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Recent results describing non-trivial dynamical phenomena in systems with homoclinic tangencies
are represented. Such systems cover a large variety of dynamical models known from natural
applications and it is established that so-called quasiattractors of these systems may exhibit rather
non-trivial features which are in a sharp distinction with that one could expect in analogy with
hyperbolic or Lorenz-like attractors. For instance, the impossibility of giving a finite-parameter
complete description of dynamics and bifurcations of the quasiattractors is shown. Besides, it is
shown that the quasiattractors may simultaneously contain saddle periodic orbits with different
numbers of positive Lyapunov exponents. If the dimension of a phase space is not too low~greater
than four for flows and greater than three for maps!, it is shown that such a quasiattractor may
contain infinitely many coexisting strange attractors. ©1996 American Institute of Physics.
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I. INTRODUCTION

The discovery of dynamical chaos is one of the ma
achievements in the modern science. At the aftermath, v
ous phenomena in natural sciences and engineering have
tained an adequate mathematical description within
framework of differential equations. From the mathematic
point of view, dynamical chaos is commonly associated w
the notion ofa strange attractor—an attractive limit set with
the complicated structure of orbit behavior. This term w
introduced by Ruelle and Takens in 19711 in the sense where
the wordstrangemeans the limit set has a fractal structur

Nowadays, the point of view is widely accepted that t
strange attractor should be regarded as an attractive limi
composed byunstableorbits. Examples of such sets ar
well-known hyperbolic and Lorenz-like attractors. Both a
rather suitable objects because they, in particular, pos
proper invariant measures~Sinai–Bowen–Ruelle measures!
and, therefore, admit adequate studying by tools of the
godic theory. These are the attractors which Sinai ca
stochastic.2

However, most of known dynamical models give us e
amples of attractors different from those pointed out abo
We mention, for instance, spiral attractors3–5 associated with
a homoclinic loop to a saddle-focus6,7; attractors that arise
through breakdown of an invariant torus8–11; screw-like at-
tractors in the Chua circuit12,13; attractors in the He´non
map14–16; attractors forming through the period-doublin
cascade in strongly dissipative maps; attractors in the Lor
model

ẋ5s~y2x!, ẏ5rx2y2xz, ż52bx1xy

at large values of r ~for instance, at s510, b5 8
3,

r.31)17–19; attractors in periodically forced self-oscillator
systems with one degree of freedom,20–23etc.

Strange attractors of such systems are well known
contain not only non-trivial hyperbolic sets but also attra
tive periodic orbits and thereby not being stochastic rig
CHAOS 6 (1), 1996 1054-1500/96/6(1)/15/17/$10.
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ously speaking. Due to this reason, we will adhere to th
definition given in Refs. 8, 24: a strange attractor~a quasi-
attractor in terms of Refs. 8, 24! is an attractive limit set
which contains non-trivial hyperbolic subsets and which ma
contain attractive periodic orbits of extremely long periods
Since neither the transitivity property nor the property of
individual instability of orbits may not be fulfilled in this
case~even if these properties may hold, they are not pre
served under small perturbations! we will use the terma
quasistochastic attractor.

We notice that the principal reason of distinguishing the
class of quasistochastic attractors is that, in contrast with th
genuine stochastic attractors, for them there is no rigorou
mathematical base for the main notions through which cha
otic dynamics is analyzed: Lyapunov exponents, entropy, de
cay of correlations, sensitive dependence on initial data, et
Thus, for a large variety of dynamical systems of natura
origination, the question of the nature of chaos remains ope
so far.

The scope of this paper is to represent recent resul
which show that quasiattractors may exhibit rather non
trivial features which are in a sharp distinction with that one
could expect in analogy with stochastic attractors. Thus, w
show that quasistochastic attractors may contain structural
unstable and, moreover, infinitely degenerate periodic orbi
which makes the complete description of dynamics and b
furcations of such attractors impossible in any finite-
parameter family.

We also establish that quasistochastic attractors, in co
trast with hyperbolic ones, may not possess the property o
self-similarity. Namely, there may exist infinitely many time
scales on which behavior of the system is qualitatively dif
ferent. Besides, we show that quasiattractors may simult
neously contain saddle periodic orbits with different topo-
logical indices or, what is the same, with different numbers
of positive Lyapunov exponents. The last is also impossibl
for hyperbolic attractors.
1500 © 1996 American Institute of Physics

icense or copyright; see http://chaos.aip.org/about/rights_and_permissions



-

16 Gonchenko, Shil’nikov, and Turaev: Dynamical phenomena
If the dimension of a phase space is not too low~greater
than four for flows and greater than three for maps!, we show
that a quasiattractor may contain infinitely many coexistin
non-trivial attractors.

These statements are based on the analysis of bifur
tions of systems withstructurally unstable Poincare´ ho-
moclinic orbits.

Recall that a Poincare´ homoclinic orbit is an orbit of
intersection of the stable and unstable manifolds of a sadd
periodic orbit. A homoclinic orbit is calledstructurally
stableif the intersection is transverse, and it is calledstruc-
turally unstable~or a homoclinic tangency! if the invariant
manifolds are tangent along it~Fig. 1!.

As it is well known,25,26 in any neighborhood of a struc-
turally stable Poincare´ homoclinic orbit there exist non-
trivial hyperbolic sets containing a countable number o
saddle periodic orbits, continuum of non-periodic Poisso
stable orbits, etc. Thus, the presence of a structurally sta
Poincare´ homoclinic orbit can be considered as the univers
criterium of complex dynamics.

The structurally stable homoclinic orbits are evidentl
preserved under small perturbations. Hence, systems w
such orbits form open regions in the space of dynamic
systems. Structurally unstable homoclinic orbits are not,
general, preserved under perturbations. If the tangency
quadratic, systems with such orbits fill bifurcational surface
of codimension one in the space of dynamical systems. A
cordingly, individual parameter values correspond to th
presence of homoclinic tangencies in general one-parame
families, curves on the parameter plane correspond to h
moclinic tangencies in two-parameter families, etc.

Note that the set of systems with structurally unstab
homoclinic orbits~or, for a general finite-parameter family,
the set of parameter values corresponding to the presence
structurally unstable homoclinic orbits! has quite a non-
trivial structure. For instance, it is not hard to see, that in
general one-parameter family, in an arbitrary closeness
any parameter value corresponding to a homoclinic tangen
there exist other parameter values corresponding to other
moclinic tangencies~see Figs. 2, 3!.

FIG. 1. The saddle fixed pointO whose the stableWs and the unstable
Wu manifolds have a quadratic tangency at the points of a homoclinic orb
G ~bold points in the figure!.
CHAOS, Vol. 6
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It is essentially more non-trivial that the closure of the
set of all parameter values corresponding to homoclinic tan-
gencies contains open intervals. More generally, the follow-
ing result is valid.

Theorem 1: Let f« be a general finite parameter family
of dynamical systems which has a saddle periodic orbit
L« . ~The exact conditions of general position have been for-
mulated in Ref. 27. In particular, it is required off 0 that for
the tangency to be quadratic, the orbitG0 not lie in the strong
stable and strong unstable submanifoldsWss andWuu, etc.!
Suppose that at«50 there exists a structurally unstable ho-
moclinic orbitG of the orbit L0. Then, values of« for which
L« has an orbit of quadratic homoclinic tangency are dense
in some open regionsD i of the parameter space, accumulat-
ing at «50.

The one-parameter version of this theorem was estab
lished by Newhouse in Ref. 28 for the case of two-
dimensional diffeomorphisms and it was extended onto the
general multidimensional case by us in Ref. 27~the case with
an arbitrary number of parameters follows immediately from
Refs. 27, 28!. The multidimensional case was also consid-

it

FIG. 2. The splitting parameterm is chosen such thatWu has a tangency
with Ws at a homoclinic pointM1 at m50, there is no homoclinic inter-
section nearM1 at m.0 and there are two points of intersection atm,0.

FIG. 3. The figure shows how a secondary homoclinic tangency of the
manifoldsWs andWu may be obtained.
, No. 1, 1996
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17Gonchenko, Shil’nikov, and Turaev: Dynamical phenomena
ered partly in Ref. 29. This theorem shows that although a
given homoclinic tangency can be removed by a small pe
turbation of the system, the presence of homoclinic tange
cies is, nevertheless, a persistent phenomenon.

In our opinion, the presence of structurally unstabl
Poincare´ homoclinic orbits either in the system itself or in a
nearby system is one of the main peculiarities of quasist
chastic systems. As we can judge, the presence of homocli
tangencies for some values of parameters was either theor
cally proved or found by computer simulations in all dy
namical models with quasiattractors~see the list above! for
which the problem of finding such parameter values was e
plicitly posed. By theorem 1, the closure of these paramet
values contains open regions. Note that the size of the
regions may be rather large in specific examples~see, for
instance, Ref. 16!, though the theoretical estimates for the
size of the regionsD i that can be extracted from the known
proof of theorem 1 give us extremely small values.

