H (1) localised in a small neighbourhood
of the cylindersΦ(B1),Φ(B2),Φ(B3),Φ(B4). Thus, the maps X (1)

μ1
differ from identity

only in a small neighbourhood of these cylinders, so the maps Φ
(1)
μ1

differ from Φ in a
small neighbourhood of the cylinders B1, . . . , B4 only. The perturbation we build near
one of these cylinders does not affect the scattering maps near the other cylinders, so we
restrict our attention to the cylinder B1 only. We further omit the subscript “1" whenever
possible and let τ = μ1. Thus we consider a homoclinic cylinder B and continue with
building aC3-smooth Hamiltonian H localised in a small neighbourhood of the cylinder
Φ(B) such that for the corresponding flow map Xτ the derivative with respect to τ of
the scattering map F defined by the map Φτ = Xτ ◦ Φ satisfies, for all (ϕ, y) ∈ As , the
following inequalities:

∣∣∣∣
∂Ψ

∂τ

∣∣∣∣
τ=0

< 1 for all ϕ ∈ S
1,

∂Y

∂τ

∣∣∣∣
τ=0

> 2(L + 1) for all ϕ ∈ J,

(90)

where J is a certain arc that does not contain the whole S
1, and

F(As ∩ {ϕ ∈ J }) ⊂ {ϕ ∈ Ĵ } (91)

where Ĵ is an arc that does not contain the whole of S
1 [see (74)].

Let wu denote a piece of the unstable manifold Wu(A) that contains the cylinder
B [i.e. wu is a small neighbourhood of the cylinder B in Wu(A)] and ws be a small
neighbourhood of Φ(B) in Ws(A), so B = Φ(wu) ∩ ws . Since the map Φτ differs
from Φ in a small neighbourhood of the cylinder B only, the pieces wu and ws do not
depend on τ , nor the strong unstable foliation of the piece of Wu(A) between A and
wu depends on τ , neither the strong stable foliation of the piece of Ws(A) between ws

and A does. Thus, given any C1-family of cylinders Bτ close to B the projection map
πu
Bτ

: Bτ → A by the leaves of the strong unstable foliation is of class C1; moreover,

if two such families of cylinders are C1-close, then the corresponding projection maps
πu
Bτ

are also C1-close. The same holds true for the projection map π s
B′

τ
: B ′

τ → A

by the leaves of the strong stable foliation, where we denote as B ′
τ any C1-family of

cylinders close to Φ(B). As the perturbation Xτ is localised in a small neighbourhood
of the cylinder Φ(B), we find that the scattering map F satisfies

F = F−1
0 ◦ π s

B′
τ
◦ Xτ ◦ Φ ◦ (πu

Bτ
)−1, (92)

where Bτ = wu ∩ Φ−1
τ (ws) is a homocinic cylinder close to B, and B ′

τ = Φτ (Bτ ). If
we add to the family Xτ any C1-small perturbation localised in a small neighbourhood
of Φ(B), this will result in C1-small perturbations of the family of cylinders B ′

τ and
Bτ . Thus, the perturbation to the corresponding family of scattering maps defined by
(92) will be also C1-small. It follows that it is enough to build a C1-family of maps Xτ

(generated by a C2-smooth Hamiltonian H ) localised in a small neighbourhood of the
cylinderΦ(B) such that the corresponding family of scattering maps satisfies (90). Then
any C3-Hamiltonian which is C2-close to H and is localised in a small neighbourhood
of Φ(B) produces a family of scattering maps that still satisfies (90).

This reduction of smoothness requirement (from H ∈ C3 to H ∈ C2) is important
since it allows to construct the Hamiltonian H such that the vector field it generates
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is tangent to the given homoclinic cylinder B (for which only C2-smoothness can be
guaranteed by our spectral gap assumptions). Once this is done, the cylinder Φ(B) will
be invariant with respect to the map Xτ , i.e. Φτ (B) = Φ(B) for all τ . This means the
trajectory of B remains the same for all τ , i.e. it remains a homoclinic cylinder. Thus,
formula (92) for the scattering map will recast as

