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Nonlinear multi-dimensional Hamiltonian systems that are not near integrable typically have

mixed phase space and a plethora of instabilities. Hence, it is difficult to analyze them, to visualize

them, or even to interpret their numerical simulations. We survey an emerging methodology for

analyzing a class of such systems: Hamiltonians with steep potentials that limit to billiards. VC 2012
American Institute of Physics. [http://dx.doi.org/10.1063/1.4722010]

Very little is known regarding the dynamics in high-

dimensional, far-from-integrable systems. Until recently,

in such systems, local analysis near fixed points and peri-

odic orbits or geometrical analysis near specific homo-

clinic or heteroclinic structures have been the only

available analytical tools. Numerical studies of such sys-

tems are possible, yet, due to the mixed phase space prop-

erty, these are difficult to interpret. Here, we survey a

methodology which we (the authors and, in part, in col-

laboration with Anna Rapoport) developed in the last

decade–the near-billiard paradigm. In this paradigm, we

can study the local and global properties of classes of

multi-dimensional smooth systems by analyzing the sin-

gular billiard limit for various types of multi-dimensional

systems. Notably, billiards provide a rich playground for

dynamicists. Billiards can be integrable, near-integrable,

of mixed phase space or uniformly hyperbolic (yet singu-

lar), and in many cases, their complex and rich dynamics

have been understood in great detail. Billiards and simple

impact systems are commonly used to model the classical

and semi-classical motion in systems with steep potentials

(e.g., in kinetic theory, chemical reactions, cold atom’s

motion, microwave dynamics). However, the correspon-

dence between the smooth motion and the singular bil-

liard model occurs to be not immediate. This

correspondence is the main topic of the present article

which summarizes the works of Refs. 1–8. On one hand,

we show that a proper limit may be formulated, so that

some basic dynamical properties of the billiard are inher-

ited by the smooth flow (Sec. II and parts of Sec. V). On

the other hand, more surprisingly, we show that some of

the crucial features of the billiard flow are not shared by

the smooth systems (Secs. III–V). Nonetheless, even in

this latter case, we are able to learn about the properties

of the smooth flow by devising singular analysis tools.

I. INTRODUCTION

The original motivation of our work is related to the

Boltzmann-Sinai ergodic hypothesis. From the mathematical

point of view, this hypothesis states that the gas of elastically

colliding hard spheres is an ergodic system. While this prom-

inent problem is still unresolved, the work on it led to funda-

mental developments in the theory of dynamical systems.9–14

The starting point of this analysis is the observation that the

dynamics of a gas of n hard spheres in a d-dimensional spa-

tial domain is governed by a semi-dispersive billiard in an

Nd-dimensional space.9,10,14

The “smooth Boltzmann gas” corresponds to the next

order approximation where the motion is modeled by a

(Hamiltonian) system of classical particles which pair-wisely

interact with each other via a smooth steep repelling poten-

tial. At large kinetic energies, the interaction between two

particles becomes essential only when they come very close

to each other, i.e., at very short intervals of time that corre-

spond to a near collision. As Einstein wrote: “Boltzmann

very correctly emphasizes that the hypothetical forces

between the molecules are not an essential component of the

theory as the whole energy is of kinetic kind.”15 In other

words, the hard-spheres system appears as a universal model

for the interaction of classical particles at high kinetic ener-

gies. The huge number of degrees of freedom in a typical

molecular system implies that statistical means should be

employed for the analysis. This is the main motivation

behind the quest to prove the Boltzmann-Sinai ergodic

hypothesis.

We propose that one has to actually address the question

of how the statistical properties of the hard-sphere model are

translated back to the case of a smooth steep potential. Fol-

lowing the Fermi-Pasta-Ulam numerical experiments and the

subsequent discovery of high-dimensional integrable sys-

tems, it was realized that the large number of degrees of free-

dom is insufficient for justifying the statistical approach.16

One needs instability to allow the system to “forget” its ini-

tial state, so a universal probability distribution could estab-

lish itself in the space of system states.

We notice that instability in a dynamical system is a dif-

ferential property (having to do with the rate at which close-

by initial conditions diverge in time). Hence, to transfer the

statistical description of the hard-sphere system to the

smooth Boltzmann gas, one needs to control the derivatives
of the approximation error. Since the hard-sphere system has

singularities, this becomes a delicate issue. In the series of
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works that are reviewed here, we develop methodologies

which could be used to address this problem.

In particular, we show that the specific instability of

dispersive billiards (i.e., a uniformly hyperbolic structure),

cannot universally survive a smooth regularization of the bil-

liard. Since the uniform hyperbolicity of the dispersive

billiards appears to be the underlying mechanism of the ergo-

dicity of hard-sphere systems, it follows that the hypothesis

that the statistical properties of the smooth Boltzmann gas

are potential-independent and similar to those of the hard-

sphere gas could be correct on a finite time scale, yet it can-

not be true in the infinite time limit.

This time scale must, for all practical purposes, be large

enough in systems with huge numbers of particles. However,

for small number of degrees of freedom, the changes in sta-

tistics can become observable (see, e.g., Ref. 33). Thus, our

results stress the importance of analyzing the finite-time

behavior of the system and of analyzing how this behavior

scales with the number of degrees of freedom. These issues

become increasingly more relevant as experimental and nu-

merical capabilities develop.

More generally, billiards and impact systems arise in a

wide variety of science and engineering applications.17–19

The singularities in models with impacts often lead to ambig-

uous results: it is not always clear how to continue solutions

through singularities, especially in systems with friction.

A natural method of resolving such difficulties is to recall

that the impact system is, in many cases, a simplified model

for forces that grow very fast across certain boundaries, the

surfaces of impact. So, regularizing impact systems by

smooth models with sharp growing forces near the boundary

is a natural approach. One can then study the smooth model

and see what conclusions survive in the limit.17,20,21 How-

ever, one must also be sure that the result is independent of

the particular choice of the smooth approximation.