We will call the Newhouse regionssuch regions in the
space of dynamical systems~or in the parameter space while
speaking on a finite-parameter family! where systems with
homoclinic tangencies are dense. In the case where bifur
tions of some system having a saddle periodic orbit with
homoclinic tangency are considered, we reserve the te
‘‘Newhouse regions’’ specifically for those in a small neigh
borhood of the initial system where systems are dense wh
have homoclinic tangencies of the given periodic orbit.

As we see, the problem of studying dynamical phenom
ena in the Newhouse regions is an important part of th
global problem of studying the nature of chaos in real dy
namical models. Besides, this problem is of its own intere
from the point of view of the qualitative theory and the
theory of bifurcations of dynamical systems.

In the present paper we describe dynamical phenome
in the Newhouse regions for both the two-dimensional an
the multidimensional cases. In Sections II and III we discu
main results~theorems 2–10!. In Section IV we collect geo-
metrical constructions which determine dynamics near h
moclinic tangencies. We restrict ourself by the case of di
feomorphisms: the case of flows can be similarly consider
by means of the Poincare´ map.

II. MAIN RESULTS: THE TWO-DIMENSIONAL CASE

Before studying the general multidimensional case, w
consider the case of two-dimensional maps. Letf be a two-
dimensional diffeomorphism having a saddle fixed pointO
with multipliers l andg whereulu,1, ugu.1. LetWs and
Wu be, respectively, the stable and unstable manifolds ofO.
Suppose they have a quadratic tangency at the points
some homoclinic orbitG ~Fig. 1!.

According to the traditional approach going back to An
dronov, to study the bifurcations of a given system is t
embed it in an appropriate finite-parameter family, then
divide the parameter space into the regions of structural s
bility, to determine the bifurcation set and to split the bifur
cation set into connected components corresponding to ide
tical phase portraits~in the sense of topological equivalence!.
CHAOS, Vol. 6
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Accordingly, a good model must possess a sufficient numbe
of parameters allowing one to analyze bifurcations of each
periodic, homoclinic, and heteroclinic orbit that occurs.

In a general finite-parameter family containingf , the
splitting parameterm must clearly be one of the main param-
eters. We define the splitting parameter as follows. Take a
point of homoclinic tangency onWs ~the pointM1 in Figs.
2, 3!. The manifoldWu has a parabola-like shape near this
point for all maps close tof . We denote asm the distance
betweenWs and the bottom of the parabola. The sign ofm is
chosen such thatf m has no homoclinic orbits atm.0 which
are close toG and there are two structurally stable such
orbits atm,0 ~Fig. 2!.

As we noticed, values ofm for which the mapf m has
‘‘secondary’’ homoclinic tangencies accumulate atm50. In-
deed, take a pair of points belonging toG and lying nearO:
M1 P Wloc

s andM2 P Wloc
u ~see Fig. 3!. Takem a bit smaller

than zero. Take a pieceC of the part of the unstable manifold
that lies nearM1 and begin to iterate it. After some number
of iterations~the closerC is to the stable manifold, the larger
the number!, it may approach a small neighborhood of
M2. Since, atm50, the pointM2 goes atM1 by some
finite degree off , it implies that a small neighborhood of
M2 is mapped into a small neighborhood ofM1 by the
same degree offm at all smallm. Thus, the curveC may
return to a neighborhood ofM1 for some numberk of itera-
tions of f m ~we will say thatC makes a single round along
G). While doing that the curveC is expanded and folded
thereby forming a ‘‘parabola’’fm

k (C). Fitting m andC, one
can clearly obtain a secondary homoclinic tangency.

Making more rounds, other homoclinic tangencies can
be obtained with an appropriate variation ofm. According to
Theorem 1, values ofm corresponding to the multiround
homoclinic tangencies fill densely intervals accumulating at
m50.

We note also that a small perturbation off may imply
cubic homoclinic tangencies. Figure 4 shows how it can be

FIG. 4. Takem a bit greater than in Fig. 2. Then, after one more round along
the initial homoclinic orbit, the image ofC takes a distorted form which
allows one to obtain a cubic tangency ofWs andWu.
, No. 1, 1996
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18 Gonchenko, Shil’nikov, and Turaev: Dynamical phenomena
achieved. Consider a system with the secondary homocl
tangency~Fig. 3!. We take the parabolafm

k (C) and change
m a little bit, so that the parabola lies aboveWs. By some
numberk8 of iterations, the parabola carries out one mo

round alongG. The curvef m
k1k8(C) is a ‘‘distorted parabola’’

~Fig. 4! which can be made cubically tangent toWs by a
small perturbation~for this, two control parameters are nec
essary!.

Increasing the number of rounds alongG, homoclinic
tangencies of higher and higher orders can be obtained
neighborhood of the initial quadratic tangency. Since syste
with quadratic tangencies are dense in the Newhouse
gions, we arrive at the following result.

Theorem 2 ~Refs. 30, 31!: Systems with homoclinic tan-
gencies of any prescribed order (definite or indefinite) a
dense in the Newhouse regions.

Recall the definition of the order of tangency of tw
Cr-smooth curvesg1 andg2 on a plane. Let the curveg1 be
given by the equationy50 andg2 be given by the equation
y5w(x), w(0)50, in some Cr-coordinates (x,y). If
(] iw/]xi) (0)50 at i51,...,s and (]s11w/]xs11) (0)Þ0
for somes,r , theng1 andg2 havea tangency of order s~a
quadratic tangency ifs51, a cubic tangency ifs52!. In case
(] iw/]xi) (0)50 at i51,...,r , the curvesg1 andg2 have a
tangency ofindefiniteorder.

If Ws andWu have a tangency of orders, then, at small
perturbations, the equation ofWu in a neighborhood of the
point of tangency may well known be written in the form

y5«01«1x1...1«s21x
s211xs111o~xs11!. ~1!

The values« i are the parameters which control the bifurca
tions of the intersections ofWu andWs ~the last has the
equationy50!. We see that the bifurcation analysis require
at least ans-parameter family in this case.

According to theorem 2, one can obtain tangencies
arbitrarily high orders by a small perturbation of the initia
map f with the orbit of homoclinic tangency of order 1
Therefore, we have to conclude that no finite number of co
trol parameters is sufficient for thecompletestudy of the
bifurcations in a small neighborhood of a homoclinic tan
gency, independent of the order of it.

The impossibility of giving the complete description o
the bifurcations of systems with structurally unstable Poi
caréhomoclinic orbits appears also as the presence of s
tems with arbitrarily degenerate periodic orbits in the New
house regions.

It is well known that if, for someCr-smooth map, an
orbit of period j has one multiplier equal ton561 and all
the other multipliers do not lie on the unit circle, then in th
casen51 the restriction of thej -th degree of the map onto
the center manifold can be written either in the form

ȳ5y1Lsy
s111o~ys11!, 1<s<r21, ~2!

where the coefficientLs that is not equal to zero is calleds-th
Lyapunov value, or in the form

ȳ5y1o~yr !. ~3!
CHAOS, Vol. 6
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In the casen521, the restriction of the 2j -th degree of the
map onto the center manifold can be written either in th
form

ȳ5y1Lsy
2s111o~y2s11!, 3<2s11<r , LsÞ0

~4!

or, again, in form~3!. If one of formulas~2! or ~4! holds
(Ls Þ 0), we state that the periodic orbit hasthe degeneracy
of order s, and if formula ~3! holds, we speak aboutthe
degeneracy of indefinite or infinite order.

Theorem 3 ~Refs. 30, 31!: Systems with periodic orbits
of any prescribed order (definite or indefinite) of degenera
are dense in the Newhouse regions (both for the casen51
and for the casen521).

This theorem is a corollary of theorem 2. The main el
ment of the proof is the construction of the first return ma
near a structurally unstable homoclinic orbit of ans-th order
of tangency~Fig. 5!. We begin with the initial case of qua-
dratic tangency (s51). Take a small strips in a neighbor-
hood of the pointM1. If the strip is chosen appropriately, it
rounds once alongG and returns in the neighborhood o
M1 for some numberk of iterations of fm ; the image
f m
k (s) has the horseshoe shape. We denote the restriction
the mapfm

k ontos asTk and call itthe first return map. The
strips is small. Therefore, we rescale coordinates, as in R
32, so that it obtains a finite size. In such rescaled coor
nates the mapTk is written in the following form~see lemma
1 in Section IV!:

x̄5y1O~ ulguk1ugu2k!,
~5!

ȳ5M2y21O~ ulguk1ugu2k!,

whereM;mg2k.
Let ulgu,1 ~the caseulgu.1 is reduced to the case

ulgu,1 by transition fromf to its inverse map!. Then map
~5! is close to the well-known one-dimensional parabola m

ȳ5M2y2 ~6!

for k large enough; the rescaled splitting parameterM may
take arbitrary finite values~the largerk, the larger the inter-
val of allowed values ofM !.

