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Recent results describing non-trivial dynamical phenomena in systems with homoclinic tangencies
are represented. Such systems cover a large variety of dynamical models known from natural
applications and it is established that so-called quasiattractors of these systems may exhibit rather
non-trivial features which are in a sharp distinction with that one could expect in analogy with
hyperbolic or Lorenz-like attractors. For instance, the impossibility of giving a finite-parameter
complete description of dynamics and bifurcations of the quasiattractors is shown. Besides, it is
shown that the quasiattractors may simultaneously contain saddle periodic orbits with different
numbers of positive Lyapunov exponents. If the dimension of a phase space is not t@rdater

than four for flows and greater than three for majisis shown that such a quasiattractor may
contain infinitely many coexisting strange attractors.1@96 American Institute of Physics.
[S1054-150(05)00904-7

I. INTRODUCTION ously speaking. Due to this reason, we will adhere to the
. . . . definition given in Refs. 8, 24: a strange attractarquasi-
The discovery of dynamical chaos is one of the MaiN,itractor in terms of Refs. 8, 24is an attractive limit set

achievements in .the modern sclence. At the. after_math, Vartuhich contains non-trivial hyperbolic subsets and which may
ous phenomena in natural sciences and engineering have ob- . . . - : )

. : hae L contain attractive periodic orbits of extremely long periods.
tained an adequate mathematical description within th

framework of differential equations. From the mathematical ince neither the transitivity property nor the property of
. . . o . .individual instability of orbits may not be fulfilled in this
point of view, dynamical chaos is commonly associated with

the notion ofa strange attractor—an attractive limit set with case(even if these propertles_ may hqld, they are not pre-
the complicated structure of orbit behavior. This term Wassewgd under.small perturbatignee will use the terma
introduced by Ruelle and Takens in 1974 the sense where quasstochgstlc attractor. . R
the wordstrangemeans the limit set has a fractal structure. 'V notice that the principal reason of distinguishing the
Nowadays, the point of view is widely accepted that theclass. of quaS|stoqhast|c attractors is that, in co.ntrast Wlth the
strange attractor should be regarded as an attractive limit s@enuine stochastic attractors, for them there is no rigorous
composed byunstable orbits. Examples of such sets are Mathematical base for the main notions through which cha-
well-known hyperbolic and Lorenz-like attractors. Both are©tic dynamics is analyzed: Lyapunov exponents, entropy, de-
rather suitable objects because they, in particular, posse§8Y ©Of correlations, sensitive dependence on initial data, etc.
proper invariant measuréSinai—-Bowen—Ruelle measuyes Thus, for a large variety of dynamical systems of natural
and, therefore, admit adequate studying by tools of the erorigination, the question of the nature of chaos remains open
godic theory. These are the attractors which Sinai callego far.
stochasti@ The scope of this paper is to represent recent results
However, most of known dynamical models give us ex-which show that quasiattractors may exhibit rather non-
amples of attractors different from those pointed out abovelrivial features which are in a sharp distinction with that one
We mention, for instance, spiral attractdrsassociated with  could expect in analogy with stochastic attractors. Thus, we
a homoclinic loop to a saddle-fodis attractors that arise show that quasistochastic attractors may contain structurally
through breakdown of an invariant tofus: screw-like at-  unstable and, moreover, infinitely degenerate periodic orbits
tractors in the Chua circdt®® attractors in the Heon  which makes the complete description of dynamics and bi-
map*~*€ attractors forming through the period-doubling furcations of such attractors impossible in any finite-
cascade in strongly dissipative maps; attractors in the Lorengarameter family.
model We also establish that quasistochastic attractors, in con-
X=a(y—x), Y=rx—y—xz, z=—bx+xy trast \_Nit_h h_yperbolic ones, may not possess the prope_rty of
self-similarity. Namely, there may exist infinitely many time
at large values ofr (for instance, ato=10, b=% scales on which behavior of the system is qualitatively dif-
r>31)}""1¢ attractors in periodically forced self-oscillatory ferent. Besides, we show that quasiattractors may simulta-
systems with one degree of freedéfi?3 etc. neously contain saddle periodic orbits with different topo-
Strange attractors of such systems are well known tdogical indices or, what is the same, with different numbers
contain not only non-trivial hyperbolic sets but also attrac-of positive Lyapunov exponents. The last is also impossible
tive periodic orbits and thereby not being stochastic rigorfor hyperbolic attractors.
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FIG. 2. The splitting parameter is chosen such thay" has a tangency
ol M v with W* at a homoclinic pointM * at =0, there is no homoclinic inter-
section neaM* at >0 and there are two points of intersectiorat 0.

FIG. 1. The saddle fixed poir® whose the stabl&V® and the unstable It is essentially more non-trivial that the closure of the
WY manifolds have a quadratic tangency at the points of a homoclinic orbit y

T (bold points in the figure set of all parameter values corresponding to homoclinic tan-
gencies contains open intervals. More generally, the follow-
ing result is valid.

If the dimension of a phase space is not too Igneater Theorem 1: Let f, be a general finite parameter family
than four for flows and greater than three for mapse show of dynamical systems which has a saddle periodic orbit
that a quasiattractor may contain infinitely many coexistingL, . (The exact conditions of general position have been for-
non-trivial attractors. mulated in Ref. 27. In particular, it is required ff that for

These statements are based on the analysis of bifurcéhe tangency to be quadratic, the ojtnot lie in the strong
tions of systems withstructurally unstable Poincarého-  stable and strong unstable submanifol’®® and W"", etc)
moclinic orbits Suppose that at =0 there exists a structurally unstable ho-

Recall that a Poincar@omoclinic orbit is an orbit of moclinic orbitI" of the orbit L,. Then, values of for which
intersection of the stable and unstable manifolds of a saddle, has an orbit of quadratic homoclinic tangency are dense
periodic orbit. A homoclinic orbit is calledstructurally  in some open region4; of the parameter space, accumulat-

stableif the intersection is transverse, and it is calkduc-  ing at £=0.

turally unstable(or a homoclinic tangengyif the invariant The one-parameter version of this theorem was estab-

manifolds are tangent along (Fig. 1). lished by Newhouse in Ref. 28 for the case of two-
25,26

As it is well known;{>“"in any neighborhood of a struc- dimensional diffeomorphisms and it was extended onto the
turally stable Poincarénomoclinic orbit there exist non- general multidimensional case by us in Ref.(&# case with
trivial hyperbolic sets containing a countable number ofan arbitrary number of parameters follows immediately from
saddle periodic orbits, continuum of non-periodic PoissorRefs. 27, 28 The multidimensional case was also consid-
stable orbits, etc. Thus, the presence of a structurally stable
Poincarehomoclinic orbit can be considered as the universal
criterium of complex dynamics.

The structurally stable homoclinic orbits are evidently
preserved under small perturbations. Hence, systems with
such orbits form open regions in the space of dynamical
systems. Structurally unstable homoclinic orbits are not, in
general, preserved under perturbations. If the tangency is
quadratic, systems with such orbits fill bifurcational surfaces
of codimension one in the space of dynamical systems. Ac-
cordingly, individual parameter values correspond to the
presence of homoclinic tangencies in general one-parameter
families, curves on the parameter plane correspond to ho-
moclinic tangencies in two-parameter families, etc.

Note that the set of systems with structurally unstable
homoclinic orbits(or, for a general finite-parameter family,
the set of parameter values corresponding to the presence of
structurally unstable homoclinic orbjtshas quite a non-
trivial structure. For instance, it is not hard to see, that in a a secondary homoclinic
general one-parameter family, in an arbitrary closeness to tangency
any parameter value corresponding to a homoclinic tangency
there exist other parameter values corresponding to other h@ig. 3. The figure shows how a secondary homoclinic tangency of the
moclinic tangenciessee Figs. 2, B manifoldsWe® and W" may be obtained.
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ered partly in Ref. 29. This theorem shows that although any
given homoclinic tangency can be removed by a small per-
turbation of the system, the presence of homoclinic tangen-
cies is, nevertheless, a persistent phenomenon.