F = F−1
0 ◦ π s

Φ(B) ◦ Xτ ◦ Φ ◦ (πu
B)−1, (93)

and the only τ -dependent term in the right-hand side is Xτ .
In order to build the required Hamiltonian, we introduce C2-coordinates (x, v) near

Φ(B) such that the cylinder Φ(B) is given by x = 0 (so v gives the coordinates on the
cylinder and x runs a neighbourhood of zero in R

2d−2). The cylinder is transverse to the
strong-stable and strong-unstable foliations, so if we denote as N (v) the direct sum of
the tangents to the leaves of the strong-stable and unstable foliations that pass through
the point (x = 0, v) ∈ Φ(B), then the field N (v) will have a form dv = P(v)dx . Note
that N depends smoothly on v [as the fields of tangents to the strong stable and strong
unstable leaves are smoothwhen the large spectral gap assumption (6) is fulfilled], i.e. the
function P(v) is at leastC1. As the homoclinic cylinderΦ(B) belongs both to the stable
and unstable manifolds of A, it follows from Proposition 3 that a vector is tangent to
Φ(B) if an only if it isΩ-orthogonal to N . Thus, the vector field X̃ = Ω−1∇H generated
by the Hamiltonian H will be tangent to Φ(B) if the gradient of H is orthogonal to N
at the points of Φ(B), i.e.

∂H

∂x
(0, v) +

∂H

∂v
(0, v)P(v) = 0. (94)

This condition is satisfied e.g. by any function of the form

H(x, v) = h(v) −
2d−2∑

i=1

xi

∫
pi (v1 + s1xi , v2 + s2xi )ξ(s1, s2)d

2s

where h is anyC2-function onΦ(B), the vector-function p(v) = (p1(v), . . . , p2d−2(v))

is given by p(v) = h′(v)P(v), the xi ’s are the coordinates of the vector x , and (v1, v2) =
v, and ξ is a C2-smooth function on a plane, localised in a small neighbourhood of zero,
such that

∫
ξ(s)d2s = 1. Integrating by parts, we find

∂H

∂xi
=
∫

pi (v + sxi )[sξ ′(s)+ξ(s)]d2s, ∂H

∂v j
= ∂h

∂v j
(v) +

2d−2∑

i=1

∫
pi (v + sxi )

∂xi
∂s j

d2s.

After substituting x = 0 into these formulas, we see that (94) is satisfied indeed. Since
q ∈ C1 and ξ ∈ C2, it follows that H ∈ C2, so given any C2-function h on the cylinder
Φ(B) we can extend it to a C2-function H defined in a neighbourhood of this cylinder,
such that the vector field generated by the Hamiltonian H is tangent to the cylinder.

As we explained above, under this condition the scattering map is given by (93), so
the vector field

F̃ =
(

Ψ̃ = ∂Ψ

∂τ

∣
∣∣∣
τ=0

, Ỹ = ∂Y

∂τ

∣
∣∣∣
τ=0

)
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of the τ -derivatives of the scattering map F on the cylinder A is given by

F̃ = ∂

∂v

(
F−1
0 ◦ π s

Φ(B)

)
◦ X̃ ◦ Φ ◦ (πu

B)−1, (95)

where X̃ = Ω−1(v)h′(v) is the vector field of the flow on the cylinder Φ(B), which is
generated by the Hamiltonian h. Let Ω(v) denote the antisymmetric (2× 2)-matrix that
defines the restriction of the symplectic form on the cylinder at the point v. In order to
satisfy (90), we need to have

|Ψ̃ | < 1 for all ϕ ∈ S
1,

Ỹ > 2(L + 1) for all ϕ ∈ J.
(96)

It is seen from (95) that if conditions (96) are satisfied by F̃ for some choice of the vector
field X̃ , they are satisfied by F̃ for any C0-small perturbation of X̃ . Thus, it is enough
to find any C1-smooth Hamiltonian function h(v) such that the field F̃ defined by (95)
satisfies (96), then for any C2-smooth function which is C1-close to h the derivative of
the scattering map F with respect to τ will satisfy (90), and the lemma will be proven.