FIG. 5. The first return map for the cases of~a! quadratic tangency;~b!
cubic tangency.
, No. 1, 1996
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19Gonchenko, Shil’nikov, and Turaev: Dynamical phenomena
In the case ofs-th order tangency, the rescaled mapTk is
close to the one-dimensional map~see lemma 2 in Section
IV !

ȳ5E01E1y1...1Es21y
s211ys111o~ys11!, ~7!

where E0 ,E1 ,...,Es21 are rescaled parameters
«0 ,«1 ,...,«s21 from ~1! and they may take arbitrary finite
values. Particularly, ifE05E25...5Es2150,E1561, then
map~7! has a fixed point with the multiplier61 and with the
order of degeneracy which can be made arbitrarily high b
increasing the value ofs. SinceTk is close to map~7! it also
has a highly degenerate fixed point forE0 ,E2 ,...,Es21 close
to zero andE1 close to61.

Thus, by a small perturbation of a system with a ho
moclinic tangency of a large order, one can achieve a pe
odic orbit of a high order of degeneracy to arise. Since sy
tems with homoclinic tangencies of any order are dense
the Newhouse regions~theorem 2!, it follows that systems
with arbitrarily degenerate periodic orbits are also den
there.

We see again that no finite number of control paramete
is sufficient for the complete study of the Newhouse region
now, for the study of the bifurcations of periodic orbits. In
other words, from the point of view of the approach trad
tional to the bifurcation theory, any dynamical model~a
finite-parameter family of dynamical systems! is, in terms of
Refs. 30, 31, bad in the Newhouse regions. Apparently, he
it is necessary to give up the ideology of complete descri
tion and to restrict oneself to the calculation of some avera
quantities and to the study of certain general properties.

In particular, such a general property is that in the New
house regions there exist non-trivial hyperbolic sets; i.e
there is always a countable number of saddle periodic orb
and structurally stable Poincare´ homoclinic orbits.

Another important feature of systems in the Newhous
regions is the absence of complete self-similarity. Notice th
the homoclinic orbits of high orders of tangency that w
obtained by perturbations of the mapf make quite a large
number of rounds alongG ~for instance, the cubic tangency
can be formed after three rounds!. It is clear that the higher
the order of tangency, the more rounds are required to get
Near the homoclinic tangencies of high orders there appe
the maps described by formula~7!. Since the first return map
near such a tangency corresponds, at the same time, to m
rounds along the original homoclinic orbitG, maps close to
the mapf exhibit dynamics which is described on large tim
scales by maps~7!: the larger the number of rounds, the
larger the value ofs. The maps given by formula~7! are
completely different for different values ofs. Thus, systems
belonging to the Newhouse regions may show complete
different qualitative behavior on different time scales. Not
that nothing similar happens in hyperbolic systems where t
number of essential scales is always finite.

One more important feature is the coexistence of orb
of different topological types. If we consider a structurall
stable Poincare´ homoclinic orbit, then we see that all peri-
odic orbits lying in a small neighborhood of it have a sadd
type.25,26 On the contrary, near a structurally unstable ho
CHAOS, Vol. 6
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moclinic orbit there may exist both structurally unstable a
attractive periodic orbits in addition to saddle ones. Nam
the following theorem is valid.

Theorem 4 ~Ref. 33!: Let the product of the multipliers
of O be less than one in absolute value:ulgu,1. Then for a
general one-parameter family fm there exists a sequence
intervalsd i accumulating atm50, such that atm P d i the
map fm possesses an attractive periodic orbit in a sm
neighborhood ofG and, atm belonging to the boundary o
d i , the map has a structurally unstable periodic orbit.

If ulgu.1, then the analogous result is also valid: t
map has here a repelling periodic orbit~a source! for m
P d i . Theorems 4 and 1 imply the following result.

Theorem 5: If ulgu,1, then, for a general one
parameter family fm , in the Newhouse regionsD i , param-
eter values are dense for which the map, in addition to
countable number of saddle periodic orbits, also possess
countable number of attractive (repelling ifulgu.1) periodic
orbits.

In its initial weaker formulation~not for intervals in one-
parameter families but for regions in the space of dynam
systems! this theorem was proved in Ref. 34. The proof
the one-parameter version can be obtained, for instanc
the following way. Letulgu,1 andm0 P D i . By theorem 1,
arbitrarily close tom0 there existsm1 P D i such thatO has a
quadratic homoclinic tangency atm5m1 . By theorem 4,
nearm5m1 there exists a small intervald1,D i such that
f m has an attractive periodic orbit atm P d1 . Again, since
d1,D i , there exists a valuem2 P d1 such thatO has a qua-
dratic tangency atm5m2 and some new intervald2,d1
such that f m has one more attractive periodic orbit atm
P d2 . Repeating the arguments, we obtain, in arbitrary clo
ness of the given valuem0 , the system of embedded inte
valsd1.d2.... such thatf m has at leastj attractive periodic
orbits atm P dj . The intersection of alldj is non-empty. It
contains at least one pointm* and the mapf m has a count-
able number of attractive periodic orbits atm5m* .

Theorems 4 and 5 provide a theoretical basis for the
that most presently known strange attractors contain att
tive periodic orbits within. As a rule, the attractive period
orbits in a quasiattractor have very long periods and nar
basins of attraction, and they are hard to observe in app
problems because of the presence of noise. However, in
space of the parameters of the model there can exist reg
where individual, relatively short-period attractive period
orbits can be seen; these regions are calledwindows of sta-
bility.

III. MAIN RESULTS: THE MULTIDIMENSIONAL CASE

Theorems 2 and 3 can be extended onto the general
tidimensional case.35 Thus, the conclusion on impossibilit
of a finite-parameter complete description is also valid
this case. However, the situation connected with the coe
ence of periodic orbits of different topological types is co
siderably more complicated. Here, the windows of stabi
may correspond to invariant tori and even chaotic attract
Moreover, not only saddle and attractive~or saddle and re-
, No. 1, 1996
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20 Gonchenko, Shil’nikov, and Turaev: Dynamical phenomena
pelling! periodic orbits may exist simultaneously, but sadd
periodic orbits with the different numbers of positive
Lyapunov exponents may also coexist. These statements
based on the results represented below.

Let f be a multidimensional diffeomorphism with a
structurally unstable homoclinic orbitG of some saddle fixed
pointO. We are interested in the structure of the setN of all
orbits which lie entirely in a small neighborhoodU of the set
OøG.

Suppose the map satisfies some genericity condition35

~the tangency is quadratic,G does not lie inWss andWuu,
etc.!. Let l1 ,...,lm , g1 ,...,gn be the multipliers ofO,
ugnu>...>ug1u. 1.ul1u>...>ulmu. We use the notation
l5ul1u, g5ug1u. The multipliersl i , g j nearest to the unit
circle ~i.e., those for whichul i u5l, ug j u5g) we call leading
and the rest we callnon-leading. The coordinates in a neigh-
borhood ofO that correspond to the characteristic direction
of these multipliers we call, respectively, leading and no
leading.

We assume that the leading multipliers are simple. W
denote the number of leading stable multipliers byps and the
number of leading unstable multipliers bypu . Accordingly,
we assign the type (ps ,pu) to the system. The four following
cases are possible here:

@(1,1)# l1 andg1 are real andl.ul2u, g,ug2u;
@(2,1)# l15l̄25leiw, g1 is real andl.ul3u, g,ug2u;
@(1,2)# l1 is real, g15ḡ25geic, and l.ul2u,

g,ug3u;
@(2,2)# l15l̄25leiw, g15ḡ25geic, and l.ul3u,

g,ug3u.
The following reduction theorem shows that behavior o

trajectories of the mapf and all nearby maps is determined
first of all, by dynamics in the leading coordinates.

Theorem 6 ~Ref. 35!: Under generic conditions, for all
systems close to f there exists an invarian
(ps1pu)-dimensional C

1-manifoldMc possessing the fol-
lowing properties:

FIG. 6. An example of the ‘‘center’’ manifoldMc ~the union ofM loc
c with

the dashed regions outsideM loc
c in the figure! for the three-dimensional case

where the multipliersl2 , l1 and g of the fixed point are such that
0,l2,l1, 1,g.
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~1! the setN of all orbits that lie entirely in U is contained
in Mc,

~2! Mc is tangent to the leading directions at the point O,
~3! along the stable and unstable non-leading directions

there is, respectively, exponential contraction and expan
sion, which are stronger than those along directions tan-
gential toMc.