In our opinion, the presence of structurally unstable
Poincarenomoclinic orbits either in the system itself or in a
nearby system is one of the main peculiarities of quasisto-
chastic systems. As we can judge, the presence of homoclinic
tangencies for some values of parameters was either theoreti-
cally proved or found by computer simulations in all dy-
namical models with quasiattractofsee the list aboyefor
which the problem of finding such parameter values was ex-
plicitly posed. By theorem 1, the closure of these parameter
values contains open regions. Note that the size of these
regions may be rather large in specific examplese, for

instance, Ref. 16 though the theoretical estimates for the the cubic tangency
size of the regionq; that can be extracted from the known
proof of theorem 1 give us extremely small values. FIG. 4. Takeu a bit greater than in Fig. 2. Then, after one more round along

the initial homoclinic orbit, the image of takes a distorted form which

We will call the Newhouse regionsuch regions in the allows one to obtain a cubic tangency\8F and W

space of dynamical systenr in the parameter space while
speaking on a finite-parameter fanjilwhere systems with
homoclinic tangencies are dense. In the case where bifurcaccordingly, a good model must possess a sufficient number
tions of some system having a saddle periodic orbit with af parameters allowing one to analyze bifurcations of each
homoclinic tangency are considered, we reserve the terrperiodic, homoclinic, and heteroclinic orbit that occurs.
“Newhouse regions” specifically for those in a small neigh- In a general finite-parameter family containirig the
borhood of the initial system where systems are dense whicéplitting parameter. must clearly be one of the main param-
have homoclinic tangencies of the given periodic orbit. eters. We define the splitting parameter as follows. Take a
As we see, the problem of studying dynamical phenom-point of homoclinic tangency oW?® (the pointM* in Figs.
ena in the Newhouse regions is an important part of the, 3). The manifoldW" has a parabola-like shape near this
global problem of studying the nature of chaos in real dy-point for all maps close té. We denote ag the distance
namical models. Besides, this problem is of its own interesbhetweeriW® and the bottom of the parabola. The sigrofs
from the point of view of the qualitative theory and the chosen such thdt, has no homoclinic orbits gt >0 which
theory of bifurcations of dynamical systems. are close toI' and there are two structurally stable such
In the present paper we describe dynamical phenomergrbits atu <0 (Fig. 2).
in the Newhouse regions for both the two-dimensional and ~ As we noticed, values of. for which the mapf,, has
the multidimensional cases. In Sections Il and Ill we discusgsecondary” homoclinic tangencies accumulatewat 0. In-
main resultdtheorems 2—10 In Section IV we collect geo- deed, take a pair of points belongingltoand lying neaiO:
metrical constructions which determine dynamics near hoM™ e W; . andM~ e W, (see Fig. 3. Takeu a bit smaller
moclinic tangencies. We restrict ourself by the case of dif-than zero. Take a pied@ of the part of the unstable manifold
feomorphisms: the case of flows can be similarly considerethat lies neaM ™ and begin to iterate it. After some number
by means of the Poincareap. of iterations(the closelC is to the stable manifold, the larger
the numbey, it may approach a small neighborhood of
M ™. Since, atu=0, the pointM~ goes atM* by some
finite degree off, it implies that a small neighborhood of
Before studying the general multidimensional case, weM ~ is mapped into a small neighborhood Bf* by the
consider the case of two-dimensional maps. Lée a two-  same degree of,, at all smallu. Thus, the curveC may
dimensional diffeomorphism having a saddle fixed p@dnt return to a neighborhood ®fl * for some numbek of itera-
with multipliers X and y where|\|<1, |y|>1. LetW® and  tions of f, (we will say thatC makes a single round along
WY be, respectively, the stable and unstable manifold®.of I'). While doing that the curveC is expanded and folded
Suppose they have a quadratic tangency at the points dfiereby forming a “parabola‘f';(C). Fitting . andC, one
some homoclinic orbil” (Fig. 1). can clearly obtain a secondary homoclinic tangency.
According to the traditional approach going back to An- Making more rounds, other homoclinic tangencies can
dronov, to study the bifurcations of a given system is tobe obtained with an appropriate variationf According to
embed it in an appropriate finite-parameter family, then toTheorem 1, values of. corresponding to the multiround
divide the parameter space into the regions of structural stdtdomoclinic tangencies fill densely intervals accumulating at
bility, to determine the bifurcation set and to split the bifur- x=0.
cation set into connected components corresponding to iden- We note also that a small perturbation foimay imply
tical phase portraitén the sense of topological equivalefice cubic homoclinic tangencies. Figure 4 shows how it can be

II. MAIN RESULTS: THE TWO-DIMENSIONAL CASE
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18 Gonchenko, Shil'nikov, and Turaev: Dynamical phenomena

achieved. Consider a system with the secondary homoclinic
tangency(Fig. 3). We take the parabol&ﬁ(C) and change
u a little bit, so that the parabola lies aboW®. By some
numberk’ of iterations, the parabola carries out one more

round along. The curvef®"*'(C) is a “distorted parabola”
(Fig. 4 which can be made cubically tangent W& by a
small perturbatior{for this, two control parameters are nec-
essary.

Increasing the number of rounds alohg homoclinic
tangencies of higher and higher orders can be obtained in a
neighborhood of the initial quadratic tangency. Since systems
W,Ith quadratl_c tangencies are dense in the Newhouse r%_IG. 5. The first return map for the cases (@f quadratic tangency(b)
gions, we arrive at the following result. cubic tangency.

Theorem 2 (Refs. 30, 3L Systems with homoclinic tan-
gencies of any prescribed order (definite or indefinite) are
dense in the Newhouse regions.

Recall the definition of the order of tangency of two N the casev= —1, the restriction of the Rth degree of the
C'-smooth curvesy; andy, on a plane. Let the curvg; be ~ Map onto the center manifold can be written either in the
given by the equatiog=0 andy, be given by the equation form
y=¢(X), ¢(0)=0, in some C'-coordinates X,y). If — 2541 2541
(9 6/3x) (0)=0 at i=1,...s and @ 1olax*"1)(0)#0 y=ytLy™ "+oly™"), 3<2s+lsr, LS¢°(4)
for somes<r, theny; andy, havea tangency of order $a
quadratic tangency =1, a cubic tangency §=2). Incase or, again, in form(3). If one of formulas(2) or (4) holds
(d'¢lox') (0)=0 ati=1,...r, the curvesy; andy, have a (L, # 0), we state that the periodic orbit hthe degeneracy

Oy
>

a)s=1

tangency ofindefiniteorder. of order s and if formula(3) holds, we speak abouhe
If W® andW" have a tangency of ordet then, at small degeneracy of indefinite or infinite order
perturbations, the equation &% in a neighborhood of the Theorem 3 (Refs. 30, 31 Systems with periodic orbits

point of tangency may well known be written in the form  of any prescribed order (definite or indefinite) of degeneracy
are dense in the Newhouse regions (both for the oasi
y=ggt e X+...Feq x5 1+ x5 1+ 0(x5TY). (D) and for the caser=—1).

This theorem is a corollary of theorem 2. The main ele-
ment of the proof is the construction of the first return map
near a structurally unstable homaoclinic orbit of sith order
of tangency(Fig. 5. We begin with the initial case of qua-
ﬁratic tangency §=1). Take a small stripr in a neighbor-

MR : -~ =~ “hood of the poinM *. If the strip is chosen appropriately, it
arbitrarily high orders by a small perturbation of the initial rounds once alond’ and returns in the neighborhood of

map f with the orbit of homoclinic tangency of order 1. M* for some numberk of iterations off,: the image

Therefore, we have to conclude that no finite number of con- 2 2
trol parameters is sufficient for theompletestudy of the f,.(o) has the horseshoe shape. We denote the restriction of

k . .
bifurcations in a small neighborhood of a homoclinic tan-tsr;rei3 maipfgrsgﬁoflfhae‘?;k ?ndwcealrl I;::hael flrstorri#] rgten;ag?i]r?R f
gency, independent of the order of it. pois ) ore, escae co ' et.

The impossibility of giving the complete description of 2;1{;;;2&;12 Obi;a\lfxr/]rsittirflir:t;slfzoelllowi:U?erﬁzgglleedmﬁgrdl-
the bifurcations of systems with structurally unstable Poin- i Section R;k_ 9
carehomoclinic orbits appears also as the presence of sysl- :

tems with .arbltranly degenerate periodic orbits in the New- X=y+O(Ny|*+ |y,

house regions. (5)

.It is wgll Known that if, f'or.someCr—smooth map, an y=M—y2+O(|\y[*+|y|74),
orbit of periodj has one multiplier equal to==*=1 and all ”
the other multipliers do not lie on the unit circle, then in the whereM ~ py=~.

The valuess; are the parameters which control the bifurca-
tions of the intersections oV and W° (the last has the
equationy=0). We see that the bifurcation analysis requires
at least ars-parameter family in this case.

