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ABSTRACT

The study of charged-particle motion in electromagnetic �elds is a rich source of problems, models, and new phenomena for nonlinear dynam-
ics. The case of a strongmagnetic �eld is well studied in the framework of a guiding center theory, which is based on conservation of an adiabatic
invariant—the magnetic moment. This theory ceases to work near a line on which the magnetic �eld vanishes—the magnetic �eld null line. In
this paper, we show that the existence of these lines leads to remarkable phenomena which are new both for nonlinear dynamics in general and
for the theory of charged-particle motion. We consider the planar motion of a charged particle in a strong stationary perpendicular magnetic
�eld with a null line and a strong electric �eld. We show that particle dynamics switch between a slow guiding center motion and the fast tra-
verse along a segment of the magnetic �eld null line. This segment is the same (in the principal approximation) for all particles with the same
total energy. During the phase of a guiding center motion, the magnetic moment of particle’s Larmor rotation stays approximately constant,
i.e., it is an adiabatic invariant. However, upon each traversing of the null line, the magnetic moment changes in a random fashion, causing the
particle to choose a new trajectory of the guiding center motion. This results in a stationary distribution of the magnetic moment, which only
depends on the particle’s total energy. The jumps in the adiabatic invariant are described by Painlevé II equation.
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The existence of adiabatic invariants—approximate conservation
laws for systems with slow and fast motions—plays an important
role in di�erent physical theories. One of such theories is guiding
center theory of motion of charged particles in a strong magnetic

�eld. This theory is based on the adiabatic invariance of magnetic

moment for the particle motion. Basic assumption of the guiding

center approach is that the magnetic �eld is strong and vanishes

nowhere. We show that, for a planar motion in strong perpendic-

ular magnetic �elds, if the magnetic �eld vanishes on some line

(magnetic �eld null line) and the strong electric �eld is present,

then the particle gets involved in a peculiar process of capture and
release by the null line, which leads to large chaotic oscillations
of the particle magnetic moment. Such a behaviour has not been
previously reported in charged particles dynamics or in nonlinear
dynamics in general.

I. INTRODUCTION

Classical guiding center theory6,9 is a basic tool for descrip-
tion of charged particles motion in strong electromagnetic �elds. In
this theory, the particle motion is represented as a slow motion of
the guiding center and a fast rotation in the Larmor circle around
the guiding center. Averaging over this fast rotation eliminates the
phase of the particle in a Larmor circle from Hamiltonian equa-
tions of motion. The canonical conjugate to this phase variable is the
magnetic moment of the particle. This magnetic moment is, there-
fore, the �rst integral of the averaged equations of motion and the
approximate �rst integral (adiabatic invariant) of the exact equations
of motion. The frequency of the Larmor rotation is proportional to
the magnitude of the magnetic �eld. If the magnetic �eld vanishes
somewhere, then the Larmor frequency vanishes, and averaging over
Larmor motion does not describe particle dynamics. Guiding center
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theory ceases to work. There are, however, �eld con�gurations with
a magnetic �eld null line, notably, in a space plasmas, that have been
intensively studied.7,8 Formation of such null lines are closely related
to magnetic reconnection,1 which can shape a magnetic �eld con�g-
uration with a prolonged null line and a scalar potential maximizing
(or minimizing) at the line.3,11

In this paper, we address how the emergence of such null lines
in�uences the dynamics of a charged particle.

II. EQUATIONS OF MOTION

We consider the planar motion of a charged particle in strong,
stationarymagnetic and electric �elds. Let (x, y) be Cartesian coordi-
nates in the plane of motion. The magnetic �eld is directed perpen-
dicular to this plane and has the intensity 1

ε
B(x, y), where ε > 0 is a

small parameter. Let the magnetic �eld vanish on a smooth curve L
(see Fig. 1). The equations of motion are

εẍ = e

mc
Bẏ − ∂V

∂x
, εÿ = − e

mc
Bẋ − ∂V

∂y
, (1)

where 1
ε
V(x, y) is the electrostatic potential;m, e, and c are the mass,

charge of the particle, and the speed of light, respectively. In what
follows, we assume that the units of dimensions are chosen such
that m = e = c = 1. Thus, we have a system with a small parameter
multiplying higher derivatives (i.e., a singularly perturbed system).