This last question might seem to be easy for the friction-

less case where the energy is preserved and the forces are nor-

mal to the impact boundary. Under these conditions, for any

smooth regularization, one recovers the universal elastic colli-

sion law: the angle of reflection is approximately equal to the

angle of incidence. This observation can indeed be enough

when we are interested in some topological properties of the

system. However, if we seriously want to study the dynamics,

we must analyze differential properties. Such an analysis leads

to the non-trivial question: “Under which conditions on the

smooth regularization of the billiard, the derivative of the dif-

ference between the reflection angle and the incidence angle

with respect to initial conditions is close to zero?”

We formulate the above ideas by the following singular

perturbation problem. Consider Hamiltonian flows induced

by a one-parameter family of steep potentials depending on a

steepness parameter �,

H ¼
Xn

i¼1

p2
i

2
þ Vðq; �Þ; Vðq; �Þ !

�!0

0; q 2 Dn@D;
E; q 2 @D:

�
(1)

Here ðq; pÞ 2 Rn � Rn; D � Rn, and @D is a piecewise

smooth. The potential Vðq; �Þ is non-negative Crþ1-smooth

function. The derivatives of Vðq; �Þ near @D grow without no

bound as �! 0. The vector e ¼ ðE1; E2;…Þ provides the

limit values of the steep potential on each of the smooth con-

nected components of the boundary. On each such compo-

nent, the constant Ei may be finite or infinite. Our goal is to

compare the behavior of the orbits of system (1) at suffi-

ciently small e with the billiard flow in D.

The persistence results of Refs. 1, 2, and 5 are concerned

with comparing the behavior near regular billiard orbits—

orbits that hit the boundary of D at non-zero angles (see

Sec. II). In Ref. 5, we show that for regular reflections the

time-shift map by the billiard is Cr-close to the smooth flow

for arbitrary dimension and geometry. Moreover, we prove

that a certain billiard limit may be used for developing an as-

ymptotic expansion for approximating regular reflections of

the smooth flow. We find bounds on the error terms of the

approximation (and its derivatives, up to order r) and next

order corrections for a large class of potentials. In this way, a

perturbational tool for analyzing far-from-integrable Hamil-

tonian systems is developed. This may be used to establish

quantitative persistence results, for example, periodic orbits

and separatrix splitting (see Refs. 5 and 8 and Table II).

These persistence results were utilized to prove the existence

of a large collection of chaotic hyperbolic orbits in any infi-

nite set of sufficiently small scatterers and in convex

domains with small scatterers.22,23 We think that these tools,

which may be thought of as the analog of the near-integrable

Melnikov technique in the near-billiard limit, will be further

used to examine finite � effects in specific applications.

Singular orbits are those billiard orbits which are

tangent to the boundary or those which hit the corners (i.e.,

the points where the billiard boundary is not smooth). Sec-

tion III summarizes the two-dimensional behavior near sin-

gular orbits, and Sec. IV summarizes the higher-dimensional

results.

In Refs. 1 and 3, we studied the behavior of smooth orbits

that are close to the billiard orbits of non-degenerate (i.e.,

quadratic) tangency in two-dimensional dispersing billiards.

While the orbit of the smooth system is still close to the bil-

liard orbit in this case, there can be no closeness with deriv-

atives (since the billiard map is not smooth at tangent

orbits). We derive the normal form for the return map gen-

erated by the smooth flow near a periodic tangent billiard

orbit (where all reflections but the tangent one are regular

and occur at dispersing components). Notably, this formula

describes the smooth system behavior in a region where

there is no correspondence with the billiard motion. Analy-

sis of this return map leads to a proof that stability islands
emerge from such tangent periodic orbits of two-

dimensional dispersive billiards. This is the main result of

Refs. 1 and 3. It shows that even though dispersive billiards

are ergodic,10,24 the ergodicity is not typically inherited

by the smooth-potential approximations (yet in special

cases the “soft billiard” potentials can produce ergodic

behavior9,25–32). Experiments with an atom-optic system33

confirm the drastic change of statistical properties at the

transition from a dispersive billiard to its smooth-potential

approximation due to the emergence of stability islands out

of singular orbits.
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In Ref. 4, we addressed the behavior of two-dimensional

smooth systems near billiard orbits that hit a corner. The bil-

liard map is typically discontinuous at the corner orbit. We

show that in the Poincaré map generated by the smooth sys-

tem the discontinuities are “sewn” by means of a corner
scattering function which can be determined via the analysis

of the scaled limit of the potential at the corner. This limit is

not integrable, so no explicit formulas for the scattering

function exist; however, one can study its properties using

qualitative methods. A surprising finding is that the scatter-

ing function is often non-monotone, i.e., the billiard disconti-

nuities are not smoothed in the “most economic” way. In

particular, the range of the reflection angles generated by the

smooth system near the billiard corner may be larger than

that achieved by smoothing the discontinuous billiard limit,

namely, it is not determined by the billiard geometry alone.

In the two-dimensional case, the non-monotone scattering

function appears near corners of angles p
n, where n � 2 is an

integer. We show that billiard corner orbits with outgoing

angles corresponding to the extremal values of the scattering

function produce elliptic islands in the smooth system. Thus,

one should expect the emergence of stable periodic orbits in

the smooth system when the corner angle varies across p
n,

e.g., when the corner angle tends to zero.

Notably, the underlying mechanism of ergodicity loss is

purely geometrical; it is based on the fact that orientation in

the momenta space is flipped at every collision.1–3

In Ref. 6, we employ these observations (for a corner

with an additional symmetry) to show that elliptic orbits

appear in systems with steep smooth potentials that limit to

Sinai billiards for arbitrarily large dimension. While the

examples considered in Ref. 6 cannot be directly linked to the

smooth many particles case, this construction of a stability

island (here—a positive measure set filled by quasiperiodic

orbits) in multi-dimensional highly unstable systems supports

our conjecture that the systems of many particles interacting

via a steep repelling potential are, typically, not ergodic.