According to theorem 2, one can obtain tangencies o

casev=1 the restriction of thé-th degree of the map onto Let [\y|<1 (the case]Ay|>1 is reduced to the case
the center manifold can be written either in the form INy|<1 by transition fromf to its inverse map Then map
(5) is close to the well-known one-dimensional parabola map
y=y+Ly* t+o(y*'h), 1ss<r-1, 2 _
y=M-y? (6)
where the coefficient ¢ that is not equal to zero is calledth
Lyapunov valugor in the form for k large enough; the rescaled splitting paraméfiemay
take arbitrary finite valueghe largerk, the larger the inter-
y=y+o(y"). (3)  val of allowed values o).
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Gonchenko, Shil'nikov, and Turaev: Dynamical phenomena 19

In the case o&-th order tangency, the rescaled migpis  moclinic orbit there may exist both structurally unstable and
close to the one-dimensional mépee lemma 2 in Section attractive periodic orbits in addition to saddle ones. Namely,
V) the following theorem is valid.

Theorem 4 (Ref. 33: Let the product of the multipliers
of O be less than one in absolute valjiey| <1. Then for a
where Eg,E;,....Es.; are rescaled parameters general one-parameter family,fthere exists a sequence of
£0,€1,..-,8s—1 from (1) and they may take arbitrary finite intervals §; accumulating atw=0, such that aju € §; the
values. Particularly, iE,=E,=...=Es_;=0,E;=+1,then map f, possesses an attractive periodic orbit in a small
map(7) has a fixed point with the multipliet 1 and with the  neighborhood ofl" and, atu belonging to the boundary of
order of degeneracy which can be made arbitrarily high bys;, the map has a structurally unstable periodic orbit.

y=Eg+Ey+...+Eq_1y* 1 +ys i+o(y"h), (7)

increasing the value of. SinceT, is close to mag?7) it also If |\y|>1, then the analogous result is also valid: the
has a highly degenerate fixed point #4,E,,...,Es_; close  map has here a repelling periodic orlit source for u
to zero andg; close to+1. e &;. Theorems 4 and 1 imply the following result.

Thus, by a small perturbation of a system with a ho- Theorem 5 If |[\9{<1, then, for a general one-
moclinic tangency of a large order, one can achieve a periparameter family f, in the Newhouse regions;, param-
odic orbit of a high order of degeneracy to arise. Since syseter values are dense for which the map, in addition to a
tems with homoclinic tangencies of any order are dense igountable number of saddle periodic orbits, also possesses a
the Newhouse regiongheorem 2, it follows that systems countable number of attractive (repelling|ify|>1) periodic
with arbitrarily degenerate periodic orbits are also denserbits.
there. In its initial weaker formulatior{not for intervals in one-

We see again that no finite number of control parameterparameter families but for regions in the space of dynamical
is sufficient for the complete study of the Newhouse regionssystems this theorem was proved in Ref. 34. The proof of
now, for the study of the bifurcations of periodic orbits. In the one-parameter version can be obtained, for instance, in
other words, from the point of view of the approach tradi- the following way. Lef\ y|<1 anduq € A;. By theorem 1,
tional to the bifurcation theory, any dynamical modal  arbitrarily close tau, there existgt; e A; such thatO has a
finite-parameter family of dynamical systenis, in terms of  quadratic homoclinic tangency at=u;. By theorem 4,
Refs. 30, 31, bad in the Newhouse regions. Apparently, hergear u= u, there exists a small interval; CA; such that
it is necessary to give up the ideology of complete descripf, has an attractive periodic orbit at € d,. Again, since
tion and to restrict oneself to the calculation of some averagd; CA;, there exists a valug, € d; such thatO has a qua-
quantities and to the study of certain general properties. dratic tangency afu=u, and some new interva,Cd,

In particular, such a general property is that in the New-such thatf, has one more attractive periodic orbit at
house regions there exist non-trivial hyperbolic sets; i.e. d,. Repeating the arguments, we obtain, in arbitrary close-
there is always a countable number of saddle periodic orbitgess of the given valug, the system of embedded inter-
and structurally stable Poincah®moclinic orbits. valsd; Dd,D... such thaf , has at leasf attractive periodic

Another important feature of systems in the Newhouseorbits atu e d;. The intersection of alil; is non-empty. It
regions is the absence of complete self-similarity. Notice thacontains at least one poipt* and the magf , has a count-
the homoclinic orbits of high orders of tangency that weable number of attractive periodic orbits @t= u* .
obtained by perturbations of the mdipmake quite a large Theorems 4 and 5 provide a theoretical basis for the fact
number of rounds alonfj (for instance, the cubic tangency that most presently known strange attractors contain attrac-
can be formed after three round# is clear that the higher tive periodic orbits within. As a rule, the attractive periodic
the order of tangency, the more rounds are required to get iQrbits in a quasiattractor have very long periods and narrow
Near the homoclinic tangencies of high orders there appedrasins of attraction, and they are hard to observe in applied
the maps described by formul@). Since the first return map problems because of the presence of noise. However, in the
near such a tangency corresponds, at the same time, to maggace of the parameters of the model there can exist regions
rounds along the original homoclinic ordit, maps close to where individual, relatively short-period attractive periodic
the mapf exhibit dynamics which is described on large time orbits can be seen; these regions are calietlows of sta-
scales by mapg7): the larger the number of rounds, the bility.
larger the value ok. The maps given by formul&7) are
comple_tely different for different \_/alues af Thus, systems Il MAIN RESULTS: THE MULTIDIMENSIONAL CASE
belonging to the Newhouse regions may show completely
different qualitative behavior on different time scales. Note  Theorems 2 and 3 can be extended onto the general mul-
that nothing similar happens in hyperbolic systems where thédimensional cas& Thus, the conclusion on impossibility
number of essential scales is always finite. of a finite-parameter complete description is also valid for

One more important feature is the coexistence of orbitghis case. However, the situation connected with the coexist-
of different topological types. If we consider a structurally ence of periodic orbits of different topological types is con-
stable Poincardomoclinic orbit, then we see that all peri- siderably more complicated. Here, the windows of stability
odic orbits lying in a small neighborhood of it have a saddlemay correspond to invariant tori and even chaotic attractors.
type?>%® On the contrary, near a structurally unstable ho-Moreover, not only saddle and attracti(er saddle and re-

CHAOS, Vol. 6, No. 1, 1996

Downloaded 28 Jan 2013 to 129.31.241.74. Redistribution subject to AIP license or copyright; see http://chaos.aip.org/about/rights_and_permissions



20 Gonchenko, Shil'nikov, and Turaev: Dynamical phenomena

FIG. 6. An example of the “center” manifold/Z° (the union of ;. with
the dashed regions outsidé} . in the figure for the three-dimensional case
where the multipliers\,, \; and y of the fixed point are such that
O<AL<IN < 1<y,

pelling) periodic orbits may exist simultaneously, but saddle
periodic orbits with the different numbers of positive
Lyapunov exponents may also coexist. These statements are
based on the results represented below.

Let f be a multidimensional diffeomorphism with a
structurally unstable homoclinic ordit of some saddle fixed
point O. We are interested in the structure of the Netf all
orbits which lie entirely in a small neighborhottof the set

FIG. 7. The exceptional cases where the smooth invariant manifold does not

Our. o o exist: (a) the orbit of tangency belongs W*s; (b) the vector that is tangent
Suppose the map satisfies some genericity condifionsto W andW atM* is parallel to the non-leading eigendirectidis) the
(the tangency is quadrati€, does not lie inW*s and W"", image of the surfacél; is tangent toV° atM ™.

etc). Let Nq,....Am, Y1,.--,¥n b€ the multipliers ofO,
[Yal=...=|71]> 1>|\{|=...=|\y|. We use the notation
A=|N\4|, ¥=]y1|. The multipliers\;, y; nearest to the unit
circle (i.e., those for which\;| =\, |y;|=y) we callleading
and the rest we calion-leading The coordinates in a neigh-
borhood ofO that correspond to the characteristic directions
of these multipliers we call, respectively, leading and non-