Dynamics outside a vicinity ofL constitute the fast rotationwith
a slowly varying radius (the Larmor radius rL) around the guiding

FIG. 1. Schematic of the system: dashed lines show level lines of the electrostatic
potential, the red line is the magnetic field null line, the blue lines show particle
trajectories, and the black arrows illustrate the local coordinate system.

center, whose slow motion is given by6,9

ξ̇ = −µ

B

∂B

∂η
− 1

B

∂V

∂η
, η̇ = µ

B

∂B

∂ξ
+ 1

B

∂V

∂ξ
. (2)

Here, ξ and η are the coordinates of the guiding center, and
B = B(ξ , η) and V = V(ξ , η). The parameter µ is the magnetic
moment of the particle: the ratio of its kinetic energy to the value
of the magnetic �eld at the guiding center. The magnetic moment is
an adiabatic invariant of the system; away from L, it determines the
Larmor radius, rL = (2εµ/B)1/2. We will show that the passage near
L leads to a jump of order 1 in the value of this adiabatic invariant.
Thus, we will from the very beginning consider the case µ ∼ 1.

As the particle energy,H, is conserved, the guiding centermoves
along the lines of constant H = (µB + V)ε−1. We consider the situ-
ation where the level lines of H intersect the null line. Note that the
guiding center cannot cross the null line once it reaches it, because
both ξ̇ and η̇ change sign when B changes sign in Eq. (2). Therefore,
the motion of the particle along the level lines of H is interrupted by
the periods where the particle stays close to L. In order to analyze
the capture process to the vicinity of L and the motion along it, we
introduce new coordinates (r, s) near L as follows:

x = X(s) + rY ′(s), y = Y(s) − rX′(s),

where x = X(s), y = Y(s) is the equation of L in terms of the
arclength parameter s (so rmeasures the deviation fromL; see Fig. 1).
We will use the expansions

B = b(s)r + O(r2), V = v0(s) + v1(s)r + O(r2). (3)

By changing the sign of r, we can always assume that b(s) > 0. Note
that in typical applications, the potential V has an extremum on L,
i.e., v1(s) ≡ 0.3,11

One can check that, for small r, the guiding center equations (2)
give

d

dt
r2 ∼ − 2

b(s)
v0

′(s). (4)

Therefore, in a �nite time, the particle arrives at the null line near
some point sa (the point of absorption) such that v0

′(sa) > 0. As B
vanishes at this point while µ remains constant in the guiding cen-
ter approximation, the particle’s kinetic energy µB drops near the
absorption point. This implies that the point sa is, independently of
µ, determined by the total energy H of the particle

εH = v0(sa). (5)

III. DYNAMICS CLOSE TO THE NULL LINE. CHANGE

OF THE ADIABATIC INVARIANT

Following motions are described by Eq. (1) written in the coor-
dinates (r, s). As r is small near L, we only retain the terms of the
lowest order in r. In this approximation, the variables (r, s) can be
treated as Cartesian coordinates, and the 3D vector potential of the
magnetic �eld has the s-component equal to As = b(s)r2/(2ε), and
the other two components are zero. Let pr , ps be the momenta of the
particle corresponding to r and s. The dynamics nearL are described
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(to the main order in r) by the Hamiltonian

E = 1

2

[

p2r +
(

Ps − b(s)
r2

2ε

)2
]

+ 1

ε
v0(s) + 1

ε
v1(s)r, (6)

where the canonical momentum Ps is given by Ps = ps + As

= ps + b(s)r2/(2ε).