Figure 6 represents an example of the manifoldMc for
the three-dimensional case where the multipliers ofO are
such that 0,l2,l1, 1,g1 . In the terms that we have
introduced, this is case (1,1) wherel1 andg1 are the leading
multipliers andl2 is the non-leading stable multiplier. The
point O is the fixed point of the stable node type for the
restriction of the mapf ontoWs. The non-leading manifold
Wss exists inWs such that iterations of any point ofWss tend
to O like a geometric progression with the ratiol2 . The
orbits lying inWs\Wss tend toO along the leading eigen-
direction and the distance toO decreases as a geometric
progression with the ratiol1 .

In this case, in a small neighborhood ofO there exist36

two-dimensional invariantC1-manifolds, each of which con-
tainsWloc

u and intersectsWs at a curve tangential to the lead-
ing direction. According to theorem 6, at least one of them
M loc

c , can be extended along the orbits off , forming a glo-

FIG. 7. The exceptional cases where the smooth invariant manifold does n
exist: ~a! the orbit of tangency belongs toWss; ~b! the vector that is tangent
to Ws andWu at M1 is parallel to the non-leading eigendirection;~c! the
image of the surfacePc

2 is tangent toWs atM1.
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21Gonchenko, Shil’nikov, and Turaev: Dynamical phenomena
bal attractive invariant manifoldMc which containsG. The
manifoldMc is attractive in the sense that any point whic
does not belong toMc leaves the small neighborhoodU of
G with the iterations of the inverse mapf21 . This implies
thatMc contains the whole setN of orbits lying inU en-
tirely. The invariance ofMc means that if one takes a sma
areaPc

2,M loc
c containing the pointM2 of G and iterates

this areak times, it then returns in the neighborhood ofO for
somek, so thatf k(Pc

2),M loc
c ~Fig. 6!.

This occurs if the mapf satisfies some conditions o
genericity. The excluded cases where the smooth invari
manifold does not exist are shown on Fig. 7: the homoclin
orbit G belongs toWss ~Fig. 7a!; the vector tangential to
Wu at M1 is parallel to the non-leading eigenvector~Fig.
7b!; the surfacef k(Pc

2) is tangent toWs atM1 ~Fig. 7c!.
The reduction theorem immediately give us essential

strictions on possible types of orbits of the setN for the map
f itself and for all nearby maps. Thus, since there is a stro
exponential contraction along the stable non-leading dire
tions and the number of such linearly independent directio
is (m2ps), orbits ofN must have at least (m2ps) negative
Lyapunov exponents. Analogously, the strong expansio
along the non-leading unstable directions indicates that orb
of N must have at least (n2pu) positive Lyapunov expo-
nents. This means that dimensions of stable and unsta
manifolds of any periodic orbit inU may not be less than
(m2ps) and (n2pu) respectively. In particular, ifO has
unstable non-leading multipliers~i.e., pu,n), then neitherf
nor any nearby map has attractive periodic orbits inU.

In general, these restrictions are not final. More prec
estimates for the number of positive and negative Lyapun
exponents can be found if one considers th
(ps1pu)-dimensional map which is the restriction of the in
tial map ontoMc.

Let us introduce the quantityD which is equal to the
absolute value of the product of all leading multipliers, i.e
D5lpsgpu. Note thatD is the Jacobian of the restriction o
f ontoMc, calculated at the pointO. If D,1, then the map
f uMc contracts (ps1pu)-dimensional volumes exponentially
nearO, and ifD.1, it then expands the volumes. Since an
orbit that lies inU entirely spends most of the time in a sma
neighborhood of O, the map f uMc contracts
(ps1pu)-dimensional volumes in a neighborhood of the o
bit atD,1 and it expands the volumes atD.1. Therefore,
any orbit ofN has at least one negative Lyapunov expone
at D,1 and it has at least one positive Lyapunov expone
at D.1.

To summarize what is said above, we arrive at the fo
lowing result.

Theorem 7 ~Ref. 35!: Let f be a map with a homoclinic
tangency in a general position. If the saddle fixed point
has unstable non-leading multipliers(pu,n) or if D.1,
then neither f nor maps close to it have attractive period
orbits in a small neighborhood of OøG.

A statement that is, in a sense, opposite to this theore
is also valid.

Theorem 8 ~Ref. 35!: If O has no unstable non-leading
CHAOS, Vol. 6
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multipliers (pu5n) and if D,1, then systems with infinitely
many attractive periodic orbits are dense in the Newhouse
regionsD i .

This theorem does not follow from the reduction theo-
rem. Here, the proof is based on the study of the first return
mapTk of some small strips close enough toM1. Note that
the mapsTk may be different in different situations. Namely,
let O do not have unstable non-leading multipliers and let
D,1. Then, in the case (ps ,pu)5(1,1), the mapTk is close
to the one-dimensional map~as in the two-dimensional case;
see the previous section!

ȳ5M2y2 ~8!

in some rescaled coordinates. The same formula holds in th
case (ps ,pu)5(2,1) atlg,1. In both cases only one vari-
able is relevant and all the others are suppressed by stron
contraction.

In the case (ps ,pu)5(2,1) atlg.1, the rescaled map
Tk is close to the He´non map

x̄5y, ȳ5M2y22Bx, ~9!

at an appropriate choice ofs.
In the cases (ps ,pu)5(1,2) and (ps ,pu)5(2,2) at

lg2,1, the rescaled mapTk is close, for the appropriately
chosens, to the map

x̄5y, ȳ5M2x22Cy, ~10!

and, in the case (ps ,pu)5(2,2) atlg2.1, it is close to the
map

x̄5y, ȳ5z,z̄5M2y22Cz2Bx, ~11!

whereM is the rescaled splitting parameterm, andB andC
are some trigonometric functions ofkw andkc respectively.
At k large enough, parametersM , B andC may take arbi-
trary finite values.

The last two maps have not been studied sufficiently,
unlike the parabola map~8! and the He´non map~9!. How-
ever, the bifurcation analysis of the fixed points of these
maps is comparatively simple. Thus, for each of maps~8!-
~11! one can easily find parameter values such that there
exists an attractive fixed point.

Thus, an analogue of theorem 4 is valid:if there are no
unstable non-leading multipliers and if D,1, then a small
perturbation of f can provide the appearance of an attractive
periodic orbit. Unlike the two-dimensional case, dependent
on the situation, not only the splitting parameterm may be
required here, but also there may be needed the perturbatio
of valuesw andc which control the variation ofB andC
respectively.

By using the construction with the system of embedded
disks~analogous to that applied in the two-dimensional case
at the proof of theorem 5!, the theorem on infinitely many
attractive periodic orbits~theorem 8! can be obtained imme-
diately for the Newhouse regionsD i in corresponding one-,
two- or three-parameter families.

Actually, the analysis of fixed points of maps~8!-~11!
allows us to establish much more than the existence of at
tractive periodic orbits. Thus, for maps~9! and ~10! there
, No. 1, 1996
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22 Gonchenko, Shil’nikov, and Turaev: Dynamical phenomena
exist the values ofM and, respectively,B or C at which the
map has a fixed point with a pair of multipliers equal to o
in absolute value, while map~11! has a fixed point with three
multipliers equal to one in absolute value for someM , B and
C. If we select now the three cases~recall thatD5lpsgpu is
smaller than one!:

~11! (ps ,pu)5(1,1), or (ps ,pu)5(2,1) andlg,1,

~21! (ps ,pu)5(2,1) and lg.1, or (ps ,pu)5(1,2), or
(ps ,pu)5(2,2) andlg2,1,

~31! (ps ,pu)5(2,2) andlg2.1,

then we arrive at the following result.
Theorem 9 ~Ref. 35!: Suppose that D,1. Then, in case

( l1), l51,2,3, systems having periodic orbits with l mult
pliers equal to one in absolute value are dense in the Ne
house regionsD i .

This theorem has quite non-trivial consequences. N
that an invariant curve can be born from the points with tw
unit multipliers ~an invariant torus, if we consider a flow!
and chaotic attractors can be formed in the case of th
multipliers equal to one in absolute value. For instance,
attractor similar to the Lorenz attractor can be born at lo
bifurcations of a fixed point with two multipliers equal to21
and one equal to11, and a spiral attractor can be born in th
case of three multipliers equal to21 ~see Refs. 37, 38 where
an analysis of corresponding normal forms is carried out!.

Using the construction with embedded disks again,
find thatsystems with infinitely many invariant tori and sy
tems with infinitely many coexisting chaotic attractors a
dense in the Newhouse regions in cases(21) and (31) re-
spectively.

To conclude, we consider the question on the coex
ence of saddle periodic orbits with different numbers of po
tive Lyapunov exponents.

Theorem 10 ~Ref. 35!: Let D,1 and let O have no
unstable non-leading multipliers.@The contribution of the
unstable non-leading multipliers is trivial: instead of ‘‘j mul-
tipliers greater than one’’ we should write ‘‘(n2pu1 j ) mul-
tipliers...’’; the caseD.1 is reduced to the caseD,1 by
considering the mapf21 instead off , so everywhere through
the theorem the words ‘‘greater than one’’ should be repla
by ‘‘smaller than’’ in this case.# Then, in case( l1), systems
that for any j50,...,l have a countable number of periodi
orbits with j multipliers greater than one in absolute valu
are dense in the Newhouse regionsD i . At the same time, no
map close to f can have, in a small neighborhood U
OøG, a periodic orbit with more than l multipliers greate
than one in absolute value.