(1) the setN of all orbits that lie entirely in U is contained
AR

(2) .7° is tangent to the leading directions at the point O,

(3) along the stable and unstable non-leading directions
there is, respectively, exponential contraction and expan-
sion, which are stronger than those along directions tan-

leading. Al to. 7/
We assume that the leading multipliers are simple. We gential to../7Z".
denote the number of leading stable multipliersggyand the Figure 6 represents an example of the manifoi for

number of leading unstable multipliers Ipy,. Accordingly, the three-dimensional case where the multipliersOofire
we assign the typepi,p,) to the system. The four following such that 8<\,<\;< 1<1y;. In the terms that we have

cases are possible here: introduced, this is case (1,1) whexg andy, are the leading
[(1,1)] Ny andy; are real and\>|\,|, y<|y,l; multipliers and\, is the non-leading stable multiplier. The
[(2,1)] Ny=Np=\€'?, 7y, is real and\>|\g|, y<|vya|; point O is the fixed point of the stable node type for the
[(1,2)] N, is real, y;=7y,=v€'Y, and A>|\,, restriction of the magd onto W®. The non-leading manifold

y<lvysl; _ W3S exists inW?® such that iterations of any point ¥ tend
[(2,2)] M=N=\€%, y;=7,=ve¥, and A\>|\4|, to O like a geometric progression with the ratig. The

v<|vs- orbits lying in W\W*s tend to O along the leading eigen-

The following reduction theorem shows that behavior ofdirection and the distance tO decreases as a geometric
trajectories of the map and all nearby maps is determined, progression with the ratia .
first of all, by dynamics in the leading coordinates. In this case, in a small neighborhood ®fthere exist®
Theorem 6 (Ref. 39: Under generic conditions, for all two-dimensional invarian€-manifolds, each of which con-
systems close to f there exists an invarianttainsW,, and intersect¥V* at a curve tangential to the lead-
(ps+ py)-dimensional G-manifold .7 possessing the fol- ing direction. According to theorem 6, at least one of them,
lowing properties: e, €an be extended along the orbitsfofforming a glo-
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Gonchenko, Shil'nikov, and Turaev: Dynamical phenomena 21

bal attractive invariant manifoldZ® which containd™. The ~ multipliers (p,=n) and if D<1, then systems with infinitely
manifold. #¢ is attractive in the sense that any point whichmany attractive periodic orbits are dense in the Newhouse

does not belong to/° leaves the small neighborhoddi of ~ regionsa;.

' with the iterations of the inverse mdp* . This implies This theorem does not follow from the reduction theo-
that.#° contains the whole sét of orbits lying inU en-  rem. Here, the proof is based on the study of the first return
tirely. The invariance of /¢ means that if one takes a small MapTy of some small stripr close enough té1 . Note that
areall C./,. containing the poinM ~ of I' and iterates the mapsT, may be different in different situations. Namely,

loc . .
this areak times, it then returns in the neighborhood@for et O do not have unstable non-leading multipliers and let

somek, so thatf&(I1;)C. /%, (Fig. 6). D<1. Then,_in the_ casep)g,pu)f(l,l), the.maﬁl'k_ is close
This occurs if the mag satisfies some conditions of t© the one—dmensmngl méps in the two-dimensional case;

genericity. The excluded cases where the smooth invariari€€ the previous sectipn

manifold does not exist are shown on Fig. 7: the homoclinic  y=M —y? (8

orbit ' belongs toW®® (Fig. 79; the vector tangential to ] ]
WU at M+ is parallel to the non-leading eigenvect@ig. in some rescaled coordinates. The same formula holds in the

7h); the surface‘k(l'[c_) is tangent toWs at M™* (Fig. 70. case pg,p,)=(2,1) athy<l1. In both cases only one vari-

The reduction theorem immediately give us essential ref’Ible is relevant and all the others are suppressed by strong

- . . traction.
strictions on possible types of orbits of the skfor the map con _
f itself and for all nearby maps. Thus, since there is a stronq_ _In ;[he C?Stehmshp“)_(z’l) athy>1, the rescaled map
exponential contraction along the stable non-leading direc- ¥ IS close 1o the Heon map
tions and the number of such linearly independent directions x=y, y=M—y2—Bx, 9)

is (m—pg), orbits of N must have at leastnf— p) negative . .
. __at an appropriate choice of.
Lyapunov exponents. Analogously, the strong expansions - _
. N N . In the cases f{s,py)=(1,2) and ps,p)=(2,2) at
along the non-leading unstable directions indicates that orbits » ) .
. y~<1, the rescaled mapy is close, for the appropriately

of N must have at leastn(-p,) positive Lyapunov expo- hoseno. to the ma
nents. This means that dimensions of stable and unstabFe T P
manifolds of any periodic orbit ilJ may not be less than x=y, y=M-x2—Cy, (10
(m—ps) and (h—p,) respectively. In particular, ifO has
unstable non-leading multipliefge., p,<n), then neitheif
nor any nearby map has attractive periodic orbitsJin B L

In general, these restrictions are not final. More precise x=y, y=z,z=M-y?-Cz-BX, (13)

estimates for the number of positive and negative Lyapuno\fvhereM is the rescaled splitting parameter andB andC

exponents can be found if one considers theare some trigonometric functions k{ andki respectively.

(pst py)-dimensional map which is the restriction of the ini- At k large enough, parameteks, B and C may take arbi-
i 7C - ! ’
tial map onto./Z". , o trary finite values.

Let us introduce the quantitpp which is equal to the The last two maps have not been studied sufficiently,
absolute value of the product of all leading multipliers, i.e., ,nlike the parabola maf8) and the Haon map(9). How-
D:)\st,pz. Note thatD is the Jacobian of the restriction of eyer, the bifurcation analysis of the fixed points of these
f onto.#°, calculated at the poir®. If D<1, then the map maps is comparatively simple. Thus, for each of més

f|.ze contracts ps+p,)-dimensional volumes exponentially (11) one can easily find parameter values such that there
nearO, and ifD>1, it then expands the volumes. Since anyexists an attractive fixed point.

orbit that lies inU entirely spends most of the time in a small Thus, an analogue of theorem 4 is valitithere are no
neighborhood of O, the map f| , contracts ynstable non-leading multipliers and if D1, then a small
(Pst py)-dimensional volumes in a neighborhood of the or-perturbation of f can provide the appearance of an attractive
bit at D<1 and it expands the volumes @t>1. Therefore, periodic orbit Unlike the two-dimensional case, dependent
any orbit ofN has at least one negative Lyapunov exponenpn the situation, not only the splitting parametermay be
atD<1 and it has at least one positive Lyapunov exponentequired here, but also there may be needed the perturbation

and, in the casepi,p,)=(2,2) at\y>>1, it is close to the
map

atD>1. of values¢ and ¢ which control the variation oB and C
To summarize what is said above, we arrive at the folrespectively.
lowing result. By using the construction with the system of embedded

Theorem 7 (Ref. 39: Let f be a map with a homoclinic  disks (analogous to that applied in the two-dimensional case
tangency in a general position. If the saddle fixed point Oat the proof of theorem)5the theorem on infinitely many
has unstable non-leading multipliefp,<n) or if D>1, attractive periodic orbitétheorem 8 can be obtained imme-
then neither f nor maps close to it have attractive periodicdiately for the Newhouse region; in corresponding one-,

orbits in a small neighborhood of OT". two- or three-parameter families.
A statement that is, in a sense, opposite to this theorem, Actually, the analysis of fixed points of mag8)-(11)
is also valid. allows us to establish much more than the existence of at-

Theorem 8 (Ref. 39: If O has no unstable non-leading tractive periodic orbits. Thus, for map8) and (10) there
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22 Gonchenko, Shil'nikov, and Turaev: Dynamical phenomena

exist the values oM and, respectivelyB or C at which the
map has a fixed point with a pair of multipliers equal to one
in absolute value, while mafi1) has a fixed point with three
multipliers equal to one in absolute value for someB and

C. If we select now the three casgscall thatD =\PsyPu is
smaller than one

(1+) (Ps,Pu)=(1,1), or (ps,py) =(2,1) andry<1,

(2+) (Ps,Py)=(2,1) and Ay>1, or (ps,py)=(1,2), or
(Ps,Pu)=(2,2) and\y*<1,

(3+) (Ps.Py)=(2,2) and\ 72> 1,

then we arrive at the following result.

Theorem 9 (Ref. 39: Suppose that Bt 1. Then, in case
(1M, 1=1,2,3, systems having periodic orbits with | multi-
pliers equal to one in absolute value are dense in the New-
house regiong\; .