In order to build the sought C1-function h(v), we introduce C1-coordinates v =
(ϕ, y) on the cylinder Φ(B) such that the diffeomorphism F−1

0 ◦ π s
Φ(B) : Φ(B) → A is

identity. Then (95) recasts as

F̃ = X̃ ◦ F |τ=0

[see (93)]. As X̃ is a Hamiltonian vector field, its ϕ-component is given by−ω−1 ∂h

∂y
and

the y-component isω−1 ∂h
∂ϕ
, where theC0-functionω(ϕ, y) > 0 is such thatω(ϕ, y) dy∧

dϕ is the symplectic form on the cylinder Φ(B). Thus, conditions (96) take the form
∣
∣∣∣
∂h

∂y

∣
∣∣∣ < ω(ϕ, y) for all (ϕ, y) ∈ F(As),

∂h

∂ϕ
> 2(L + 1)ω(ϕ, y) for all (ϕ, y) ∈ F(As ∩ {ϕ ∈ J }).

We finish the proof of the lemma by noticing that these conditions are satisfied by a
y-independent function h such that

h(ϕ) = Mϕ at ϕ ∈ Ĵ

where the constant M is given by M = 1 + 2(L + 1) supF(As )
ω, and the arc Ĵ is defined

by (91). Since h must be periodic in ϕ, it is important that Ĵ does not cover the whole
of S

1. ��

Acknowledgements. This work was supported in parts by the Grants RSF 14-41-00044, Leverhulme Trust
RPG-279, Royal Society IE141468, and EPSRC EP/J003948/1.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Inter-
national License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.

http://creativecommons.org/licenses/by/4.0/


Arnold Diffusion 545

References

1. Arnold, V.I.: Instability of dynamical systems with many degrees of freedom. Dokl. Akad. Nauk SSSR
156, 9–12 (1964) (Russian)

2. Arnold, V.I., Kozlov, V.V., Neishtadt, A.I.: Mathematical Aspects of Classical and Celestial Mechanics.
Dynamical Systems III, 3rd edn. Encyclopaedia of Mathematical Sciences, vol. 3. Springer, Berlin (2006)

3. Bernard, P.: Perturbation of a partially hyperbolic Hamiltonian system. C. R. Acad. Sci. Paris Sr. I Math.
323(2), 189–194 (1996) (French)

4. Bernard, P.: The dynamics of pseudographs in convexHamiltonian systems. J. Am.Math. Soc. 21(3), 615–
669 (2008)

5. Bernard, P.: Arnold’ diffusion: from the a priori unstable to the a priori stable case. In: Proceedings of the
International Congress of Mathematicians, Hyderabad, India, vol. III, pp. 1680–1700. Hindustan Book
Agency, New Delhi (2010)

6. Bernard, P.: Large normally hyperbolic cylinders in a priori stable Hamiltonian systems. Ann. Henri
Poincarè 11(5), 929–942 (2010)

7. Berti, M., Biasco, L., Bolle, P.: Drift in phase space: a new variational mechanism with optimal diffusion
time. J. Math. Pures Appl. (9) 82(6), 613–664 (2003)

8. Berti, M., Bolle, P.: Fast Arnold diffusion in systems with three time scales. Discrete Contin. Dyn.
Syst. 8(3), 795–811 (2002)

9. Bessi, U.: Arnold’s diffusion with two resonances. J. Differ. Equ. 137(2), 211–239 (1997)
10. Bolotin, S., Treschev, D.: Unbounded growth of energy in nonautonomous Hamiltonian systems. Nonlin-

earity 12(2), 365–388 (1999)
11. Bourgain, J., Kaloshin, V.: On diffusion in high-dimensional Hamiltonian systems. J. Funct.

Anal. 229(1), 1–61 (2005)
12. Bounemoura, A., Pennamen, E.: Instability for a priori unstable Hamiltonian systems: a dynamical ap-

proach. Discrete Contin. Dyn. Syst. 32(3), 753–793 (2012)
13. Bounemoura, A.: Nekhoroshev estimates for finitely differentiable quasi-convex Hamiltonians. J. Differ.