Finally, we summarize the implications of the above

results on chaotic scattering.8,34–37 There, billiard rays come

from infinity, hit some scatterers that lie in a bounded do-

main, and then escape again. With the steep potential meth-

odology, we are able to analyze the correspondence between

scattering by hard core obstacles (billiards) and scattering by

steep smooth hills. In particular, with this correspondence,

we are able to establish the existence of a hyperbolic repeller

with fractal structure in a smooth Hamiltonian flow.

The paper is ordered as follows. In Sec. II, we analyze

the case of regular reflections. In Sec. III, we study the

behavior of smooth systems near singular billiard orbits for

the two-dimensional case. A multidimensional example is

considered in Sec. IV. In Sec. V, we apply the results to the

scattering problem, and in Sec. VI, we list some open prob-

lems and perspective directions.

II. PERSISTENCE RESULTS FOR BILLIARD-LIKE
POTENTIALS

We begin the review by formulating precisely what we

mean by “approximating the smooth motion by billiards”.

To this aim, we first define the billiard flow, what are regular

billiard reflections, and non-degenerate tangential billiard

reflections. We then introduce the notion of billiard-like
potentials on a domain D. Briefly, these are one-parameter

families of Crþ1-smooth potentials, V�, that are essentially

constant inside D and grow fast at the boundary of D. The

growth rate approaches infinity as the steepness parameter �
approaches zero. All the works that are reviewed here are

concerned with studying the flows induced by families of

mechanical Hamiltonian systems with billiard-like potentials

at sufficiently small � values.

We establish first that for such potentials the behavior

near the boundary usually limits (in the Cr topology) to the

billiard reflections.1,2,5 Then, we show that next order correc-

tions to the billiard approximation may be found, with pre-

scribed error estimates.5 We end this section by recalling that

these results imply that non-singular non-parabolic periodic

orbits and hyperbolic sets of the limit billiard flow persist for

sufficiently small � values.1,2,5 Utilizing the perturbation anal-

ysis, these persistence results become quantitative.5

A. Smooth reflections limit to billiard reflections

The first main step in the theory appears technical: it

consists of proving that under specific natural conditions on

Vðq; �Þ, the regular billiard reflections are indeed close (and

so are their derivatives) to the smooth flow reflections (see

below for precise definitions of these concepts). Smooth

trajectories that limit to non-degenerate tangent reflections

are only C0-close to the limiting map. Thus, this initial

step formulates under what conditions the limiting process

makes sense. Moreover, this step enables to subsequently

use standard dynamical systems tools that relate two nearby

maps. Here, the closeness of derivatives is essential as it

allows to use persistence and structural stability arguments

(see Sec. II B).

More precisely, consider a domain D inside Rd or inside

a flat torus T
d
. Assume that the boundary @D consists of a fi-

nite number of Crþ1 (r � 1) smooth (d–1)-dimensional sub-

manifolds Ci,

@D ¼ C1 [ C2 [ ::: [ Cn:

The boundaries of these submanifolds, when exist, form the
corner set of @D:

C� ¼ @C1 [ @C2 [ ::: [ @Cn:

The billiard flow is defined to be the inertial motion of a

point mass inside D accompanied by elastic reflections at the

boundary @D. Let q 2 D and p 2 Rd denote the particles

coordinates and momenta. Denote the billiard flow by

qt ¼ btq0, where qt ¼ ðqt; ptÞ and q0 ¼ ðq0; p0Þ are two inner

phase points (i.e., q0;t are both in the interior of D). If the pi-

ece of trajectory which connects q0 with qt does not have

tangencies with the boundary, then qt depends Cr-smoothly

on q0. On the other hand, qt loses smoothness at any point

q0 whose trajectory is tangent to the boundary at least once

on the interval (0,t). Notice that qt is not defined if at some

ts < t the trajectory qts hits the corner set.
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A tangency may occur only if the boundary is not

strictly convex in the direction of motion at the point of tan-

gency. A tangency is called non-degenerate if the curvature

in the direction of motion does not vanish. If the billiard

boundary is strictly concave (strictly dispersing), then all the

tangencies are non-degenerate. On the other hand, if the bil-

liard’s boundary has saddle points (or if the billiard is semi-

dispersing), then there always exist directions for which the

tangency is degenerate.

The billiard flow may be expressed as a formal Hamilto-

nian system,

Hb ¼
p2

2
þ VbðqÞ; VbðqÞ ¼

0; q 2 intðDÞ;
þ1; q 62 D:

�

Theorem 1 states that the smooth Hamiltonian flow defined

by H ¼ p2

2
þ Vðq; �Þ limits in a natural sense to this billiard

flow when the family of smooth potentials Vðq; �Þ satisfies

the four conditions below. Condition I guarantees that inside

D the motion is close to inertial motion. Condition III

insures that the particle cannot penetrate the boundary. Con-

dition II implies that the boundary is repelling and that the

reaction force is normal to the boundary, so the reflection

law limits to standard billiard reflection law (angle of reflec-

tion equals to the angle of incidence). Condition IV is less

intuitive—it is needed for the smooth closeness results and

for preventing the particle from sliding along the boundary.

Condition I. For any fixed (independent of �) compact
region K � intðDÞ, the potential Vðq; �Þ diminishes along
with all its derivatives as �! 0,

lim
�!0
jjVðq; �Þjq2KkCrþ1 ¼ 0: (2)

Let NðC�Þ denote a fixed (independent of �) neighborhood of

the corner set and NðCiÞ denote a fixed neighborhood of the

boundary component Ci. Define ~Ni ¼ NðCiÞnNðC�Þ (we

assume that ~Ni \ ~Nj ¼ ; when i 6¼ j). Assume that for all

small � � 0, there exists a pattern function

Qðq; �Þ :
[

i

~Ni ! R1

which is Crþ1 with respect to q in each of the neighborhoods
~Ni and it depends continuously on � (in the Crþ1-topology,

so it has, along with all derivatives, a proper limit as �! 0).