This theorem has quite non-trivial consequences. Noté&!G. 8. The neighborhood of the contoulOUT (bold points in the figure
that an invariant curve can be born from the points with tWOiS a union of a small diskJ‘0 contain?ngO_ and qf a finite number of small

. L . . . . neighborhoods of that points &f which lie outsideU.
unit multipliers (an invariant torus, if we consider a flow
and chaotic attractors can be formed in the case of three
multipliers equal to one in absolute value. For instance, amaps, regions of parameter values can be easily found where
attractor similar to the Lorenz attractor can be born at locathe map has a fixed point withmultipliers greater than one
bifurcations of a fixed point with two multipliers equal t61  in absolute value (&j<I). This implies that, for any
and one equal te-1, and a spiral attractor can be born in the j=0,...], a periodic orbit withj positive Lyapunov expo-
case of three multipliers equal tol (see Refs. 37, 38 where nents can arise at an arbitrarily small perturbatiorf ah a
an analysis of corresponding normal forms is carried.out correspondingl-parameter family. Using the construction

Using the construction with embedded disks again, wewith embedded disks again, we find that the parameter val-
find thatsystems with infinitely many invariant tori and sys- ues are dense in the Newhouse regidnst which the map
tems with infinitely many coexisting chaotic attractors arehas now infinitely many such orbits simultaneously for each
dense in the Newhouse regions in caé2s) and (3*) re- j=0,...].
spectively Theorem 10 has a direct relation to the problemhpf

To conclude, we consider the question on the coexistperchaos Usually, those attractors are called hyperchaotic
ence of saddle periodic orbits with different numbers of posifor which more than one positive Lyapunov exponent is
tive Lyapunov exponents. found. As we see, in contrast with hyperbolic systems, the

Theorem 10 (Ref. 39: Let D<1 and let O have no nhumber of positive Lyapunov exponents may vary for differ-
unstable non-leading multiplier§The contribution of the ent orbits if the system belongs to a Newhouse region. It is
unstable non-leading multipliers is trivial: instead gfthul- ~ not clear, therefore, in what sense the number of positive
tipliers greater than one” we should writei-p,+j) mul-  Lyapunov exponents can be considered as characteristics of
tipliers...”; the caseD>1 is reduced to the cade<1 by the system as a whole. At the same time, considerations
considering the map~* instead off, so everywhere through based on estimates of contraction and expansion of volumes
the theorem the words “greater than one” should be replace@'e still effective here: the quantityin theorem 10 is none
by “smaller than” in this casd.Then, in casél *), systems Other than the integral part of the Lyapunov dimension cal-
that for any j=0,... | have a countable number of periodic culated at the poinD by the Kaplan—Yorke formufd for the
orbits with j multipliers greater than one in absolute value "estriction of the mapf onto the “center” (or “inertial” )
are dense in the Newhouse regiahis At the same time, no manifold ./,
map close to f can have, in a small neighborhood U of
OuUT, a periodic orbit with more than | multipliers greater IV. GEOMETRIC CONSTRUCTIONS AND
than one in absolute value. CALCULATIONS

The second part of the theorem follows from the easily  We discuss here in greater detail the geometric construc-
verified fact that, in casel (), the mapf (and any nearby tions that determine the dynamics near homoclinic tangen-
map contracts exponentiallyl ¢ 1)-dimensional volumes cies. First, we consider the two-dimensional case. Namely,
on.7° in a small neighborhood dd, and hence, in a small we consider aC'-smooth ¢(=3) two-dimensional diffeo-
neighborhood of any orbit lying ikl entirely. Therefore, any morphismf which has a saddle fixed poifit with multipli-
such orbit cannot have more thapositive Lyapunov expo- ers\ andy where 0<|\|<1, |y|>1. We consider the case
nents. where|\ y|< 1. Suppose the stable and unstable manifolds of

The first part of the theorem is proved by the linearO have a quadratic tangency at the points of the homoclinic
analysis of fixed points of map®8)-(11): for any of these orbitI'.

CHAOS, Vol. 6, No. 1, 1996

Downloaded 28 Jan 2013 to 129.31.241.74. Redistribution subject to AIP license or copyright; see http://chaos.aip.org/about/rights_and_permissions



Gonchenko, Shil'nikov, and Turaev: Dynamical phenomena

T, (IT)

T, "(IT)

N\

O =

0
Gk+1

FIG. 9. This figure illustrates the construction of the striﬁb, lying on
II*, such thaw{ is the domain of definition of the mapf :TT* —T1~. The
points onIl* that lie inTI~ afterk iterations of the mad,, belong to the
setTgk(H’)ﬂH*. The neighborhoodl ~ is contracted in the vertical di-
rection by a factor ofy~! and expanded in the horizontal direction by a
factor of A~ under the action of the mapr,*, and moreover,
Ty YII7)NII~=0. Correspondingly, the sétgk(l'[’) is a narrow rectan-
gular area expanded along tkeaxis and displaced from it by a distance of
the order ofyX. Moreover, the rectangle, “(IT~) and T, **3(I17) do
not intersect. For sufficiently largk, the intersection off ; ®(IT~) with
IMmisa strip(rg as in the figure. A&— o, the strip&rﬂ accumulate on the
segmenWsNII™.

Let U be a small neighborhood of the setUI'. The
neighborhoodJ is the union of a small diskJ, containing

O and of a finite number of small disks surrounding thelate onWj,.

points ofI" which are located outsidg, (Fig. 8. We denote
by N the set of orbits of the mapthat lie entirely inU. Let
Tq be the restriction of ontoU (it is calledthe local map.
Note that the maf, in someC'~*-coordinatesX,y) can be
written in the fornf%4!

y=7yy+a(x,y)xy% (12)

By (12), the equations of the local stable manifai,.
and local unstable manifold/;. arey=0 andx=0, respec-
tively. The representatiofiL2) is convenient in that in these
coordinates the ma'm'(‘, for any sufficiently largek is linear
in the lowest order. Specifically, we have the following
representatidtt of the mapT§: (Xo,Yo) > (Xq.Yi)

Xe= Mo+ [N[¥) ¥ *&(X0. V),

Yo= ¥ Vit |71 (X0, Y,

whereé, and 7, are functions uniformly bounded over &l
along with their derivatives up to the order<2).

Let M*(x™,0) andM ~(0,y") be a pair of points of’
which lie in Uy and belong tow},, and W, respectively.
Without loss of generality we can assume& >0 and
y~>0. LetII" andIl~ be sufficiently small neighborhoods
of the homoclinic points M* and M~ such that
To(ITT)NIITT =0 and To(IT7)NII~=0. Evidently, there
exists an integeq such thatf% M ~)=M . We denote the
map f%I1~—II" asT; (it is calledthe global map The
map T, can obviously be written in the form

x=Ax+f(x,y)x?y,

13

23

1o
o
H+
O M
T,(IT)
U T(IT)

FIG. 10. The range of the mafk: 11" — Pi~ is the vertical stripog.

x—xT=ax+b(y—y )+...,
y=cx+d(y—y )2+..., (14
wherebc # 0 sinceT, is a diffeomorphism, and # 0 since
the tangency is quadratic.

Note that the orbits ofN must intersect the neighbor-
hoodsII* and II~ (otherwise, these orbits would be far
from I'). However, not all orbits that start ill* arrive in
IT™. The set of the points whose orbits get idlo form a
countable number of stripg?=11"NT, “II~ that accumu-
The way of constructing these strips is obvious
from Fig. 9. In turn, the images of the stripg under the
mapsTE give onIl~ a sequence of vertical strips& that
accumulate oW, (Fig. 10.

The images of the stripsﬁ under the mag@; have the
shape of horseshoes, accumulating on the “parabola”

1
o, Gy

A

FIG. 11. The images of the stripsi under the magl,; have a shape of
horseshoes which accumulate DWW .ask— .
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24 Gonchenko, Shil'nikov, and Turaev: Dynamical phenomena

possiblé® (Fig. 12. If T,W.. is tangent ton}. from below
(d<0) (Figs. 12a,, then the selN has a trivial structure:
N={0,I'}.** This is related to the fact that here the intersec-
tion Tyo{ Mo} can be non-empty only foj>i, since the
strip a? lies at a distance of the order ¢f  from W} ., and
o) 15} g 0 the top of the stripT,o{ lies at a distance of the order of

N<y71 from it (Fig. 133. Note that in the case<0 and
d<0 the stripsT,o{ andg lie on different sides oV}, for

a)c<0,d<0  b)c>0, d<0 ¢) ¢<0, d>0 d)¢>0.d>0  anyi andj, and thereforeT,o{No)=0 in this case(Fig.

13b).