The second part of the theorem follows from the eas
verified fact that, in case (l1), the mapf ~and any nearby
map! contracts exponentially (l11)-dimensional volumes
onMc in a small neighborhood ofO, and hence, in a smal
neighborhood of any orbit lying inU entirely. Therefore, any
such orbit cannot have more thanl positive Lyapunov expo-
nents.

The first part of the theorem is proved by the line
analysis of fixed points of maps~8!-~11!: for any of these
CHAOS, Vol. 6
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maps, regions of parameter values can be easily found wh
the map has a fixed point withj multipliers greater than one
in absolute value (0< j< l ). This implies that, for any
j50,...,l , a periodic orbit withj positive Lyapunov expo-
nents can arise at an arbitrarily small perturbation off in a
correspondingl -parameter family. Using the construction
with embedded disks again, we find that the parameter v
ues are dense in the Newhouse regionsD i at which the map
has now infinitely many such orbits simultaneously for ea
j50,...,l .

Theorem 10 has a direct relation to the problem ofhy-
perchaos. Usually, those attractors are called hyperchao
for which more than one positive Lyapunov exponent
found. As we see, in contrast with hyperbolic systems, t
number of positive Lyapunov exponents may vary for diffe
ent orbits if the system belongs to a Newhouse region. It
not clear, therefore, in what sense the number of posit
Lyapunov exponents can be considered as characteristic
the system as a whole. At the same time, consideratio
based on estimates of contraction and expansion of volum
are still effective here: the quantityl in theorem 10 is none
other than the integral part of the Lyapunov dimension ca
culated at the pointO by the Kaplan–Yorke formula39 for the
restriction of the mapf onto the ‘‘center’’ ~or ‘‘inertial’’ !
manifoldMc.

IV. GEOMETRIC CONSTRUCTIONS AND
CALCULATIONS

We discuss here in greater detail the geometric constr
tions that determine the dynamics near homoclinic tange
cies. First, we consider the two-dimensional case. Name
we consider aCr-smooth (r>3) two-dimensional diffeo-
morphismf which has a saddle fixed pointO with multipli-
ersl andg where 0,ulu,1, ugu.1. We consider the case
whereulgu,1. Suppose the stable and unstable manifolds
O have a quadratic tangency at the points of the homoclin
orbit G.

FIG. 8. The neighborhoodU of the contourOøG ~bold points in the figure!
is a union of a small diskU0 containingO and of a finite number of small
neighborhoods of that points ofG which lie outsideU0 .
, No. 1, 1996
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23Gonchenko, Shil’nikov, and Turaev: Dynamical phenomena
Let U be a small neighborhood of the setOøG. The
neighborhoodU is the union of a small diskU0 containing
O and of a finite number of small disks surrounding th
points ofG which are located outsideU0 ~Fig. 8!. We denote
by N the set of orbits of the mapf that lie entirely inU. Let
T0 be the restriction off ontoU0 ~it is calledthe local map!.
Note that the mapT0 in someC

r21-coordinates (x,y) can be
written in the form40,41

x̄5lx1 f ~x,y!x2y, ȳ5gy1g~x,y!xy2. ~12!

By ~12!, the equations of the local stable manifoldWloc
s

and local unstable manifoldWloc
u arey50 andx50, respec-

tively. The representation~12! is convenient in that in these
coordinates the mapT0

k for any sufficiently largek is linear
in the lowest order. Specifically, we have the following
representation41 of the mapT0

k :(x0 ,y0)°(xk ,yk)

xk5lkx01ulukugu2kjk~x0 ,yk!,
~13!

y05g2kyk1ugu22khk~x0 ,yk!,

wherejk andhk are functions uniformly bounded over allk
along with their derivatives up to the order (r22).

Let M1(x1,0) andM2(0,y2) be a pair of points ofG
which lie in U0 and belong toWloc

s andWloc
u respectively.

Without loss of generality we can assumex1.0 and
y2.0. LetP1 andP2 be sufficiently small neighborhoods
of the homoclinic points M1 and M2 such that
T0(P

1)ùP150” and T0(P
2)ùP250” . Evidently, there

exists an integerq such thatf q(M2)5M1. We denote the
map f q:P2→P1 as T1 ~it is called the global map!. The
mapT1 can obviously be written in the form

FIG. 9. This figure illustrates the construction of the stripssk
0 , lying on

P1, such thatsk
0 is the domain of definition of the mapT0

k :P1→P2. The
points onP1 that lie inP2 afterk iterations of the mapT0 , belong to the
setT0

2k(P2)ùP1. The neighborhoodP2 is contracted in the vertical di-
rection by a factor ofg21 and expanded in the horizontal direction by a
factor of l21 under the action of the mapT0

21 , and moreover,
T0

21(P2)ùP250” . Correspondingly, the setT0
2k(P2) is a narrow rectan-

gular area expanded along thex axis and displaced from it by a distance of
the order ofg2k. Moreover, the rectanglesT0

2k(P2) andT0
2(k11)(P2) do

not intersect. For sufficiently largek, the intersection ofT0
2(k)(P2) with

P1 is a stripsk
0 as in the figure. Ask→`, the stripssk

0 accumulate on the
segmentWsùP1.
CHAOS, Vol. 6
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x̄2x15ax1b~y2y2!1...,
~14!

ȳ5cx1d~y2y2!21...,

wherebcÞ 0 sinceT1 is a diffeomorphism, andd Þ 0 since
the tangency is quadratic.

Note that the orbits ofN must intersect the neighbor-
hoodsP1 and P2 ~otherwise, these orbits would be far
from G). However, not all orbits that start inP1 arrive in
P2. The set of the points whose orbits get intoP2 form a
countable number of stripssk

05P1ùT0
2kP2 that accumu-

late onWloc
s . The way of constructing these strips is obvious

from Fig. 9. In turn, the images of the stripssk
0 under the

mapsT0
k give onP2 a sequence of vertical stripssk

1 that
accumulate onWloc

u ~Fig. 10!.
The images of the stripssk

1 under the mapT1 have the
shape of horseshoes, accumulating on the ‘‘parabola

FIG. 10. The range of the mapT0
k :P1→Pi2 is the vertical stripsk

1 .

FIG. 11. The images of the stripssk
1 under the mapT1 have a shape of

horseshoes which accumulate onT1Wloc
u ask→`.
, No. 1, 1996
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24 Gonchenko, Shil’nikov, and Turaev: Dynamical phenomena
T1Wloc
u ~Fig. 11!. It is clear that the orbits ofN must intersect

P1 at the points of intersection of the horseshoesT1s j
1 and

the stripss i
0 . Therefore, the structure of the setN depends

strongly on the geometric properties of the intersection of t
horseshoes and the strips.

To be specific, we shall assume thatl.0 and g.0.
Then depending on the signs ofc andd, four different cases
of mutual arrangement of the manifoldsWloc

s andT1Wloc
u are

FIG. 12. The four different cases of homoclinic tangencies. These ca
differ not only in the mutual arrangement of the stable and unstable ma
folds @tangent from below:~a!, and ~b!; tangent from above:~c!, and ~d!#,
but also in that how the shaded semi-neighborhood of the pointM2 is
mapped into the neighborhood of the pointM1 under the action of the
global mapT1 . If l.0 andg.0, these four cases are distinguished by th
combinations of signs of the parametersc andd of the mapT1 .

FIG. 13. Basic elements of the geometry of the intersection of a strips i
0 and

a horseshoeT1(s j
1) for the caseulgu,1. In the case of tangency from

below @~a!, and~b!# the horseshoeT1(s i
1) lies below ‘‘its’’ strip s i

0 . In this
case eitherT1(s i

1) intersects the stripss j
0 only if j@ i ~the case

c.0,d,0) or it does not intersect any strips at all~the casec,0,d,0). For
this reason, the structure of the setN is trivial in this case:N5OøG. In the
case of tangency from above@~c!, and~d!# the horseshoeT1(s i

1) intersects
‘‘its’’ strip s i

0) regularly, thereby forming the geometric configuration of th
Smale’s horseshoe example. Just from this fact it is possible to infer that
structure of the setN is non-trivial here. The difference in the casesc
, 0, d . 0 andc.0, d.0 is that the intersection of any horseshoe with an
strip is regular in the first case, while in the latter case there can be n
regular as well as regular intersections. As a result, all the orbits of the seN
exceptG can be shown to be of the saddle type in the casec , 0, d . 0,
whereas in the casec.0,d.0 there can be structurally unstable and attra
tive periodic orbits inN ~moreover, systems with arbitrarily degenerate p
riodic and homoclinic orbits are dense in the set of systems with homocli
tangencies of this type!.
CHAOS, Vol. 6
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possible33 ~Fig. 12!. If T1Wloc
u is tangent toWloc

s from below
(d,0) ~Figs. 12a,b!, then the setN has a trivial structure:
N5$O,G%.33 This is related to the fact that here the interse
tion T1s i

1ùs j
0 can be non-empty only forj. i , since the

strips j
0 lies at a distance of the order ofg2 j fromWloc

s , and
the top of the stripT1s i

1 lies at a distance of the order of
l i!g2 i from it ~Fig. 13a!. Note that in the casec,0 and
d,0 the stripsT1s i

1 ands j
0 lie on different sides ofWloc

s for
any i and j , and therefore,T1s i

1ùs j
050” in this case~Fig.