Further assume that in each of the neighborhoods ~Ni the fol-

lowing is fulfilled.

Condition IIa. The billiard boundary is composed of
level surfaces of Q(q;0),

Qðq; � ¼ 0Þjq2Ci\ ~N i
� Qi ¼ constant: (3)

In the neighborhood ~Ni of the boundary component Ci (where

Qðq; �Þ is close to Qi), define a barrier function WiðQ; �Þ,
which is Crþ1 in Q, continuous in � and does not depend

explicitly on q, and assume that there exists �0 such that

Condition IIb. For all � 2 ð0; �0�, the potential level sets
in ~Ni are identical to the pattern function level sets, and thus

Vðq; �Þjq2 ~N i
� WiðQðq; �Þ � Qi; �Þ; (4)

and

Condition IIc. For all � 2 ð0; �0�; rV does not vanish
in the finite neighborhoods of the boundary surfaces, ~Ni,

thus

rQjq2 ~N i
6¼ 0; (5)

and for all Qðq; �Þjq2 ~N i
,

d

dQ
WiðQ� Qi; �Þ 6¼ 0: (6)

In this way, the rapid growth of the potential across the

boundary is described in terms of the barrier functions alone.

Note that by Eq. (5), the pattern function Q is monotone

across Ci \ ~Ni, so either Q > Qi corresponds to the points

near Ci inside D and Q < Qi corresponds to the outside or

vice versa. To fix the notation, we adopt the first convention.

Condition III. There exists a constant (may be infinite)
Ei > 0, such that as �! þ0 the barrier function increases
from zero to Ei across the boundary Ci:

lim
�!þ0

WiðQ; �Þ ¼ 0; Q > Qi;
Ei; Q < Qi:

�
(7)

By Eq. (6), for small �, Q could be considered as a function

of W and � near the boundary: Q ¼ Qi þQiðW; �Þ. Condition

IV states that for small � a finite change in W corresponds to

a small change in Q:

Condition IV. As �! þ0, for any fixed W1 and W2

such that 0 < W1 < W2 < Ei, for each boundary component
Ci, the inverse barrier function QiðW; �Þ tends to zero uni-
formly on the interval ½W1;W2� along with all its ðr þ 1Þ
derivatives.

The use of the pattern and barrier functions reduces the

d-dimensional Hamiltonian dynamics in arbitrary geometry

to a 1-dimensional dynamics, thus allowing direct asymp-

totic integration of the smooth problem. This is the main

tool, introduced first in Ref. 1 for the two-dimensional case

and in Ref. 5 for the general d-dimensional case that enables

the analysis of these high-dimensional nonlinear problems.

Barrier functions satisfying the above conditions include

(W ¼ �
Qa ; e�

Qa

� ; � log Q).

Notably, the theory applies also to the following common

setting. Consider a potential V(q) which does not depend on

any small parameter. Assume V is bounded inside a certain

region D and grows to infinity at the boundary of D. Then, at

sufficiently high energy value h, the kinetic energy prevails

inside D so the motion there is essentially inertial until the

particle arrives at a thin boundary layer near @D. By rescaling

the Hamiltonian and momenta: Ĥ ¼ H=h; p̂ ¼ p=
ffiffiffi
h
p

, we

obtain the Hamiltonian Ĥ ¼ p̂2

2
þ �VðqÞ where � ¼ 1=h. Then,

conditions I–IV are satisfied for reasonable choices of V(q)

that approach infinity at @D (including classical models like

Coulomb and Lennard-Jones potentials).

Given a domain D, the one-parameter family of poten-

tials Vðq; �Þ is called a family of billiard-like potentials on

D if for any � > 0; Vðq; �Þ is a Crþ1-smooth function which

satisfies the four conditions I-IV.
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Theorem 1 (Refs. 1, 5, and 38). Given a family of
billiard-like potentials Vðq; �Þ on D, let h�t denote the Hamil-
tonian flow defined by

H ¼ p2

2
þ Vðq; �Þ; (8)

on an energy surface H ¼ H� < Ê ¼ infðVðq; �Þj@DÞ, and let
bt denote the billiard flow in D. Let q0 and qT ¼ bTq0 be two
inner phase points, so that on the finite time interval [0,T]

the billiard trajectory of q0 has a finite number of collisions.
Assume all these collisions are either regular reflections or
non-degenerate tangencies. Then h�t q !

�!0
btq, uniformly for

all q close to q0 and all t close to T. If, additionally, the bil-
liard trajectory of q0 has no tangencies to the boundary on
the time interval [0,T], then h�t !

�!0
bt in the Cr-topology in a

small neighborhood of q0, and for all t close to T.
The proof of the theorem includes integration of the

equations of motion at different components of the boundary

layer, according to the rate at which the steep potential

changes, see Refs. 5 and 38 for complete details.

We conclude that the map defined by the billiard flow

from a local section at q0 to a local section at qT is Cr-close

(respectively, C0-close) to the corresponding family of maps

that are defined by the smooth potential Vðq; �Þ; as long as

this segment contains only regular collisions (respectively,

regular collisions and some non-degenerate tangencies).

Using structural stability arguments, we can immediately

conclude that for sufficiently small � regular non-parabolic

periodic orbits persist and that hyperbolic sets persist as well.

Such persistence results are in-line with the common intuition

that the motion under steep potential is well approximated by

billiard (in Sec. III, we show that this intuition is incorrect

near non-regular reflections).

Next, we provide error estimates for this approximation.

B. Corrections and error estimates of the billiard
approximation

Theorem 1 implies that return maps of the billiard flow

and of the smooth flows are close. We derive error estimates

and next order corrections for such return maps by consider-

ing a family of auxiliary billiard flows in a modified domain

D�. The analysis also provides a good global section for the

smooth flow that may be utilized in numerical simulations.