Equ. 249(11), 2905–2920 (2010)
14. Bounemoura, A., Marco, J.-P.: Improved exponential stability for near-integrable quasi-convex Hamilto-

nians. Nonlinearity 24(1), 97–112 (2011)
15. Bounemoura, A., Fayad, B., Niederman, L.: Double Exponential Stability for Generic Real-Analytic

Elliptic Equilibrium Points (2015). arXiv:1509.00285
16. Broer, H.W., Tangerman, F.M.: From a differentiable to a real analytic perturbation theory, applications

to the Kupka–Smale theorems. Ergod. Theory Dyn. Syst. 6, 345–362 (1986)
17. Castejon, O., Kaloshin, V.: Random Iteration of Maps on a Cylinder and Diffusive Behavior (2015).

arXiv:1501.03319
18. Chierchia, L., Gallavotti, G.: Drift and diffusion in phase space. Ann. Inst. H. Poincarè Phys. Théor.

60(1),144 (1994) [erratum, Ann. Inst. H. Poincarè Phys. Théor. 68(1),135 (1998)]
19. Cheng, C.-Q., Yan, J.: Existence of diffusion orbits in a priori unstable Hamiltonian systems. J. Differ.

Geom. 67(3), 457–517 (2004)
20. Cheng, C.-Q., Yan, J.: Arnold diffusion in Hamiltonian systems: a priori unstable case. J. Differ.

Geom. 82(2), 229–277 (2009)
21. Cheng, C.-Q.: Arnold Diffusion in Nearly Integrable Hamiltonian Systems, p. 127 (2013) (preprint).

arXiv:1207.4016v2
22. Cresson, J.: Symbolic dynamics and Arnold diffusion. J. Differ. Equ. 187(2), 269–292 (2003)
23. Cresson, J., Wiggins, S.: A λ-Lemma for Normally-Hyperbolic Invariant Manifolds (2005).

arXiv:math/0510645 (preprint)
24. de la Llave, R.: Some recent progress in geometric methods in the instability problem in Hamiltonian

mechanics. In: International Congress ofMathematicians, vol. II, pp. 1705–1729. EuropeanMathematical
Society, Zurich (2006)

25. Delshams, A., Gelfreich, V., Jorba, A., Seara, T.-M.: Exponentially small splitting of separatrices under
fast quasiperiodic forcing. Commun. Math. Phys. 189, 35–71 (1997)

26. Delshams, A., Gidea, M., Roldán, P.: Transition map and shadowing lemma for normally hyperbolic
invariant manifolds. Discrete Contin. Dyn. Syst. 33(3), 1089–1112 (2013)

27. Delshams, A., Huguet, G.: Geography of resonances and Arnold diffusion in a priori unstable Hamiltonian
systems. Nonlinearity 22(8), 1997–2077 (2009)

28. Delshams, A., Huguet, G.: A geometric mechanism of diffusion: rigorous verification in a priori unstable
Hamiltonian systems. J. Differ. Equ. 250(5), 2601–2623 (2011)

29. Delshams, A., de la Llave, R., Seara, T.M.: A geometric approach to the existence of orbits with unbounded
energy in generic periodic perturbations by a potential of generic geodesic flows of T2. Commun. Math.
Phys. 209(2), 353–392 (2000)

30. Delshams, A., de la Llave, R., Seara, T.M.: Orbits of unbounded energy in quasi-periodic perturbations
of geodesic flows. Adv. Math. 202(1), 64–188 (2006)

http://arxiv.org/1509.00285
http://arxiv.org/1501.03319
http://arxiv.org/1207.4016v2
http://arxiv.org/math/0510645


546 V. Gelfreich, D. Turaev

31. Delshams, A., de la Llave, R., Seara, T.M.: Orbits of unbounded energy in quasi-periodic perturbations
of geodesic flows. Adv. Math. 202(1), 64–188 (2006)

32. Delshams, A., de la Llave, R., Seara, T.M.: A geometric mechanism for diffusion in Hamiltonian systems
overcoming the large gap problem: heuristics and rigorous verification on a model. Memoirs of the
American Mathematical Society, vol. 179, no. 844. American Mathematical Society, Providence, RI
(2006)