At a �nite distance r from the null line, the value of Ps is of
order ε−1 and is positive. At small r, we have from (6) that d

dt
Ps

∼ −ε−1v′
0(s), so Ps starts to decrease with time when the particle

approaches L near the absorption point, where v′
0(s) > 0. In the sys-

tem de�ned by (6), the variables s and Ps evolve much slower than
(r, pr), as long as Ps � ε−1/3. In this regime, we should consider,
as a zero order approximation, the dynamics of r, pr described by

FIG. 2. Panels (a) and (b) show phase portraits of Hamiltonian (6) for frozen Ps. Panels (c) and (d) show results of integration of Eqs. (1) with B(x, y) = x/ε (i.e.,
the magnetic field null line is the axis x = 0), V(x, y) = (x2 + y2)/(2ε), ε = 10−3. In this case, the guiding center trajectories have equations µx + (x2 + y2)/2 = h
= const,µ = const, i.e., they are arcs of circles (different circles for different values of the magnetic moment µ). These arcs intersect the axis x = 0 at the same two

points x = 0, y = ±
√
2h. Motion along the axis x = 0 is (approximately) described by the equation εÿ + y = 0, with initial conditions y =

√
2h, ẏ = 0. Panel (c) shows

trajectory in the (x, y) plane with colors indicating the value of the magnetic moment µ (normalized to some typical value µ0; values µ > µ0—close to B = 0—are
replaced by µ0). Panel (d) shows the time dependence of the y-coordinate of a trajectory for a fragment of motion near the null line x = 0 and illustrates the jump in the
adiabatic invariant. Panels (e) and (f) show the temporal evolution of the distribution of µ: 1D distributions are in panel (e) and the 2D time vs µ space is shown in panel
(f). The initial distribution peaks around µ ∼ 3 (all trajectories are calculated for 2h = 25 and ε = 10−3). The black dashed line in (e) shows the theoretical prediction

f(µ) = 4/(π
√
2h) ·

[

1 − χ arcsin(1 + χ 2)−1/2
]

with χ = µ/
√
2h. This distribution is obtained from the formula f(µ) = C T(µ, h), where T is the time of the guiding

center motion from the ejection to the absorption point at the magnetic field null line, and C is the normalization constant such that
∫ ∞
0

f(µ)dµ = 1.
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the Hamiltonian (6) with frozen s and Ps. At positive Ps, this is the
motion in a double-well potential [see Fig. 2(b)].

The oscillations close to a minimum of the potential represent
the Larmor rotation. The slow evolution of (s,Ps) is governed by
equations obtained by averaging over the fast oscillations of (r, pr).
The standard fact of the averaging theory is that the action I of the fast
oscillations is an adiabatic invariant. The action is the area bounded
by the corresponding phase curve in the plane (r, pr), divided by 2π ,
i.e., I = 1

2π

∮

γ
prdr. While (s,Ps) slowly change, the closed path γ ,

along which (r, pr) oscillate, changes in such a way that the value
of I remain nearly constant. When γ is close to an elliptic point
corresponding to a minimum of the double-well potential [and the
corresponding oscillations of (r, pr) around this point are considered
in the linear approximation], the averaged equations are equivalent to
the guiding center approximation, and the adiabatic invariant equals
|µ|. Therefore, the value of I remains close to |µ| as long as there
is a separation of scales in the system de�ned by (6). This means
that the area inside the curve γ remains bounded all the time when
Ps � ε−1/3. One can check that under these conditions, γ must
stay close to the elliptic point and the corresponding oscillations of
(r, pr) will remain in the linear regime. Therefore, the guiding center
approximation remains valid up to the moment when Ps decreases
to the values of order of ε−1/3. After that, there is no separation of
motions into fast and slow ones. As I ∼ 1, one infers that pr ∼ ε−1/3

and r ∼ ε1/3 when the guiding center approximation starts to break.
We, therefore, scale the variables and time as follows (the “hat”marks
the new variables):

r = ε1/3r̂, pr = ε−1/3p̂r , s − sa = ε1/3 ŝ, Ps = ε−1/3
P̂s,

t − t0 = ε2/3 t̂, E − 1

ε
v0(sa) = ε−2/3Ê, (7)

where t0 is themoment of timewhenPs = 0. In the principal approx-
imation, s = sa at t = t0. The system for the rescaled variables is
given, in the limit ε → 0, by the rescaled Hamiltonian,

Ê = 1

2

[

p̂2r +
(

P̂s − ba
r̂2

2

)2
]

+ v′
0,a ŝ + v1,ar̂, (8)

where v′
0,a = v′

0(sa), v1,a = v1(sa), ba = b(sa). The corresponding
equations of motion are

d

dt̂
r̂ = p̂r ,

d

dt̂
p̂r =

(

P̂s − ba
r̂2

2

)

ba r̂ − v1,a, (9)

d

dt̂
ŝ =

(

P̂s − ba
r̂2

2

)

,
d

dt̂
P̂s = −v′

0,a.