Indeed, it is shown that the boundary of the auxiliary do-

main, @D�, provides a transverse section to regular orbits of

the smooth flow. More precisely, the smooth flow defines a

map U� on the set of regular (non-tangent) phase-points,

S� ¼ fq ¼ ðq; pÞ : q 2 @D�; hp; nðqÞi > 0g: (9)

We show that to leading order U� is well approximated by

the corresponding billiard map B� in D� and provide the

explicit expression for the next order correction and bounds

on the error terms.

To construct the domain D�, we define, for each bound-

ary component Ci, three boundary layer parameters

ð�i; gið�iÞ; diÞ all tending to zero with �. The parameter �i

equals to the value of the potential on the ith boundary of D�.

It is chosen so that the inverse barrier function, QiðW; �Þ;
tends to zero along with all its derivatives uniformly for

H� � W � �i (see Fig. 1). The small parameter gi equals to

the corresponding level of the inverse barrier function on

@D�: gið�Þ ¼ Qið�i; �Þ. The parameter di controls the close-

ness to inertial motion in the region D�
int. More precisely,

D�
int is the region bounded by the surfaces Qðq; �Þjq2 ~N i

¼
Qi þ dið�Þ together with @NðC�Þ (i.e., excluding the corner

neighborhoods). The values of dið�Þ are chosen so that the

potential V tends to zero uniformly along with all its deriva-

tives in D�
int. By conditions I and IV, we may choose the pa-

rameters �i; gi; di such that gi 	 di, namely, D�
int � D� (see

below).

To each set of the boundary layer parameters �i; gi; di,

we associate Crþ1 bounds on Qi in D=D� (denoted by M
ðrÞ
i )

and on V in D�
int (denoted by mðrÞ),

M
ðrÞ
i ð�i; �Þ ¼ sup

�i 
 W 
 H�

0 
 l 
 r þ 1

jQðlÞi ðW; �Þj; (10)

mðrÞðd; �Þ ¼ sup
q 2 D�

int

1 
 l 
 r þ 1

jj@lVðq; �Þjj: (11)

Condition IV implies that the M
ðrÞ
i ’s approach zero as �! 0

for any fixed � > 0; hence, the same holds true for any suffi-

ciently slowly tending to zero �ð�Þ, i.e., the required �ið�Þ
exist. Similarly, condition I implies that mðrÞ approaches

zero as �! 0 for any fixed d; therefore, the same holds true

for any choice of sufficiently slowly tending to zero dið�Þ. As

mðrÞ ! 0, it follows that within D�
int the flow of the smooth

Hamiltonian trajectories is Cr-close to the free flight, i.e., to

the billiard flow. It is established in Ref. 5 that by using an

appropriate change of coordinates in each of the three

regions (inside D�
int, in D�nD�

int, and outside of D�), the equa-

tions of motion may be written as differential equations inte-

grated over a finite interval with a right hand side which

tends to zero in the Cr-topology as �! 0. Thus, Picard itera-

tions supply, in addition to the error estimates for the zeroth

FIG. 1. The partition of the domain D into regions. D�
int is an interior region

in which Vðq; �Þ is smaller than mðrÞðd; �Þ in the Cr topology. D� is the auxil-

iary billiard, so on its ith boundary components Vðq; �Þ ¼ �i. Clearly,

D�
int � D�. The boundary of D� provides a global section S� for regular

reflections of the smooth flow (see Ref. 5).
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order approximation, higher order corrections to the return

map. We summarize below the explicit formulae for the first

order corrections. These formulas may be useful in future

applications—they may play in the near-billiard context the

same role as the Melnikov analysis does for near-integrable

systems.

The map U� on S� (see Eq. (9)) is composed of an inte-

rior flight part and a reflection part: (U� ¼ R� � F�).
The interior map F� (see Fig. 2): Let q 2 C�

j for some j,
and assume that the segment qþ ps with s 2 ½0; s�� ðp; qÞ� that

connects C�
j with C�

i lies inside D� so that qþ ps�� ðq; pÞ 2 C�
i .

Further assume that the reflections at C�
j;i are non-tangent, so

there is some c > 0 such that hp; nðqÞi > c and hp; nðqþ ps��
ðq; pÞÞi < �c. Then, the free flight map F� : ðq; pÞ7!ðqs� ; ps�Þ
for the smooth Hamiltonian flow is OCrðmðrÞ þ �i þ �jÞ-close

to the free flight map F�� of the billiard in D� and is given by

qs� ¼ qþ ps� þ
ðs�

0

rVðqþ ps; �Þðs� s�Þds

þ OCr�1ððmðrÞ þ �i þ �jÞ2Þ;

ps� ¼ p�
ðs�

0

rVðqþ ps; �Þdsþ OCr�1ððmðrÞ þ �i þ �jÞ2Þ:

(12)

The flight time s�ðq; pÞ is OCrðmðrÞ þ �i þ �jÞ-close to

s�� ðp; qÞ and is uniquely defined by the condition

Qðqs� ; �Þ ¼ Qi þ gið�Þ,

s�ðq; pÞ ¼ s�� ðq; pÞ þ
rQ;

ðs��

0

rVðqþ ps; �Þðs�� � sÞds

� �
hrQ; pi

þ OCr�1ððmðrÞ þ �i þ �jÞ2Þ;
(13)

where rQ is taken at the billiard collision point qþ
ps�� ðp; qÞ where Qiðqþ ps�� ðp; qÞ; �Þ ¼ Qi þ gið�Þ.

The reflection map R� (see Fig. 3): To formulate the

reflection law R� for the smooth orbit, we need to define sev-

eral geometrical entities. Consider a point q 2 C�
i and let the

momentum p be directed outside D� (i.e., towards the bound-

ary) at a bounded from zero angle with C�
i . The smooth trajec-

tory of (q,p) spends a small time s�cðq; pÞ outside D� and then

returns to C�
i with the momentum directed strictly inside D�.