33. Delshams, A., de la Llave, R., Seara T.M.: Geometric approaches to the problem of instability in Hamil-
tonian systems. An informal presentation. In: Chreg, W. (ed.) Hamiltonian Dynamical Systems and Ap-
plications, pp. 285–336. Springer, Berlin (2008)

34. Delshams, A., de la Llave, R., Seara, T.M. Instability of high Dimensional Hamiltonian Systems: Multiple
Resonances Do Not Impede Diffusion. Adv. Math. 294, 689–755 (2016)

35. Douady, R.: Stabilité ou instabilité des points fixes elliptiques [Stability or instability of elliptic fixed
points]. Ann. Sci. école Norm. Sup. (4) 21(1), 1–46 (1988) (French)

36. Douady, R., Le Calvez, P.: Example of a non-topologically stable elliptic fixed point in dimension 4. C.
R. Acad. Sci. Paris Sér. I Math. 296(21), 895–898 (1983) (French)

37. Easton, R.W., Meiss, J.D., Roberts, G.: Drift by coupling to an anti-integrable limit. Phys. D 156(3–
4), 201–218 (2001)

38. Fenichel, N.: Persistence and smoothness of invariant manifolds for flows. Indiana Univ. Math. J. 21,
193–226 (1971-1972)

39. Fermi, E.: Beweis, dass ein mechanisches Normalsystem im allgemeinen quasi-ergodisch ist. Phys.
Z. 24, 261–265 (1923)

40. Fontich, E., Martin, P.: Arnold diffusion in perturbations of analytic exact symplectic maps. Nonlinear
Anal. 42(8), 1397–1412 (2000)

41. Fontich, E., Martin, P.: Arnold diffusion in perturbations of analytic integrable Hamiltonian systems. Dis-
crete Contin. Dynam. Syst. 7(1), 61–84 (2001)

42. Gallavotti, G.: Arnold’s diffusion in isochronous systems. Math. Phys. Anal. Geom. 1(4), 295–312
(1998/1999)

43. Gallavotti, G., Gentile, G., Mastropietro, V.: Hamilton–Jacobi equation, heteroclinic chains and Arnold
diffusion in three time scale systems. Nonlinearity 13(2), 323–334 (2000)

44. Gelfreich, V., Turaev, D.: Unbounded energy growth in hamiltonian systems with a slowly varying pa-
rameter. Commun. Math. Phys. 283(3), 769–794 (2008)

45. Gelfreich, V., Turaev, D.: Fermi acceleration in non-autonomous billiards. J. Phys. A 41, 212003 (2008)
46. Gidea, M., Robinson, C.: Shadowing orbits for transition chains of invariant tori alternating with Birkhoff

zones of instability. Nonlinearity 20(5), 1115–1143 (2007)
47. Gidea,M., Robinson,C.:Obstruction argument for transition chains of tori interspersedwith gaps.Discrete

Contin. Dyn. Syst. Ser. S 2(2), 393–416 (2009)
48. Gidea, M., Zgliczynski, P.: Covering relations for multidimensional dynamical systems. II. J. Differ.

Equ. 202(1), 59–80 (2004)
49. Gidea,M., de laLlave,R.: Topologicalmethods in the instability problemofHamiltonian systems.Discrete

Contin. Dyn. Syst. 14(2), 295–328 (2006)
50. Gidea, M., de la Llave, R., Seara, T.: A General Mechanism of Diffusion in Hamiltonian Systems: Qual-

itative Results (2014). arXiv:1405.0866 (preprint)
51. Gonchenko, S.V., Turaev, D., Shilnikov, L.: Homoclinic tangencies of arbitrarily high orders in conserva-

tive and dissipative two-dimensional maps. Nonlinearity 20, 241–275 (2007)
52. Guardia, M., Kaloshin, V.: Orbits of Nearly Integrable Systems Accumulating to KAM Tori (2014).

arXiv:1412.7088
53. Guardia, M., Kaloshin, V., Zhang, J.: A second order expansion of the separatrix map for trigonometric

perturbations of a priori unstable systems. Commun. Math. Phys. 348(1), 321–361 (2016)
54. Guzzo, M., Lega, E., Froeschlé, C.: A numerical study of Arnold diffusion in a priori unstable sys-

tems. Commun. Math. Phys. 290(2), 557–576 (2009)
55. Herman, M.-R.: Sur les courbes invariantes par les diffeomorphismes de l’anneau, vol. 1 [On the Curves