FIG. 12. The four different cases of homoclinic tangencies. These cases If T, W, is tangent toW; . from above @>0) (Figs.

differ not only in the mutual arrangement of the stable and unstable manij_zc,d, then the seN will now contain nontrivial hyperbolic

LO'dS Ltangent from below(a), and (b); tangent from abovetc), and(d), - g pgets, |ic<0 andd>0, then for anyi andj the intersec-

ut also in that how the shaded semi-neighborhood of the pdintis . 1. 0 - ) . :

mapped into the neighborhood of the poMt" under the action of the tion of Ty07 with g .'S regular, I.E'.., it consists of two con-

global mapT; . If A>0 andy>0, these four cases are distinguished by the Nnected componentd-ig. 139. In this case the seétl can be

combinations of signs of the parameterandd of the mapT,; . showr?® to be in one-to-one correspondence with the factor-
system of the Bernoulli shift with three-symbo{9,1,2}
which is obtained by identifying the two homoclinic orbits:

T,W,. (Fig. 12. It is clear that the orbits dfl must intersect (...,0,..,0,1,0...,0,...) and (...,0,.,0,2,Q...,0,...). Here,

IT" at the points of intersection of the horseshiicgejl and  all orbits of N\T" are of the saddle type.

the stripso? . Therefore, the structure of the étdepends In the case>0, d>0 the seN also contains non-trivial
strongly on the geometric properties of the intersection of thdyperbolic subsetd“?but, in general, these subsets do not
horseshoes and the strips. exhaust the sell. The reason is that there, besides regular

To be specific, we shall assume thet-0 and y>0. intersections of the horseshoes and the strips, there may also

Then depending on the signs ofindd, four different cases be non-regular intersectior{gig. 13d. The existence of at-

of mutual arrangement of the manifole; . and T, W, are  tractive and structurally unstable orbits is associated with the
latter?344

Below, to be specific we consider only the case0,

d>0. To describe maps close fowe must introduce the

o splitting parametep.: when x4 <0, the parabold ;W in-
——— L — L tersects Wy, at two points; whenu=0, the parabola
M' A N\ ¢ Y _leluo_c is tang_ent td/_\/fOC at one p_oint, and whep >0 there
is no intersection. It is clear that if the bottom of the parabola

L y A A N 1
7/ N\
A //1\;1\\163 descends sufficiently lowlarge and negativg), then each

2) <0 d<"l(;16§ b) ¢>0, d<0 horseshoe intersects each strip. In this case, th&l ses a
’ To' / hyperbolic set similar to the invariant set in the Smale horse-
o shoe. However, ifu is sufficiently large and positive, then
\\J / o the horseshoes and the strips do not intersect at all, and all of
= ‘\ 7 — the orbits excep© will escape fromU.
N The main question is what happens when the parameter
Tc, M’ wu varies from the large negative to the large positive values.
¢) <0, d>0 d)c>0,d>0 - First of all, it is necessary to study the structure of the bifur-

cation set corresponding to one strip, that is, to study the
FIG. 13. Basic elements of the geometry of the intersection of azsfr'qmd bifurcations in the family of the first return maps

1 . . .
a horseshod; (o) for the case\)\y|1<1: In the ca;e of .tan%ency from Tk(ﬂ)ETlTIg):UE_)(T&- The followmg result is valid.
below[(a), and(b)] the horsesho&; (o) lies below “its” strip o7 . In this

case eitherTy(of) intersects the stripso? only if j>i (the case Lemma 1. The map T(w) can be brought to the form
¢>0,d<0) or it does not intersect any strips at@hie case<0,d<0). For
this reason, the structure of the $&is trivial in this caseN=0UT . In the T k. k -k
' =y+ +
case of tangency from aboyéc), and(d)] the horsesho@,(o?) intersects x=y+O(y + vy,
“its” strip aio) regularly, thereby forming the geometric configuration of the (19

Smale’s horseshoe example. Just from this fact it is possible to infer that the  y=M —y2+ O(AKy¥+ 5 K),
structure of the seN is non-trivial here. The difference in the cases

< 0, d > 0 andc>0, d>0 is that the intersection of any horseshoe with any . . .
strip is regular in the first case, while in the latter case there can be nonby means of a linear transformation of the coordinates and
regular as well as regular intersections. As a result, all the orbits of th¢ set the parameter; here the rescaled splitting parameter
exceptl’ can be shown to be of the saddle type in the case 0, d > 0, M=— dyZK(M— v I‘y_ +...) may take arbitrary finite val-
whereas in the case>0,d>0 there can be structurally unstable and attrac- i i

. - o ; S ues for sufficiently large k

tive periodic orbits inN (moreover, systems with arbitrarily degenerate pe- . 0
riodic and homoclinic orbits are dense in the set of systems with homoclinic Proof. Take a point Xo,Yo) € oy. Let (Xq,Yi)

tangencies of this type = T(k)(xo Yo)r  (X0.Y0) = T1(%k Y =Tu(X0.Yo0),  (Xk.Yk)
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O oy .
* u
CHAOS| Smale
sadciile— horse-shoe
node
period homoclinic
doubling bifurcations

@

—— FIG. 15. A homoclinic tangency, the last in the sequence of bifurcations in
k ) e
the development of the Smale’s horseslkibeés is the tangency correspond-

ing to the case shown in the figure 13c

—

FIG. 14. The bifurcation interveﬂulfl,u'k‘s] that corresponds to the se-
quence of bifurcations in the development of the Smale horseshoe on the
strip o, beginning with the first bifurcation of the generation of a saddle-

node fixed point aju= u; * and ending with the last one corresponding to a tion of the map onto the non-wandering set becomes conju-

homoclinic tangency f0p=,uES, after which the horseshoe appears.

=TK(X0.Yo). By (12), (13), the mapT(u) is written in the
form

x—x"=arx(1+..)+b(y—y ) +...,
Y YL+ y KX y)) = penkx(1+...)
+d(y—y )2+...,

(16)

where we use the notation= X, X=Xg, Y=Yk, Y=Yk
With the shift of the originy—y+y~, x—x+x*, we
write the mapT, () in the form

x=by+ 0O\ +0(y?),

17
Y~ y+y720(y) =M+ dy?+ \*O(|X| + |y|) + O(y?),
where
Mi=pu+cA%—yky=+ ... (18

Now, rescaling the variables:
b -k 1 -k
X— q? X, y— a7 y

brings equationg17) to form (15) where M= —dy?*M,.
This completes the proof of the lemma.

Map (15) is close to the one-dimensional parabola map

y=M-—y? (19

whose bifurcations have been well studied, so it is possible

to recover the bifurcation picture for the initial map. For

gate to the Bernoulli shift of two symbols and it no longer
bifurcates asvl increases.

Thanks to lemma 1, similar bifurcations take place for
the mapT, (see Fig. 14 The map has an attractive fixed
pointOy atu e (u, *,u ') which arises at the saddle-node
bifurcation atu=u, ! and loses stability gt.= u, ) at the
period-doubling bifurcation. Here

1
+1 —ky,— ke + -2k
= — +— +...
=Y Y —CANX 2q” ;

3
we t=y TRy T e — Ky ...

ad”
Note that we have found the intervals where the nfigp
possesses the attractive single-round periodic orbit and this is
the main element of the proof of theorem 4 in Section II.

The bifurcation set of the map, is contained in the
interval[ u, 1, 0% where

a)

FIG. 16. This figure shows how new heteroclinic or homoclinic tangencies

the parabola map, the bifurcation set is contained in the iNzre gptained. Here, on the stripd and o° there are already developed

1

terval [ — £,2] of values ofM: at M= —3 there appears a Smale’s horseshoes for the maQsandT; respectively, but the upper horse-

fixed point with the multiplier equal te- 1, this fixed point is

shoe intersects the lower strip “non-regularly.” Ife), the manifold

. . . . ; i 0
attractive aM e (— 1,2 and it undergoes a period-doubling W'(Q)) is tangent toW%(0;). In (b), a pieceW"(0;))N oy of the unstable

bifurcation atM = £, the cascade of period-doubling bifurca-

manifold of the pointO; lies just slightly above the stable manifold of the
point O; and the curveTj(VV”(Oi)mr?) which is a part of the manifold

tions lead to chaotic dynamics which alternates with stabilityiyu(o,)'is tangent tows(0,); i.e., a homoclinic tangency of the invariant

windows and the bifurcations stop lelt=2 when the restric-

manifolds ofO; takes place.
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26 Gonchenko, Shil'nikov, and Turaev: Dynamical phenomena

Ol N W'(0)

FIG. 17. The bi-horseshoe used for the proof of theorem 1. In this situation,

the invariant set of the map, on ¢? is the developed Smale horseshoe. The
mapT; on (r? is close to the moment of the last tangency; i.e., the value of N2 3/ /4 a2 3/ /4 123/ /4
f hs H i _> _>
the parametep is close tou;”. At this moment unstable whiskers of the
€

hyperbolic set onr? touch the stable whiskers of some hyperbolic subset on )

0
O'j.

FIG. 19. This figure shows how, from a contour with two quadratic hetero-
2 clinic tangenciega), one can obtain a cubic tangen@). First, by a small
ILLL‘S: v ky* —cakxt— = 7*2k+ o perturbation we mak@/(O;) intersectWs(O;) transversely and make some
d piece of the manifoldV“(O;) lie just slightly abovews(O,) (b). Then we
_ hs . . . makeW'(0;) intersectW3(O,) in four points(c). There is a special pafle)
At = py _the fixed pOIIl’lt Oka has the_ last homoclinic from (b) to (c) on which a cubic tangency of the manifolé¢"(O;) and
tangency(Fig. 15 and an invariant set similar to those of the ws(o,) (d) takes place.