Let py and px denote the components of momentum, respec-

tively, normal and tangential to the boundary C�
i at the point q,

py ¼ hnðqÞ; pi; px ¼ p� pynðqÞ: (14)

We assume that the unit normal to C�
i at the point q, n(q), is

oriented inside D�, so py < 0 at the initial point. Denote by

Qyðq; �Þ the derivative of Q in the direction of n(q),

Qyðq; �Þ :¼ hrQðq; �Þ; nðqÞi:

Recall that the surface C�
i is a level set of the pattern function

Qðq; �Þ, and thus, we may study how the normal n(q)

changes as one moves along the level set C�
i (in the tangen-

tial plane) and as one moves to nearby level sets (in the nor-

mal direction). Let Kðq; �Þ denote the derivative of n(q) in

the directions tangent to C�
i , and let lðq; �Þ denote the deriva-

tive of n(q) in the direction of n(q). Obviously, Qy is a scalar,

K is a matrix, and l is a vector tangent to C�
i at the point q.

Note that Qy 6¼ 0 by virtue of condition IIc. Define the

integrals

I1 ¼ I1ðq; pÞ ¼ 2

ð�py

0

Q0i
�

1� p2
x � s2

2
; �

�
ds

I2 ¼ I2ðq; pÞ ¼ 2

ð�py

0

Q0i
�

1� p2
x � s2

2
; �

�
s2ds;

(15)

and the vector J,

Jðq; pÞ ¼ � I2ðq; pÞ
py

lðq; �Þ þ I1ðq; pÞKðq; �Þpx

� 	
=Qyðq; �Þ:

(16)

Notice that J is a vector tangent to C�
i at the point q and that

by Eq. (10),

FIG. 2. Free flight between boundaries C�
i and C�

j . A smooth trajectory is

marked by a bold line, and an auxiliary billiard trajectory is marked by a

solid line (see Ref. 5).

FIG. 3. Reflection from the boundary Ci. A smooth trajectory is marked by a

bold line. The auxiliary billiard trajectory changes its direction according to

the usual reflection law from the boundary of (D�), namely, C�
i (see Ref. 5).
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I1;2 ¼ OCr ðMðrÞi Þ; J ¼ OCr�1ðMðrÞi Þ: (17)

Lemma 3 of Ref. 5 asserts that for sufficiently small � 
 �0

the reflection map R� : ðq; pÞ7!ð�q; �pÞ is given by

�q¼ qþOCr ðMðrÞi Þ¼ qþpxs
�
cðq;pÞþOCr�1ððMðrÞi Þ

2Þ;
�p¼ p�2nðqÞpyþOCrðMðrÞi Þ
¼ p�2nðqÞpy�pyJðq;pÞ�nðqÞhpx;Jðq;pÞi

þOCr�1ððMðrÞi Þ
2Þ;

(18)

where the collision time of the smooth Hamiltonian flow is

estimated by

s�cðq; pÞ ¼ OCrðMðrÞi Þ ¼ �
1

Qyðq; �Þ I1ðq; pÞ þ OCr�1ððMðrÞi Þ
2Þ:

(19)

Combining the two maps, we established in Ref. 5:

Theorem 2. Assume Vðq; �Þ is a billiard potential family
on D and choose di’s and �i’s such that dið�Þ; �ið�Þ;
mðrÞð�Þ;MðrÞi ð�Þ ! 0 as �! 0. Then, on the cross-section S�
(see Eq. (9)) near orbits of regular reflections (that is, given
any constant C > 0, near the points ðq; pÞ 2 S� such that
hnðqÞ; pi � C and jhnð�qÞ; �pij � C where ð�q; �pÞ ¼ B�ðq; pÞ),
for all sufficiently small � 
 �0, the Poincaré map U� of
the smooth Hamiltonian flow is defined, and it is
OðmðrÞ þ � þMðrÞÞ-close in the Cr-topology to the billiard
map B� ¼ R�� � F�� in the auxiliary billiard table D�.
Furthermore,

U� ¼ R�� F� ¼ B� þ OCr ðmðrÞ þ � þMðrÞÞ
¼ ðR�� þ R�1Þ � ðF�� þ F�1Þ þ OCr�1ððmðrÞ þ � þMðrÞÞ2Þ
¼: B� þ U�

1 þ OCr�1ððmðrÞ þ � þMðrÞÞ2Þ;

where � ¼ maxi�i; MðrÞ ¼ maxiM
ðrÞ
i ; U�

1 ¼ OCr�1ðmðrÞ þ �
þMðrÞÞ, and the leading and first order corrections F�o;1 and
R�o;1 are explicitly given by Eqs. (12)–(19) and U�

1 ¼ R�� � F�1
þR�1 � F�� .

Furthermore, we notice that this methodology also tells

us how close the smooth and the billiard trajectories are

along their entire path:

Theorem 3. Under the same conditions as in Theorem 2,
given a finite T and a regular billiard trajectory in [0,T], the
time t map of the smooth Hamiltonian flow and of the corre-
sponding auxiliary billiard are Oð� þ mðrÞ þMðrÞÞ-close in
the Cr-topology for all t 2 TnTR, where TR is the finite collec-
tion of impact intervals each of them of length Oðjdj þMðrÞÞ.