Invariant Under Diffeomorphisms of the Annulus, vol. 1] Astérisque, pp. 103–104. Soc. Math. de France,
Paris (1983) (French)

56. Hirsch, M.W., Pugh, C.C., Shub, M.: Invariant Manifolds. Lecture Notes inMathematics, vol. 583, p. 149.
Springer, Berlin (1977)

57. Holmes, P.J., Marsden, J.E.: Melnikov’s method and Arnold diffusion for perturbations of integrable
Hamiltonian systems. J. Math. Phys. 23(4), 669–675 (1982)

58. Jones, C.K.R.T., Tin, S.-K.: Generalized exchange lemmas and orbits heteroclinic to invariant mani-
folds. Discrete Contin. Dyn. Syst. Ser. S 2(4), 967–1023 (2009)

59. Kaloshin, V., Mather, J., Valdinoci, E.: Instability of resonant totally elliptic points of symplectic maps
in dimension 4. Analyse complexe, systemes dynamiques, sommabilité des séries divergentes et théories
galoisiennes. II. Astérisque 297, 79–116 (2004)

http://arxiv.org/1405.0866
http://arxiv.org/1412.7088


Arnold Diffusion 547

60. Kaloshin, V.: Geometric proofs ofMather’s connecting and accelerating theorems. In: Topics in Dynamics
and Ergodic Theory. London Mathematical Society Lecture Note Series No. 310, pp. 81–106. Cambridge
University Press, Cambridge (2003)

61. Kaloshin, V., Levi, M.: Geometry of Arnold diffusion. SIAM Rev. 50(4), 702–720 (2008)
62. Kaloshin, V., Levi,M.: An example of Arnold diffusion for near-integrable Hamiltonians. Bull. Am.Math.

Soc. 45(3), 409–427 (2008)
63. Kaloshin, V., Saprykina, M.: An example of a nearly integrable Hamiltonian system with a trajectory

dense in a set of maximal Hausdorff dimension. Commun. Math. Phys. 315(3), 643–697 (2012)
64. Kaloshin, V., Zhang, K.: A Strong Form of Arnold Diffusion for Two and a Half Degrees of Freedom

(2012). arXiv:1212.1150 (preprint)
65. Kaloshin, V., Zhang, K.: A Strong Form of Arnold Diffusion for Three and a Half Degrees of Freedom

(2014) (preprint)
66. Kaloshin, V., Zhang, J., Zhang, K.: Normally Hyperbolic Invariant Laminations and Diffusive Behaviour

for the Generalized Arnold Example Away from Resonances (2015). arXiv:1511.04835
67. LeCalvez, P.: Drift for families of twistmaps on the annulus. Ergod. TheoryDyn. Syst. 27, 869–879 (2007)
68. Lochak, P., Marco, J.-P.: Diffusion times and stability exponents for nearly integrable analytic sys-

tems. Cent. Eur. J. Math. 3(3), 342–397 (2005)
69. Lochak, P., Marco, J.-P., Sauzin, D.: On the splitting of invariant manifolds in multidimensional near-

integrable Hamiltonian systems. Memoirs of the American Mathematical Society, vol. 163, no. 775.
American Mathematical Society, Providence, RI (2003)

70. Marco, J.-P.: Transition along chains of invariant tori for analytic Hamiltonian systems. Ann. Inst. H.
Poincaré Phys. Thor. 64(3), 205–252 (1996) (French)

71. Marco, J.-P.: Arnold diffusion for cusp-generic nearly integrable convex systems on A
3 (2016).

arXiv:1602.02403 (preprint)
72. Markus,L.,Meyer,K.R.:GenericHamiltoniandynamical systems are neither integrable nor ergodic.Mem.