Smale’s horseshoe example arises after this bifurcation. Note
that these bifurcational intervals do not intersect each other
for differentk.

Clearly, in addition to the orbits that intersddt” each 0 e 0 0
fme in the same sir, the md al<0 has OIS (At UMD 14, Spowe (e cose here- nese onet completly Geveloped
among the stnp; with various |n(_j|ces. The bifurcation '”'Fer_‘SmaIe horseshoes cm? and U? but the upper horseshoe
vals corresponding to thgse orb!ts can now overlap.. This ishtersects the lower strip in a “non-regular” manner, and
the case already for orbits that jump among two steifls gy structurally unstable orbits can arise as a result. In par-
ticular, using this construction, one can obtain new hetero-
clinic (Fig. 163 or homoclinic(Fig. 16b tangencies. More-
over, there also exist here periodic orbits “jumping” from
one strip to anothetthey correspond to the fixed points of
the double-round return mapT; :07— a?). The regions of
stability of these double-round periodic orbits can overlap
for variousi andj, even a countable number of these regions
may have common points. In particular, in the set of maps
with the homoclinic tangencyin the casec>0, d>0) the
maps with a countable number of attractive periodic orbits of
this type are dens&:**

The geometric construction with two horseshoes was
also a basic element of the proof of theorem 1. Figure 17
shows the bi-horseshoe used for the proof. In this situation,
the invariant set of the map; on Uio is a completely devel-
FIG. 18. The geometric construction by which it is possible to obtain cubicoped Smale horseshoe. The .mﬁp on U? is close to the
tangencies. Three horseshoes are shown, WHi®;) and W¥(0;), as ~moment of thehlast tangency; i.e., the value of the parameter
well asW¥(O;) andWS(Oy) are tangent.  is close tou; S. At this moment unstable whiskers of the
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Gonchenko, Shil'nikov, and Turaev: Dynamical phenomena 27

hyperbolic set that lies im? are tangent, at points of some Proof. By (13), (21), the mapT, is written in the follow-
smooth curve, to stable whiskers of the hyperbolic set thaing form (see the proof of lemma)1l
lies in cr?. The latter, in intersection with the curve of tan- —
gency, form a specifi¢thick) Cantor set, which, as New-
house has shown, is the reason for the non-removable natuke-ky(1+ k5, (X,y))
of the tangency.
If we use not two, but a larger number of strips, thenwe ~ =CA*X(1+...)+eq+e1(y—y ")
can obtain degenerate homoclinic tangencies and periodic —\s—1 —\s+1
orbits. In particular, when three horseshoes are used, then Footesalymy )T Ay Ty )T
cubic tangencies can be formed. Figure 18 shows threBy the shift of the originx—x+x", y—y+y~, this map is
horseshoes whei"(O;) andW®°(0O;) are quadratically tan- brought to the form
gent, as arV!(0O;) andW3(0,). The next figurgFig. 19 - K 2
illustrates how fr<])m one of these structurally unstable con- x=by+OM\)+0(y"),
tours one can, by a small perturbation, obtain a cubic tan- o ~ky4 5, =2kO(y)=(go— y Ky +eAxT+..) + ey
gency of the manifoldsV“(O;) andW3(O,).
Taking into account a larger number of strips is a quite +.teg gy THdyS T+ O(y*?)
complicated problem. We bypass the difficulties if, instead of +2kO (x| +y]) -
calculating the multiround return map, note that due to theo-
rem 2, homoclinic tangencies of high orders can appealf we rescale the variables and the parameters as follows
when a piece oW makes many rounds along the initial
homoclinic orbitI'. Therefore, the multiround return maps y:
can presumably be modelled by the first return maps near (go—y Ky~ +cAxT+...)—y KAFWE
orbits of highly degenerate tangencies. iy
These maps are easily calculated. Indeed, let a two- €i—7% 7Y
dimensional diffeomorphisnfi have an orbit of homoclinic
tangency of some ordex In this case the local map, still
has the form given by12), (13); the global map can be
written in the form

—xT=an (1+..)+by—y ) +...,

X—>b77k/SX,y—> ,yfk/s

Ks) (i-DE.
1

then the map takes forif22). The lemma is proved.
Returning to the initial quadratic homoclinic tangency,

we see that, for large numbers of rounds along the ho-

moclinic orbit, the multiround return maps are close to arbi-

X—x"=ax+b(y—y ) +... trary one-dimensional polynomial maps in some regions of
(20) the parameter space and the degree of the polynomials be-
y=cx+d(y—y )Stt+..., comes arbitrarily large when the number of rounds increases.

hus, these multiround maps in a neighborhood of a single

) i ) T
where, in the first equatloq, the dots stand fqr the second, g jinic tangency represent the whole one-dimensional
(and more order terms and, in the second equation, for term%ynamics

s+l . -
of the ordero(|x|+|y—y~[*"%). In conclusion we look at the structure of the set of strips

Consider ans-parameter familyf,, e=(eo,.--.£s-1),  for the multidimensional case. We also show how the proce-
of maps close td (fo=f) where parameters are chosen e of rescaling the first return map works here.

such that they provide a general unfolding of the given tan- Let f be a multidimensionaC'-diffeomorphism ¢=3)
gency betweehV" andW® [see formula1)]. In this case the  ih 4 saddle fixed poinD whose stable manifoldV® is

global map takes the form m-dimensional and the unstable manifoldV! is

x—xt=ax+b(y—y ) +..., n-dimensional. LetW* andW" have a quadratic tangency at
B 21) the points of a homoclinic orbif .
y=CX+gegte (y—y )+...+es 1(y—y )s?! A small neighborhood) of OUT is the union of a small

(n+m)-dimensional diskU, and a finite number of small
(n+m)-dimensional neighborhoods of the pointslofvhich
Let us now consider the first return map(e). The lie outsideUy. As in the two-dimensional case, we denote
following lemma shows that it is close to a polynomial one-the restrictionf|, asT,. The standard form of the map
dimensional map. T, corresponds to the coordinates at which the local stable
Lemma 2 The map T, can be brought to the form and unstable manifolds of O are straightened:
oc={x=0,u=0}, W .={y=0,0 =0} in some coordinates

+d(y—y ST+, .

Y — k. K —k/ loc
X=y+O(N Y +y7¥5), 22 (x,y,u,v). This allows one to writél, in the form
y=Eo+Ejy+...+Es_1y* T+dystt x=A X+ f11(X,y,0)X+ f1(X,y,U,0)U,
+O()\kyk+7_kls) J=A2U+f21(x,y,v)x+f22(X,y,U,U)U,
by a linear transformation of the coordinates and the  T_B v o--(x.v U+ 0ol X.V U (23
parameters.  Here =<8 (go—yky T+ ), { W IubeY WY F Gudx Y.ty
Ei=yty (0D, v =Bov +g21(X,y,U)y+ 0o X,y,U,0)v,
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yd
ARSI

5 X
FIG. 20. The case of a three-dimensional map where the multipliers \
N\, and y, of the fixed pointO are such that &X\,<\;<1<y;. Here the

stripsUECH+ are three-dimensional “plates,” accumulating WANTII* as
k—oo. The stripso lie in a wedge abuttingV"NII~, asymptotically con-

tracted along the non-leading coordinat@and tangent to the leading plane
u=0 everywhere oW“NII". FIG. 21. The three-dimensional case where the multiphersy; andy, of

the fixed pointO are such that €&x;< 1<y;<7y,. Here the strips
U&CH’ are three-dimensional “plates,” accumulating &W'NII~ as
k—oo. The stripso? lie in a wedge abuttingv*NII*, asymptotically con-
tracted along the non-leading coordinat@and tangent to the leading plane
v=0 everywhere oW°NII".

wheref;; andg;; vanish at the origin. Here the eigenvalues
of the matricesA; andB; are the leading multipliers dD,
and the eigenvalues &, andB, are the non-leading multi-
pliers. Correspondingly andy are leading coordinates and ‘ “p
u andv are non-leading coordinates.Nf, is real, the matrix Xk=A1Xo T N &(X0,Ug, Yk U k)
A1 has the formA;=(\,), and it has the form uk:;\kfk(XOvuOvyk DY),

cosp —sing Yo=B1 Vit ¥ X0, Ug, Yk k),
sing  cosp

(25
Alz)\
vo=¥ " “T(Xo,Uo,Yk k),
for complex\,. For realy,, the matrixB; has the form  \hereX andy are constants such thakO.<\, y>y and
B1=y1, and it has the form the functionsé,, &, 7, 7« are uniformly bounded at ak
) along with their derivatives up to the order<2).
(cosﬁ —smap)
1=

sing  cosp
if v, is complex. e Pyl
As was done in Refs. 4, 41, it can be shown that the S
multidimensional mad y reduces to a form that is analogous
in a sense to expressiddl) which we have for the two-
dimensional case. Namely, the following identities hold in K+
someC'~!-coordinates: 01"
[l m—
‘=
fi1lx=0=0, f1j|(y=0,v=0):01 A af(’ﬂ
(24) Oy Mt
9itly=0=0, 91jl(x=0u=0)=0.