C. Persistence of periodic orbits and hyperbolic sets

The (C1)-closeness of the billiard and smooth flows after

one regular reflection leads, using structural stability argu-

ments, to persistence of regular periodic and homoclinic

orbits. The above error estimates allow us to establish quan-

titative version of these persistence results:

Theorem 4 (Ref. 5). Consider a family of Hamiltonian
systems with billiard-like potential Vðq; �Þ on D. Let PbðtÞ

denote a T-periodic, non-parabolic, non-singular orbit of the
billiard flow. Then, for any choice of �ð�Þ; dð�Þ such that
�ð�Þ; dð�Þ;mð1Þð�Þ;Mð1Þð�Þ ! 0 as �! 0, for sufficiently
small �, the smooth Hamiltonian flow has a uniquely defined
periodic orbit P�ðtÞ of period T� ¼ T þ Oð� þ mð1Þ þMð1ÞÞ,
which stays Oð� þ mð1Þ þMð1ÞÞ-close to Pb for all t outside
of collision intervals (finitely many of them in a period) of
length Oðjdj þMð1ÞÞ. Away from the collision intervals, the
local Poincaré map near P� is OCrð� þ mðrÞ þMðrÞÞ-close to
the local Poincaré map near Pb. In particular, if Pb is hyper-
bolic, then P� is also hyperbolic and, inside D�, the stable and
unstable manifolds of P� approximate OCr ð� þ mðrÞ þMðrÞÞ-
closely the stable and unstable manifolds of Pb on any
compact, forward-invariant or, respectively, backward-
invariant piece bounded away from the singularity set in the
billiard’s phase space; furthermore, any transverse regular
homoclinic orbit to Pb is, for sufficiently small �, inherited by
P� as well.

Such results may be utilized to establish the existence of

specific orbits when two small parameters are involved. Con-

sider a family of billiard tables Dc, where c corresponds to

some geometrical parameter. For example, in Ref. 39, D0 is

an ellipsoid and Dc is a family of perturbed shapes, where c
measures their closeness to the ellipsoid. For c 6¼ 0, the bil-

liard map in Dc has transverse homoclinic orbits with split-

ting angle of order c (see Ref. 39). Then, provided

ð� þ mð1Þ þMð1ÞÞ 	 c, the smooth flow associated with the

two-parameter billiard potential families Vðq; c; �Þ on Dc

also has transverse homoclinic orbits. This inequality pro-

vides a bound on �ðcÞ. More generally, when, for sufficiently

small c, a certain c�robust property in the C1 topology may

be proved, the smooth flows attain the same property pro-

vided ð� þ mð1Þ þMð1ÞÞ 	 c.

To provide concrete bounds on �, assume hereafter that the

behavior of the potential near the boundary dominates the esti-

mate; we say that Vðq; �Þ is boundary dominated, if Vðq; �Þ and

its derivatives are smaller in the interior of D�
int (i.e., in the

region bounded by the surfaces Qðq; �Þ ¼ Qi þ dið�Þ) than on

the boundary of this domain. This means that for boundary

dominated potentials mðrÞðd; �Þ ¼ supq2D�
int
jj@lVðq; �Þjj ¼

supq2@D�
int
jj@lVðq; �Þjj (here, l ¼ 1;…; r þ 1). In this case, one

may choose (�; d) so as to minimize the error bounds. Table I

summarizes the resulting errors of the billiard approximation

for several commonly used potentials. The last column in the

table is achieved by insisting that the error (the third column) is

smaller than c for r¼ 1. Namely, if c represents a measure of

the C1 robustness of some dynamical property (e.g., of the

transversality of homoclinic points), the last column shows how

small should � be to ensure that this property persists for the

smooth Hamiltonian flow.

III. EFFECTS OF SINGULARITIES: THE EMERGENCE
OF ISLANDS OF STABILITY IN TWO-DIMENSIONAL
FLOWS

Section II shows that regular hyperbolic billiard orbits

persist in the smooth and sufficiently steep flows, namely,

that the common intuition that smooth flows may be replaced

by billiards is justified in such cases. Here, we show that this
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approximation fails near singularities of the billiard flow in

the two-dimensional case. Indeed, we prove that tangent

homoclinic orbits, tangent periodic orbits, and some of the

orbits that have end points in corners give rise to stable peri-

odic and quasiperiodic motion (hereafter—stability islands)

in the smooth case. These results may be applied to families

of Sinai billiards that admit such singular trajectories. They

imply that even though the smooth reflections are as close as

possible to those of the billiard (as shown in Sec. II), global

properties such as ergodicity are destroyed by the islands.

Thus, even when the decay of correlations for the billiard

map is exponential, the correlations for the smooth flow, for

any finite �, have recurrences and do not decay at all in the

islands. The prevailing conjecture, supported by simulations,

is that the mere existence of such islands leads to a power-

law decay of the correlations in the chaotic component due

to “stickiness” to the islands boundaries. We thus propose

that even though the singularity-induced islands are small for

small �, their influence on the decay of correlations in the

chaotic component may be important.

To establish these results, we consider two-parameter

families of billiard-like potentials Vðq; c; �Þ of the billiard

family Dc. The geometrical parameter c is introduced to

unfold the billiard trajectory singularity.

In Sec. III A, we consider the unfolding of tangent peri-

odic and homoclinic orbits, see Fig. 4.1,3 We assume that at

c ¼ 0 the billiard table D0 has a tangent periodic/homoclinic

orbit and prove that the smooth flow has a stable periodic

orbit near this singular orbit. For the tangent periodic orbit

case, we find the normal form of the local return map. We

then prove that this map has stable (elliptic) periodic orbits

for certain parameter values. In the ðc; �Þ parameter plane,

these values form a stability wedge which emanates from the

origin. The dependence of the island phase-space area and of

the width of the stability wedge on � and on the energy level

is found (see Theorem 5 below). Notably, we see that inde-

pendent of the regularization of the billiard (the particular

choice of the billiard-like potential), the existence of a tan-

gent periodic orbit always implies the existence of a stability

region in the ðc; �Þ plane. On the other hand, the normal form

of the return map depends on the potential in a non-trivial

fashion (see Table II). Selecting a path inside, this wedge of

stability down to the �-axis defines a one-parameter family

of Hamiltonian flows htð�; cð�ÞÞ that converge to the billiard

flow and for which elliptic islands exist for all � < �0,

namely, for arbitrarily small �. Hence, even though the

dispersive billiard is mixing, such smooth regularizations of

it are non-ergodic for arbitrarily small �. The size of these

islands decreases with �, typically as a power law (see

Table II).