AMS 144, 52 (1974)
73. Mather, J.N.: Arnold diffusion: announcement of results. J. Math. Sci. 124(5), 5275–5289 (2004)
74. Mather, J.N.: Arnold diffusion by variational methods. In: Pardalos, P.M., Rassias, T. (eds.) Essays in

Mathematics and Its Applications, pp. 271–285. Springer, Heidelberg (2012)
75. Moeckel, R.: Generic drift on Cantor sets of annuli. In: Chenciner, A., Cushman, R., Robinson, C., Xia,

Z.J. (eds.) Celestial Mechanics (Evanston, IL, 1999). Contemporary Mathematics, vol. 292, pp. 163–171.
American Mathematical Society, Providence (2002)

76. Moeckel, R.: Transition tori in the five-body problem. J. Differ. Equ. 129, 290–314 (1996)
77. Nassiri, M., Pujals, E.R.: Robust transitivity in Hamiltonian dynamics. Ann. Sci. Norm. Sup.

(4) 45(2), 191–239 (2012)
78. Nekhoroshev, N.N.: An exponential estimate of the time of stability of nearly integrable Hamiltonian

systems. Russ. Math. Surv. 32(6), 1–65 (1977)
79. Palis J., de Melo W. A Geometrical Introduction to Dynamical Systems. Springer, Berlin (1982)
80. Piftankin, G.N.: Diffusion speed in the Mather problem. Nonlinearity 19, 2617–2644 (2006)
81. Piftankin, G.N., Treshchev, D.V.: Separatrix maps in Hamiltonian systems. Russ. Math. Surv. 62(2), 219–

322 (2007)
82. Procesi, M.: Exponentially small splitting and Arnold diffusion for multiple time scale systems. Rev.

Math. Phys. 15(4), 339–386 (2003)
83. Pugh, C., Shub, M., Wilkinson, A.: Hölder Foliations Revisited, (2011). arXiv:1112.2646 (preprint)
84. Robinson, C.: Symbolic dynamics for transition tori. In: Chenciner, A., Cushman, R., Robinson, C., Xia,

Z.J. (eds.) Celestial Mechanics (Evanston, IL, 1999). Contemporary Mathematics, vol. 292, pp. 199–208.
American Mathematical Society, Providence (2002)

85. Shilnikov, L.P.: On the question of the structure of the neighborhood of a homoclinic tube of an invariant
torus. Soviet Math. Dokl. 9, 624–628 (1968)

86. Shilnikov, L.P., Shilnikov, A., Turaev, D., Chua, L.: Methods of qualitative theory in nonlinear dynamics.
Part I. World Scientific Publishing, Singapore (1998)

87. Treschev, D.V.: Evolution of slow variables in a priori unstable Hamiltonian systems. Nonlinear-
ity 17(5), 1803–1841 (2004)

88. Treschev, D.: Arnold diffusion far from strong resonances in multidimensional a priori unstable Hamil-
tonian systems. Nonlinearity 25(9), 2717–2757 (2012)

89. Tennyson, J.L., Lieberman, M.A., Lichtenberg, A.J.: Diffusion in near-integrable Hamiltonian systems
with three degrees of freedom. In: Month, M., Herrera, J.C. (eds.) Nonlinear Dynamics and the Beam–
Beam Interaction, vol. 57, pp. 272–301. American Institute of Physics, New York (1979)

Communicated by J. Marklof

http://arxiv.org/1212.1150
http://arxiv.org/1511.04835
http://arxiv.org/1602.02403
http://arxiv.org/1112.2646

	Arnold Diffusion in A Priori Chaotic Symplectic Maps
	Abstract:
	1 Introduction
	2 Set-up, Assumptions, and Results
	3 Estimates in a Neighbourhood of a Symmetrically Normally-Hyperbolic Invariant Cylinder
	3.1 Fenichel coordinates, cross form of the map, and estimates for the local dynamics
	3.2 ``Lambda-lemma''
	3.3 Secondary homoclinic cylinders

	4 Shadowing in the Homoclinic Channel
	4.1 Homoclinic channel
	4.2 Shadowing orbits of proper codes
	4.3 Replacing a code with a proper code

	5 Symplectic Properties of Scattering Maps
	6 Transport in an Iterated Functions System and Obstruction Curves
	7 Simultaneous Destruction of All Obstruction Curves
	Acknowledgements.
	References