Thus, P̂s = −v′
0,a t̂ and

d2

dt̂2
r̂ =

(

−v′
0,a t̂ − ba

r̂2

2

)

ba r̂ − v1,a, (10)

which is a nonhomogeneous Painlevé II equation.2

As we see, P̂s decreases monotonically from very large positive
to very large negative values. In the nonrescaled variables, this means
that the system gets into a regime where Ps � −ε−1/3 after a time
interval on the order of ε2/3. In this regime, the separation of scales
between the (relatively) slow motion of (s,Ps) and the fast motion of

(r, pr) reemerges, and the dynamics of (r, pr) are again described by
theHamiltonian (6)with slowly varying s andPs, like at the end of the
guiding center motion regime. However, Ps is negative now, so, for
frozen s andPs, this is the motion in a single-well potential, as shown
in Fig. 2(a). The oscillations around the minimum of this potential
correspond to fast oscillations of the particle around the null line L,
on top of the slower drift along L (the evolution of the s variable).

The action I0 of small oscillation near the elliptic point in the
(r, pr) plane [Fig. 2(a)] at a given value of (s,Ps) is an adiabatic invari-
ant. By analyzing Painlevé II equation (10), one �nds the relation
between I0 and I. Note that scaling (7) does not change areas in (r, pr)
plane, therefore I and I0 coincide, for the case of small oscillations,
with the adiabatic invariants of the asymptotic limit of Eq. (10) at
large negative and, respectively, large positive times. For Painlevé
II equation, there are connection formulas that relate behavior of
solutions at t̂ → −∞ and t̂ → +∞.4,5 For homogeneous Painlevé II
equation, (v1,a = 0), these formulas were used to obtain explicit con-
necting formulas for the adiabatic invariants in the small oscillations
limit;10 similar formulas can be obtained in the general nonhomoge-
neous case. We do not present the connecting formulas here as they
are rather involved analytical expressions. Importantly, they give I0
as a function of I and ϕ, the phase of Larmor rotation. Since ϕ rotates
fast, the change in the adiabatic invariant is, essentially, random. In
the nonrescaled time t, the adiabatic invariant changes over a short
interval (on the order of ε2/3). Therefore, we conclude that falling on
the null line at the end of the guiding center motion regime is accom-
panied by a sudden, random jump of the order of 1 in the adiabatic
invariant.

IV. DRIFT ALONG THE NULL LINE

The consequent drift along L is described by the system for
(s,Ps) variables, obtained by averaging over the fast (r, pr) oscilla-
tions. This is aHamiltonian system that depends on I0 as a parameter.
In the limit of small (hence, harmonic) oscillations

I0 =
1
2

(

p2r + |Ps|b(s)r2/ε
)

(|Ps|b(s)/ε)1/2
.

Since I0 is on the order of 1, this gives

r ∼ (ε/|Ps|)1/4, pr ∼ (|Ps|/ε)1/4. (11)

As |Ps| � ε−1/3, these estimates imply that the terms b(s) r2

2ε
, p2r , and

v1(s)r/ε can be neglected in Eq. (6). Thus, the drift along the null line
is governed, to the main order, by the Hamiltonian,

E = 1

2
P

2
s + v0(s)/ε. (12)

In other words, it is the motion in the potential v0/ε

εs̈ + ∂v0(s)

∂s
= 0. (13)

Initial values are s ≈ sa and Ps = −Cε−1/3, with some constant
C � 1. In particular, Ps(0) = o(ε−1/2), so Eq. (12) implies (in the
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principal approximation)

ṡ = Ps = −ε−1/2 (v0(sa) − v0(s))
1/2 .