Similarly to the two-dimensional case, in such coordinates

thke_ mapTy is linear in the lowest order. Spgqﬁcally, the map FIG. 22. The projections of the multidimensional strig® and o on the
To:(X0,Yo +Uo o) (X, Yk, Uk,vi) for sufficiently large K eading planeg,0)=0 in case (1,1). These projections look the same as in
can be written as the two-dimensional case.
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¥y ¥,)

FIG. 24. The three-dimensional stripg and o; in case (1,2), where the
fixed pointO has multipliers 6<\;<1 and y; ,= vye=¥. Here the strips
oiCII~ are three-dimensional “plates” accumulating oN'NII~ as
k—o. The stripsal lie in the involuted roll, wound onto the segment
WeNTIT™*.

FIG. 23. The three-dimensional stripg and oi in case (2,1), where the that is.strorﬁger than On%k-' -The manimld-“//ék Is not a
fixed point O has multipliers @, ,=\e*'® ar:(d v1>1. Hére’ the strips 9|Obal mv.a”am manifold seizing all dynamlps_ of the_ SySt_em
o'CII* are three-dimensional “plates” accumulating ow*nII* as  IN the neighborhood of the tangency, but it is an invariant
k—o. The stripsoi lie in the involuted roll, wound onto the segment manifold for the mapT, defined on the single stripg.
weNIL™. Nevertheless, the presence of these invariant manifolds al-
lows one to reduce some questions to the study of two-

It is easily seen from these formulas that the pointsdlmensmn‘ijI mapTy|.,- In this way the multidimensional

whose iterations approach a small neighborhtiodof some ~ Version of theorem 1 was proved in Ref. 27.
homoclinic pointM~ e WL, under the action of the map At the same time, there exists here a countable number
oC

Ty, form a countable number oh{ m)-dimensional strips of ”9U'Sta”<?'ard strips, on which the map is essentiz_allly
UE in a small neighborhoodl* of some homoclinic point mult!dl_rnen_smnal. Thus, |f_ the produ@ of all the leading
0 multipliers is less than unity, then for a countable number of

M* e W;.. For sufficiently largek, the stripso, are X o - )
strips o the first return map is close to one of the maps

strongly contracted along the coordinate, while their im- 2 by | 10 f led di
agesoi=TKo? are contracted along the coordinate(Figs. ~ 9'Ven DY formu as(9)—(11) for some rescaled coordinates
(we write only that part of the map which corresponds to

20, 21. In the projection onto the leading coordinates, the - ) _
strips will appear as shown in Figs. 22—25. In the case opon-trivial behavior: for the other variables the mBpacts

complex leading multipliers, the strips lie in involuted rolls as strong c;)r}traﬁtlon or strong expanggon i\t
which wind up, respectively, on the stable or the unstable V\ée explain this statement in more detail for case (2,1) at
manifold. D=A“y<1 and\+y>1. For the sake of simplicity we sup-

Using formulas(25), one can also calculate the first re- pose that there are no non-leading multipliers; i.e., we con-

turn mapsT,:00—ol. In case (1,1) there are no essentigSider the three-dimensional case where the multiplier® of
. ) ! — *ie
differences from the two-dimensional case due to the reduc@€h12=Ae"'¢ andy (here 0<A<1, y>1).
tion theorem. The other cases are more complicated. Here, Lemma 3 In the case under consideration there exist
on most of the stripsol there exist invariant manifolds infinitely many stripsr{ for which the map [ takes the form
.y on which the mapr, is close to the one-dimensional v v
) L Xo=X1te(X1,X2,Y), X1=Y+exn(X1,X2,Y),

parabola magisee(8)], while along the directions comple- e w(X1 X)X =Y FeadXe Xz ) 26
mentary to such a manifold there is contraction or expansion y=M —y2—Bx;+ &3(X1,X2,Y),
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FIG. 25. The four-dimensional strips(k’ and a& in case (2,2), where the
fixed pointO has multipliers @, ,= Ae*'¢ andy; ,= ye*'". Here the strips
oiCII™ lie in the involuted roll wound onto the two-dimensional area
WUNTI~. The strips of lie in the involuted roll, wound onto the
WeNIT*,

in some rescaled coordinates. Here &hd B are rescaled

parameters which can take arbitrary finite values for k large

enough; the functions;, tend to zero as &> .
Proof. By (23), (24), the mapT, has the form

X1= (X080 —Xzsing) + O([|x[1?|y]),
Xa= N (X,€08p + X3 5ing) +O([|x]?]y]),

y=yy+O(xllyl?).

Take a pair of homoclinic pointy ~(0,0y~) e W, and
M*(x{ ,x3,0) € W;.. SinceW" andW® have a quadratic
tangency atM*, the global mapT, acting from a small
neighborhood oM ~ into a small neighborhood dfl * has

the form

(27

)?l_XI:bl(y_y_)+a11X1+ A Xot...,

;z_X;:bz(y_y_)'f‘azj_Xl'f' a22X2+... y (28)

)7:#+C1Xl+ 02X2+ d(y_y_)2+ ey

whereb?+b3 # 0,c2+c3 # 0 sinceT; is a diffeomorphism,
andd # O since the tangency is quadratjc;is the splitting
parameter.

We may assumé; # 0. By the orthogonal coordinate
transformation

X1—Xq COSa+X, Sin @, Xy,— X, COSa—X; Sin «,

CHAOS, Vol. 6,
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which obviously do not change forif27) of the local map,
the termb,(y—y~) in the second equation d28) can be
eliminated if b,cosy—b;sine=0, and the global map takes
the form

X3—X1 =b(y—y ) +agXs+ajXet... ,
)?2—X2+=a21xl+ a.22X2+... y (29)
)7=M+01X1+szz+d(y—y7)2+... y

with new coefficientsx;" aj, ¢;. Hereb # 0 and still
c2+c5#0.
By (25), (29), the first return maf]’szlT'g is written in

the form
)?l_XI: b(y_y_)+a11)\kxl+a12)\kX2+ ey

)?2_ X;— = a21)\kX1+ azzkaZ'f' ey (30)

Yy Xy=y )y Yy Y (xy)
= u+NBr(@) X1+ N Bo(@)xo+d(y—y )2 +...

where B (¢)=c; coske+c,sinke, Bo(¢@)=C, coske
— ¢ Sinke.

Shifting the originly—y+y~, x—x+x"+..., we can
eliminate the constant terms in the first two equation&306f
and the map takes the form

x;=by+\*O(|[X) + O(y?),

X =81\ *X1 + A\ %+ O(y?) + Mo (||x]),

Y —k
;) o171 +IR)

=M+ dyYy2+ (A Y) Bu( @) X1+ (N Y)*Ba(@)Xo
+ MO ([X(2+ |yl - [Ix]) + Yoo (y?),

y+

(31)

where

M= Y+ NBul@) €l + N Bal @) & — v iy +..).
Rescaling the variables:

b
axly_k,

d agxohky K,

X1—> - X2—>

1

y——gyr

we get the following expression for the map:

)?1:y+ y )?2:X1+... y

y=M—y2—Bx;+ (A 2y)*Ba(@)Xo+ ... , (32

where the dots stand for the terms which tend to zero as
k—o; M=—dy*My, B=—bBy(e)(Ay)*

Recall that we consider the case>1, \2y<1. There-
fore, \?y)¥<1 and (y)*>1 at largek. Thus, the term
with x, in the third equation of(32) is small, so the
map is now brought to form26). The coefficientB is
the product of the large quantityh§)* and the value
B1k=C1 coske+c, sinke. When the ratiog/7r is abnor-
mally (exponentially well approximated by rational frac-
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tions(suche are dense on the interval ¢f),), the coefficient

31

[originally published inMethods of Qualitative Theory of Differential

Blk can be made appropria’[e|y small for a countable number Equations(Gorki University Press, Gorki, 1989in Russian].

of values ofk, so thatB may take an arbitrary finite value.
The lemma is proved.
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