13b!.
If T1Wloc

u is tangent toWloc
s from above (d.0) ~Figs.

12c,d!, then the setN will now contain nontrivial hyperbolic
subsets. Ifc,0 andd.0, then for anyi and j the intersec-
tion of T1s i

1 with s j
0 is regular, i.e., it consists of two con-

nected components~Fig. 13c!. In this case the setN can be
shown33 to be in one-to-one correspondence with the facto
system of the Bernoulli shift with three-symbols$0,1,2%
which is obtained by identifying the two homoclinic orbits
(...,0,...,0,1,0,...,0,...) and (...,0,...,0,2,0,...,0,...). Here,
all orbits ofN\G are of the saddle type.

In the casec.0, d.0 the setN also contains non-trivial
hyperbolic subsets33,42 but, in general, these subsets do no
exhaust the setN. The reason is that there, besides regul
intersections of the horseshoes and the strips, there may
be non-regular intersections~Fig. 13d!. The existence of at-
tractive and structurally unstable orbits is associated with t
latter.43,44

Below, to be specific we consider only the casec.0,
d.0. To describe maps close tof we must introduce the
splitting parameterm: whenm,0, the parabolaT1Wloc

u in-
tersectsWloc

s at two points; whenm50, the parabola
T1Wloc

u is tangent toWloc
s at one point, and whenm.0 there

is no intersection. It is clear that if the bottom of the parabo
descends sufficiently low~large and negativem), then each
horseshoe intersects each strip. In this case, the setNm is a
hyperbolic set similar to the invariant set in the Smale hors
shoe. However, ifm is sufficiently large and positive, then
the horseshoes and the strips do not intersect at all, and a
the orbits exceptO will escape fromU.

The main question is what happens when the parame
m varies from the large negative to the large positive value
First of all, it is necessary to study the structure of the bifu
cation set corresponding to one strip, that is, to study t
bifurcations in the family of the first return maps
Tk(m)[T1T0

k :sk
0→sk

1 . The following result is valid.

Lemma 1: The map Tk(m) can be brought to the form

x̄5y1O~lkgk1g2k!,
~15!

ȳ5M2y21O~lkgk1g2k!,

by means of a linear transformation of the coordinates an
the parameter; here the rescaled splitting paramete
M52dg2k(m2g2ky21...) may take arbitrary finite val-
ues for sufficiently large k.

Proof. Take a point (x0 ,y0) P sk
0 . Let (xk ,yk)

5T0
k(x0 ,y0), (x̄0 ,ȳ0)5T1(xk ,yk)[Tk(x0 ,y0), (x̄k ,ȳk)
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25Gonchenko, Shil’nikov, and Turaev: Dynamical phenomena
5T0
k( x̄0 ,ȳ0). By ~12!, ~13!, the mapTk(m) is written in the

form

x̄2x15alkx~11...!1b~y2y2!1... ,
~16!

g2kȳ~11g2khk~ x̄,ȳ!!5m1clkx~11...!

1d~y2y2!21... ,

where we use the notationx5x0 , x̄5 x̄0 , y5yk , ȳ5 ȳk .
With the shift of the origin:y→y1y2, x→x1x1, we

write the mapTk(m) in the form

x̄5by1O~lk!1O~y2!,
~17!

g2kȳ1g22kO~ ȳ!5M11dy21lkO~ uxu1uyu!1O~y3!,

where

M15m1clkx12g2ky21... . ~18!

Now, rescaling the variables:

x→2
b

d
g2kx,y→2

1

d
g2ky

brings equations~17! to form ~15! whereM52dg2kM1 .
This completes the proof of the lemma.

Map ~15! is close to the one-dimensional parabola m

ȳ5M2y2 ~19!

whose bifurcations have been well studied, so it is poss
to recover the bifurcation picture for the initial mapTk . For
the parabola map, the bifurcation set is contained in the
terval @2 1

4,2] of values ofM : at M52 1
4 there appears a

fixed point with the multiplier equal to11, this fixed point is
attractive atM P (2 1

4,
3
4) and it undergoes a period-doublin

bifurcation atM5 3
4; the cascade of period-doubling bifurca

tions lead to chaotic dynamics which alternates with stabi
windows and the bifurcations stop atM52 when the restric-

FIG. 14. The bifurcation interval@mk
11 ,mk

hs# that corresponds to the se
quence of bifurcations in the development of the Smale horseshoe on
strip sk

0 , beginning with the first bifurcation of the generation of a sadd
node fixed point atm5mk

11 and ending with the last one corresponding to
homoclinic tangency form5mk

hs , after which the horseshoe appears.
CHAOS, Vol. 6
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tion of the map onto the non-wandering set becomes conj
gate to the Bernoulli shift of two symbols and it no longer
bifurcates asM increases.

Thanks to lemma 1, similar bifurcations take place fo
the mapTk ~see Fig. 14!. The map has an attractive fixed
pointOk atm P (mk

11 ,mk
21) which arises at the saddle-node

bifurcation atm5mk
11 and loses stability atm5mk

21) at the
period-doubling bifurcation. Here

mk
115g2ky22clkx11

1

4d
g22k1...,

mk
215g2ky22clkx12

3

4d
g22k1... .

Note that we have found the intervals where the mapfm

possesses the attractive single-round periodic orbit and this
the main element of the proof of theorem 4 in Section II.

The bifurcation set of the mapTk is contained in the
interval @mk

11 ,mk
hs# where

the
e-
a

FIG. 15. A homoclinic tangency, the last in the sequence of bifurcations i
the development of the Smale’s horseshoe~this is the tangency correspond-
ing to the case shown in the figure 13c!.

FIG. 16. This figure shows how new heteroclinic or homoclinic tangencie
are obtained. Here, on the stripss i

0 and s j
0 there are already developed

Smale’s horseshoes for the mapsTi andTj respectively, but the upper horse-
shoe intersects the lower strip ‘‘non-regularly.’’ In~a!, the manifold
Wu(Oi) is tangent toW

s(Oj ). In ~b!, a pieceWu(Oi)ùs j
0 of the unstable

manifold of the pointOi lies just slightly above the stable manifold of the
point Oj and the curveTj (W

u(Oi)ùs j
0) which is a part of the manifold

Wu(Oi) is tangent toWs(Oi); i.e., a homoclinic tangency of the invariant
manifolds ofOi takes place.
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26 Gonchenko, Shil’nikov, and Turaev: Dynamical phenomena
mk
hs5g2ky22clkx12

2

d
g22k1... .

At m5mk
hs the fixed point ofTk has the last homoclinic

tangency~Fig. 15! and an invariant set similar to those of th
Smale’s horseshoe example arises after this bifurcation. N
that these bifurcational intervals do not intersect each ot
for different k.

Clearly, in addition to the orbits that intersectP1 each
time in the same strip, the mapfm also has orbits that jump
among the strips with various indices. The bifurcation inte
vals corresponding to these orbits can now overlap. This
the case already for orbits that jump among two stripss i

0 ,

FIG. 17. The bi-horseshoe used for the proof of theorem 1. In this situati
the invariant set of the mapTi ons i

0 is the developed Smale horseshoe. Th
mapTj on s j

0 is close to the moment of the last tangency; i.e., the value
the parameterm is close tom j

hs . At this moment unstable whiskers of the
hyperbolic set ons i

0 touch the stable whiskers of some hyperbolic subset
s j
0 .