Hence, a �nite length segment of the magnetic �eld null line is tra-
versed during the time of the order of ε1/2. As Ps ∼ ε−1/2, it follows
from (11) that

r ∼ ε3/8, pr ∼ ε−3/8

in this regime. The frequency of oscillations of (r, pr) is (|bP s|/ε)1/2
∼ ε−3/4.

When the particle moving along the null line arrives at the point
of ejection, s = se, where v0(se) = v0(sa) = εH [see Eq. (5)], it can
leave a neighborhood of the null line and change to the guiding cen-
ter mode of motion. This happens as the value of |Ps| drops to its
initial valueO(ε−1/3) at s = se, so the Painlevé II approximation again
becomes valid. Thus, the motion in the rescaled coordinates can
again be described by system (9), where v′

0,a, ba, and v1,a are replaced
by v′

0,e = v′
0(se), be = b(se), and v1,e = v1(se), respectively. Since v

′
0,e is

negative,Ps starts growing and achieves large positive values,∼ 1/ε,
i.e., the particle switches to Larmor rotation around a guiding cen-
ter. According to (4), the guiding center departs from the null line
with a nonzero speed [as v′

0(se) < 0]. Again, the switch in the mode
of motion leads to a random jump in the adiabatic invariant, so the
newphase of the guiding centermotionwill proceedwith a new value
of the magnetic moment µ.

V. STATIONARY DISTRIBUTION OF THE MAGNETIC

MOMENT

In principle, the two consecutive jumps of the adiabatic invari-
ant (at the point of absorption by L and at the point of ejection)
can compensate each other in some special resonant cases. However,
in general, such a compensation does not occur, and the changes in
the magnetic moment between di�erent phases of the guiding cen-
ter motion can be treated as a random process, as con�rmed by our
numerical experiments [see Fig. 2(c)].

This strong scattering of the magnetic moment (µ) results in a
rapid evolution of any initial distribution of µ toward the stationary
distribution. For a �xed energy level, H = h = const, the station-
ary distribution is obtained from the invariant Liouville’s measure by
integrating over the fast Larmor rotation. It follows that its density is
proportional to the time of the guiding center motion from the ejec-
tion to the absorption point of the magnetic �eld null line. To check
this conclusion, we numerically integrated 106 trajectories with the
same h andwith narrow initial distribution ofµ. Figures 2(e) and 2(f)
show that the distribution rapidly evolves to the theoretically pre-
dicted one. (The part of the distribution with small µ evolves slower
than that with large µ, because the equilibration happens due to the
jumps of the adiabatic invariant at the moments of absorption and
ejection by the null line and the time interval from the ejection to the
absorption is longer for the particles with small µ.)

VI. CONCLUSION

The presence of the magnetic �eld null line creates new types
of particle dynamics in the strong electromagnetic �eld, which is of
interest both for the theory of charged-particle motion and for the

general theory of nonlinear dynamics. The particle switches between
�nite time intervals corresponding to the Larmor rotation [of radius
∼ (εµ)1/2 and frequency ∼ ε−1, where ε−1 is the magnitude of the
external �eld] about the guiding center that moves towards the null
line, and short (of duration ∼ ε1/2) intervals of strongly accelerated
motion backwards along the null line. The motion along the null line
is controlled by the electrostatic potential [see Eq. (13) and Fig. 2(d)]
and is accompanied by oscillations across the null linewith frequency
∼ ε−3/4 and amplitude ∼ ε3/8.

For each Larmor rotation phase, the guiding center follows a dif-
ferent path, determined by the magnetic moment µ. As µ increases,
the path approaches closer to the null line [cf. blue and red lines in
Fig. 2(c)], but the direction of this motion is opposite to that in the
null line capture phase. The paths start at the ejection point and end at
the absorption point on the null line, which remain unchanged from
one Larmor phase to another and depend only on the total energy
of the particle. The jumps in the value of magnetic moment between
the two consecutive Larmor phases can be treated as a random pro-
cess, whose characteristics can be determined from the analysis of the
Painlevé II equation that describes the absorption and ejection of the
particle by the null line.

This randomness, if we consider a multiparticle situation where
the interaction between the particles can be neglected, will lead to
a stationary distribution of particles and their magnetic moments,
which depends only on the initial distribution of the particles energy.
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