FIG. 18. The geometric construction by which it is possible to obtain cub
tangencies. Three horseshoes are shown, whereWu(Oi) andW

s(Oj ), as
well asWu(Oj ) andW

s(Ok) are tangent.
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s j
0 and their images, the horseshoesTis i

0 andTjs j
0 . Figure

16 shows the case where there exist completely develope
Smale horseshoes ons i

0 and s j
0 but the upper horseshoe

intersects the lower strip in a ‘‘non-regular’’ manner, and
new structurally unstable orbits can arise as a result. In pa
ticular, using this construction, one can obtain new hetero
clinic ~Fig. 16a! or homoclinic~Fig. 16b! tangencies. More-
over, there also exist here periodic orbits ‘‘jumping’’ from
one strip to another~they correspond to the fixed points of
the double-round return mapTjTi :s i

0→s i
0). The regions of

stability of these double-round periodic orbits can overlap
for variousi and j , even a countable number of these regions
may have common points. In particular, in the set of maps
with the homoclinic tangency~in the casec.0, d.0! the
maps with a countable number of attractive periodic orbits o
this type are dense.43,44

The geometric construction with two horseshoes was
also a basic element of the proof of theorem 1. Figure 17
shows the bi-horseshoe used for the proof. In this situation
the invariant set of the mapTi on s i

0 is a completely devel-
oped Smale horseshoe. The mapTj on s j

0 is close to the
moment of the last tangency; i.e., the value of the paramete
m is close tom j

hs . At this moment unstable whiskers of the

on,
e
of

on

ic

FIG. 19. This figure shows how, from a contour with two quadratic hetero-
clinic tangencies~a!, one can obtain a cubic tangency~d!. First, by a small
perturbation we makeWu(Oi) intersectW

s(Oj ) transversely and make some
piece of the manifoldWu(Oi) lie just slightly aboveWs(Ok) ~b!. Then we
makeWu(Oi) intersectW

s(Ok) in four points~c!. There is a special path~e!
from ~b! to ~c! on which a cubic tangency of the manifoldsWu(Oi) and
Ws(Ok) ~d! takes place.
6, No. 1, 1996

 license or copyright; see http://chaos.aip.org/about/rights_and_permissions



-
-
f
e-
s.
le
al

-

le

27Gonchenko, Shil’nikov, and Turaev: Dynamical phenomena
hyperbolic set that lies ins i
0 are tangent, at points of some

smooth curve, to stable whiskers of the hyperbolic set th
lies in s j

0 . The latter, in intersection with the curve of tan
gency, form a specific~thick! Cantor set, which, as New-
house has shown, is the reason for the non-removable na
of the tangency.

If we use not two, but a larger number of strips, then w
can obtain degenerate homoclinic tangencies and perio
orbits. In particular, when three horseshoes are used, th
cubic tangencies can be formed. Figure 18 shows thr
horseshoes whereWu(Oi) andW

s(Oj ) are quadratically tan-
gent, as areWu(Oj ) andW

s(Ok). The next figure~Fig. 19!
illustrates how from one of these structurally unstable co
tours one can, by a small perturbation, obtain a cubic ta
gency of the manifoldsWu(Oi) andW

s(Ok).
Taking into account a larger number of strips is a qui

complicated problem. We bypass the difficulties if, instead
calculating the multiround return map, note that due to the
rem 2, homoclinic tangencies of high orders can appe
when a piece ofWu makes many rounds along the initia
homoclinic orbitG. Therefore, the multiround return maps
can presumably be modelled by the first return maps ne
orbits of highly degenerate tangencies.

These maps are easily calculated. Indeed, let a tw
dimensional diffeomorphismf have an orbit of homoclinic
tangency of some orders. In this case the local mapT0 still
has the form given by~12!, ~13!; the global map can be
written in the form

x̄2x15ax1b~y2y2!1... ,
~20!

ȳ5cx1d~y2y2!s111... ,

where, in the first equation, the dots stand for the seco
~and more! order terms and, in the second equation, for term
of the ordero(uxu1uy2y2us11).

Consider ans-parameter familyf « , «5(«0 ,...,«s21),
of maps close tof ( f 0[ f ) where parameters« are chosen
such that they provide a general unfolding of the given ta
gency betweenWu andWs @see formula~1!#. In this case the
global map takes the form

x̄2x15ax1b~y2y2!1... ,
~21!

ȳ5cx1«01«1~y2y2!1...1«s21~y2y2!s21

1d~y2y2!s111... .

Let us now consider the first return mapTk(«). The
following lemma shows that it is close to a polynomial one
dimensional map.

Lemma 2: The map Tk can be brought to the form

x̄5y1O~lkgk1g2k/s!,
~22!

ȳ5E01E1y1...1Es21y
s211dys11

1O~lkgk1g2k/s!

by a linear transformation of the coordinates and th
parameters. Here E05gk(111/s)(«02g2ky21...),
Ei5gkg2 (k/s) ( i21)« i .
CHAOS, Vol. 6
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Proof. By ~13!, ~21!, the mapTk is written in the follow-
ing form ~see the proof of lemma 1!

x̄2x15alkx~11...!1b~y2y2!1... ,

g2kȳ~11g2khk~ x̄,ȳ!!

5clkx~11...!1«01«1~y2y2!

1...1«s21~y2y2!s211d~y2y2!s111... .

By the shift of the origin:x→x1x1, y→y1y2, this map is
brought to the form

x̄5by1O~lk!1O~y2!,

g2kȳ1g22kO~ ȳ!5~«02g2ky21clkx11...!1«1y

1...1«s21y
s211dys111O~ys12!

1lkO~ uxu1uyu! .

If we rescale the variables and the parameters as follows

x→bg2k/sx,y→g2k/sy,

~«02g2ky21clkx11...!→g2k~111/s!E0 ,

« i→g2kg~k/s! ~ i21!Ei ,

then the map takes form~22!. The lemma is proved.
Returning to the initial quadratic homoclinic tangency,

we see that, for large numbers of rounds along the ho
moclinic orbit, the multiround return maps are close to arbi
trary one-dimensional polynomial maps in some regions o
the parameter space and the degree of the polynomials b
comes arbitrarily large when the number of rounds increase
Thus, these multiround maps in a neighborhood of a sing
homoclinic tangency represent the whole one-dimension
dynamics.

In conclusion we look at the structure of the set of strips
for the multidimensional case. We also show how the proce
dure of rescaling the first return map works here.

Let f be a multidimensionalCr-diffeomorphism (r>3)
with a saddle fixed pointO whose stable manifoldWs is
m-dimensional and the unstable manifoldWu is
n-dimensional. LetWs andWu have a quadratic tangency at
the points of a homoclinic orbitG.

A small neighborhoodU of OøG is the union of a small
(n1m)-dimensional diskU0 and a finite number of small
(n1m)-dimensional neighborhoods of the points ofG which
lie outsideU0 . As in the two-dimensional case, we denote
the restrictionf uU0

as T0 . The standard form of the map
T0 corresponds to the coordinates at which the local stab
and unstable manifolds of O are straightened:
Wloc

u 5$x50,u50%, Wloc
s 5$y50,v50% in some coordinates

(x,y,u,v). This allows one to writeT0 in the form

x̄5A1x1 f 11~x,y,v !x1 f 12~x,y,u,v !u,

ū5A2u1 f 21~x,y,v !x1 f 22~x,y,u,v !u,
~23!

ȳ5B1y1g11~x,y,u!y1g12~x,y,u,v !v,

v̄5B2v1g21~x,y,u!y1g22~x,y,u,v !v,
, No. 1, 1996
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28 Gonchenko, Shil’nikov, and Turaev: Dynamical phenomena
where f i j andgi j vanish at the origin. Here the eigenvalu
of the matricesA1 andB1 are the leading multipliers ofO,
and the eigenvalues ofA2 andB2 are the non-leading multi
pliers. Correspondingly,x andy are leading coordinates an
u andv are non-leading coordinates. Ifl1 is real, the matrix
A1 has the formA15(l1), and it has the form

A15lS cosw 2sinw

sinw cosw D
for complexl1 . For realg1 , the matrixB1 has the form
B15g1 , and it has the form

B15gS cosc 2sinc

sinc cosc D
if g1 is complex.

As was done in Refs. 4, 41, it can be shown that
multidimensional mapT0 reduces to a form that is analogou
in a sense to expression~11! which we have for the two-
dimensional case. Namely, the following identities hold
someCr21-coordinates:

f i1ux50[0, f 1 j u~y50,v50!50,
~24!

gi1uy50[0, g1 j u~x50,u50!50.

Similarly to the two-dimensional case, in such coordina
the mapT0

k is linear in the lowest order. Specifically, the ma
T0
k :(x0 ,y0 ,u0 ,v0)°(xk ,yk ,uk ,vk) for sufficiently large k

can be written as

FIG. 20. The case of a three-dimensional map where the multipliersl1 ,
l2 andg1 of the fixed pointO are such that 0,l2,l1,1,g1 . Here the
stripssk

0,P1 are three-dimensional ‘‘plates,’’ accumulating onWsùP1 as
k→`. The stripssk

1 lie in a wedge abuttingWuùP2, asymptotically con-
tracted along the non-leading coordinateu and tangent to the leading plan
u50 everywhere onWuùP2.
CHAOS, Vol
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xk5A1
kx01l̂kjk~x0 ,u0 ,yk ,vk!

uk5l̂kjk~x0 ,u0 ,yk ,vk!,
~25!

y05B1
2kyk1ĝ2khk~x0 ,u0 ,yk ,vk!,

v05ĝ2kĥk~x0 ,u0 ,yk ,vk!,

where l̂ and ĝ are constants such that 0,l̂,l, ĝ.g and
the functionsjk , ĵk , hk , ĥk are uniformly bounded at allk
along with their derivatives up to the order (r22).

e
FIG. 21. The three-dimensional case where the multipliersl1 , g1 andg2 of
the fixed pointO are such that 0,l1, 1,g1,g2 . Here the strips
sk
1,P2 are three-dimensional ‘‘plates,’’ accumulating onWuùP2 as

k→`. The stripssk
0 lie in a wedge abuttingWsùP1, asymptotically con-

tracted along the non-leading coordinatev and tangent to the leading plane
v50 everywhere onWsùP1.

FIG. 22. The projections of the multidimensional stripssk
0 andsk

1 on the
leading plane (u,v)50 in case (1,1). These projections look the same as in
the two-dimensional case.
. 6, No. 1, 1996
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29Gonchenko, Shil’nikov, and Turaev: Dynamical phenomena
It is easily seen from these formulas that the poi
whose iterations approach a small neighborhoodP2 of some
homoclinic pointM2 P Wloc

u under the action of the ma
T0 , form a countable number of (n1m)-dimensional strips
sk
0 in a small neighborhoodP1 of some homoclinic point

M1 P Wloc
s . For sufficiently largek, the stripssk

0 are
strongly contracted along thev coordinate, while their im-
agessk

15T0
ksk

0 are contracted along theu coordinate~Figs.
20, 21!. In the projection onto the leading coordinates, t
strips will appear as shown in Figs. 22–25. In the case
complex leading multipliers, the strips lie in involuted rol
which wind up, respectively, on the stable or the unsta
manifold.

Using formulas~25!, one can also calculate the first r
turn mapsTk :sk

0→sk
0 . In case (1,1) there are no essent

differences from the two-dimensional case due to the red
tion theorem. The other cases are more complicated. H
on most of the stripssk

0 there exist invariant manifolds
Mk on which the mapTk is close to the one-dimensiona
parabola map@see~8!#, while along the directions comple
mentary to such a manifold there is contraction or expans

FIG. 23. The three-dimensional stripssk
0 andsk

1 in case (2,1), where the
fixed point O has multipliers 0l1,25le6 iw and g1.1. Here the strips
sk
0,P1 are three-dimensional ‘‘plates’’ accumulating onWsùP1 as

k→`. The stripssk
1 lie in the involuted roll, wound onto the segmen

WuùP2.
CHAOS, Vol.
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that is stronger than onMk . The manifoldMk is not a
global invariant manifold seizing all dynamics of the system
in the neighborhood of the tangency, but it is an invarian
manifold for the mapTk defined on the single stripsk

0 .
Nevertheless, the presence of these invariant manifolds a
lows one to reduce some questions to the study of two
dimensional mapsTkuMk

. In this way the multidimensional
version of theorem 1 was proved in Ref. 27.

At the same time, there exists here a countable numb
of non-standard strips, on which the mapTk is essentially
multidimensional. Thus, if the productD of all the leading
multipliers is less than unity, then for a countable number o
strips sk

0 the first return map is close to one of the maps
given by formulas~9!–~11! for some rescaled coordinates
~we write only that part of the map which corresponds to
non-trivial behavior: for the other variables the mapTk acts
as strong contraction or strong expansion!.

We explain this statement in more detail for case (2,1) a
D5l2g,1 andlg.1. For the sake of simplicity we sup-
pose that there are no non-leading multipliers; i.e., we con
sider the three-dimensional case where the multipliers ofO
arel1,25le6 iw andg ~here 0,l,1, g.1).

Lemma 3: In the case under consideration there exist
infinitely many stripssk

0 for which the map Tk takes the form

x̄25x11«1k~x1 ,x2 ,y!, x̄15y1«2k~x1 ,x2 ,y!,
~26!

ȳ5M2y22Bx11«3k~x1 ,x2 ,y!,

t

FIG. 24. The three-dimensional stripssk
0 andsk

1 in case (1,2), where the
fixed pointO has multipliers 0,l1,1 andg1,25ge6 ic. Here the strips
sk
1,P2 are three-dimensional ‘‘plates’’ accumulating onWuùP2 as

k→`. The stripssk
0 lie in the involuted roll, wound onto the segment

WsùP1.
6, No. 1, 1996
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in some rescaled coordinates. Here MandB are rescaled
parameters which can take arbitrary finite values for k larg
enough; the functions« ik tend to zero as k→`.

Proof. By ~23!, ~24!, the mapT0 has the form

x̄15l~x1cosw2x2sinw!1O~ ixi2uyu!,

x̄25l~x2cosw1x1sinw!1O~ ixi2uyu!, ~27!

ȳ5gy1O~ ixiuyu2!.

Take a pair of homoclinic pointsM2(0,0,y2) P Wloc
u and

M1(x1
1 ,x2

1,0) P Wloc
s . SinceWu andWs have a quadratic

tangency atM1, the global mapT1 acting from a small
neighborhood ofM2 into a small neighborhood ofM1 has
the form

x̄12x1
15b1~y2y2!1a11x11a12x21... ,

x̄22x2
15b2~y2y2!1a21x11a22x21... , ~28!

ȳ5m1c1x11c2x21d~y2y2!21... ,

whereb1
21b2

2 Þ 0,c1
21c2

2 Þ 0 sinceT1 is a diffeomorphism,
andd Þ 0 since the tangency is quadratic;m is the splitting
parameter.

We may assumeb1 Þ 0. By the orthogonal coordinate
transformation

x1→x1 cosa1x2 sin a, x2→x2 cosa2x1 sin a,

FIG. 25. The four-dimensional stripssk
0 andsk

1 in case (2,2), where the
fixed pointO has multipliers 0l1,25le6 iw andg1,25ge6 ic. Here the strips
sk
1,P2 lie in the involuted roll wound onto the two-dimensional are

WuùP2. The strips sk
0 lie in the involuted roll, wound onto the

WsùP1.
CHAOS, Vol. 6
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which obviously do not change form~27! of the local map,
the termb2(y2y2) in the second equation of~28! can be
eliminated if b2cosa2b1sina50, and the global map takes
the form

x̄12x1
15b~y2y2!1a11x11a12x21... ,

x̄22x2
15a21x11a22x21... , ~29!

ȳ5m1c1x11c2x21d~y2y2!21... ,

with new coefficientsxi
1 , ai j , ci . Here b Þ 0 and still

c1
21c2

2Þ0.
By ~25!, ~29!, the first return mapTk5T1T0

k is written in
the form

x̄12x1
15b~y2y2!1a11l

kx11a12l
kx21... ,

x̄22x2
15a21l

kx11a22l
kx21... , ~30!

g2k~ ȳ2y2!1g2ky21ĝ2khk~ x̄,ȳ!

5m1lkb1k~w!x11lkb2k~w!x21d~y2y2!21... ,

where b1k(w)5c1 coskw1c2 sinkw, b2k(w)5c2 coskw
2c1 sinkw.

Shifting the origin:y→y1y2, x→x1x11..., we can
eliminate the constant terms in the first two equations of~30!
and the map takes the form

x̄15by1lkO~ ixi !1O~y2!,

x̄25a21l
kx11a22l

kx21O~y2!1lko~ ixi !,

ȳ1S ĝ

g D 2k

O~ u ȳu1i x̄i !

5M11dgky21~lg!kb1k~w!x11~lg!kb2k~w!x2

1lkgkO~ ixi21uyu•ixi !1gko~y2!, ~31!

where

M15gk~m1lkb1k~w!j1
11lkb2k~w!j2

12g2ky21...!.

Rescaling the variables:

x1→2
b

d
x1g

2k, x2→2
b

d
a21x2l

kg2k,

y→2
1

d
yg2k

we get the following expression for the mapTk :

x̄15y1... , x̄25x11... ,

ȳ5M2y22Bx11~l2g!kb2k~w!x21... , ~32!

where the dots stand for the terms which tend to zero
k→`; M52dgkM1 , B52bb1k(w)(lg)k.

Recall that we consider the caselg.1, l2g,1. There-
fore, (l2g)k!1 and (lg)k@1 at largek. Thus, the term
with x2 in the third equation of~32! is small, so the
map is now brought to form~26!. The coefficientB is
the product of the large quantity (lg)k and the value
b1k5c1 coskw1c2 sinkw. When the ratiow/p is abnor-
mally ~exponentially! well approximated by rational frac-
, No. 1, 1996
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31Gonchenko, Shil’nikov, and Turaev: Dynamical phenomena
tions~suchw are dense on the interval (0,p)), the coefficient
b1k can be made appropriately small for a countable numb
of values ofk, so thatB may take an arbitrary finite value.
The lemma is proved.
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