In Sec. III B, we consider the unfolding near corners.4

To this aim, we assume that at c ¼ 0 the billiard table D0 has

a sequence of regular reflections which begins and ends at a

corner (termed a corner polygon). We prove that under some

additional prescribed conditions, such a polygon may pro-

duce stable periodic orbits in a c; � wedge which emanates

from the origin. The normal form for the return map near the

stable orbit turns out to be the area preserving Henon map.

Here, in contrast to the tangent case, the existence and the

stability of a periodic orbit which limits to the corner poly-

gon depend on both the form of the smooth potential and the

billiard geometry. Namely, taking two different regulariza-

tions of a given billiard family with a corner polygon, one

regularization may produce a stable periodic orbit, whereas

the other may have no periodic orbits limiting to this corner

polygon.

Now, consider an arbitrary one-parameter family of dis-

persing billiards Dc. One would like to characterize the

appearance of islands for sufficiently small e as a function of

c. Since dispersive billiards are hyperbolic, it is clear that for

sufficiently small e the only mechanism for creating islands

is the behavior of the smooth system near singular orbits of

the billiard, namely, near tangent orbits and near orbits

which enter a corner. Generically, if no special symmetries

are imposed, D0 has many near-tangent periodic orbits, but

no tangent ones. We conjecture that for generic families, a

small deformation of D0 to Dc can transform a near-tangent

periodic orbit of period n to a tangent one for some c of order

k�n, where n� 1. This implies that for sufficiently small e;
very small (size dtanðeÞk�n) islands will appear in the smooth

Hamiltonian approximation to the billiard flow in Dc. On the

other hand, we expect D0 to have many corner polygons and,

in particular, corner polygons with only one edge—a mini-

mizing cord (a segment emanating from one of the corners

which has a straight angle reflection from the boundary).

Typically, these corner polygons will have the angles /in

TABLE I. Error estimates for several potentials, assuming the boundary-

domination property. We denote br ¼ 1
rþ2þ1

a
at a � 1 and br ¼ aðrþ2Þ

ðrþ1þaÞðrþ2þ1
aÞ

at a 
 1 (see Ref. 5).

Potential Boundary width Error Impact intervals C1 robustness

WðQ; �Þ gð�Þ mðrÞ þ � þMðrÞ jdj þMðrÞ �gðcÞ
e�

Q
� �jln�j

ffiffi
�rþ2
p ffiffi

�rþ2
p

oðc3Þ

e�
Q2

�

ffiffiffiffiffiffiffiffiffiffiffi
�jln�j

p 

�
jln�jÞ

1
2ðrþ2Þ



�
jln�j
� 1

2ðrþ2Þ oðc6Þ

ð �QÞ
a �

rþ2
rþ2þ1=a �

1

rþ2þ1
a �br oðc3þ1

aÞ

FIG. 4. Tangent periodic orbits. The solid thick boundary corresponds to

the billiard table D0, and the dotted dashed boundary corresponds to its

deformation for some c > 0. L is a simple tangent periodic orbit of D0,

whereas for c > 0, it is the regular hyperbolic orbit L�c . The return map to R
is provided by Eq. (22) and Table II (see Ref. 3).
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and /out in general position, i.e., /out will not be an

extremum of the scattering function for the given /in. So,

according to our results, only a saddle periodic orbit can be

born from any such polygon at sufficiently small e. However,

due to the transitivity, we can expect sufficiently long corner

orbits for which /out will be close to the extremum of the

scattering function. Hence, some small islands can be

obtained from these orbits after c is tuned appropriately.

Note that in applications where one needs to tailor a bil-

liard table with some given properties the idea of small per-

turbation of the billiard boundary is, in fact, irrelevant, so

one can consider large changes in c as well. Then, producing

low period tangent orbits or minimizing cords with any given

values of ð/in;/outÞ is very easy. In this way, one can pro-

duce elliptic islands of a visible size in families of billiard-

like potentials with mixing limiting billiard. For example,

the experimental works of Kaplan et al.33 shows that elliptic

islands that arise due to corners significantly influence the

statistics of escape from cold atom optical traps.

A. Islands produced by tangencies

Consider the family of dispersing billiards Dc and

assume that at c ¼ 0, the billiard table D0 has a simple tan-

gent periodic orbit L (i.e., L has a single tangent collision at

a point where the boundary has non-vanishing curvature).

We assume that the dependence of Dc on c is in general posi-

tion, so that the tangent periodic orbit disappears, say, at

c < 0, whereas at the opposite sign of c, two periodic orbits

are born, see Fig. 4. One of these periodic orbits (L�c Þ passes

near the former point of tangency without hitting the bound-

ary, and the other (Lþc Þ has a regular reflection close to that

point. Away from the bifurcation point the persistence results

imply that the smooth system has similar structure at suffi-

ciently small �; hence, one concludes that the smooth system

must also have a bifurcation value c� at which the two peri-

odic orbits L6
c�;�

collide and disappear. Namely, the tangent

periodic orbit of the singular system becomes a parabolic

periodic orbit of the smooth system. Moreover, just before

the coalescence of the orbits, one of them must become

linearly stable due to index arguments. In Ref. 1, we prove

that the above scenario actually occurs (see also Refs. 40 and

41). More precisely, we prove that for each fixed sufficiently

small �, there is an interval of c values for which the smooth

flow has a linearly stable periodic orbit. The underlying geo-

metrical mechanism for the creation of this non-hyperbolic

behavior is a horseshoe bifurcation near the tangent periodic

orbit. Determining under which conditions such a bifurcation

occurs in non-dispersive billiards is an interesting problem.

To establish the existence of elliptic islands and to find

their size, we explicitly construct the return map near the lin-

early stable periodic orbit. To this aim, we further assume

that near the tangent collision point, for any given energy

level H, we can define a boundary layer region so that near it

the energy H may be scaled out. More precisely, we assume

that the billiard-like potential family (Vðq; c; �Þ) satisfies the

following scaling assumption:
[S] There exist some d ¼ dð�;HÞ > 0, b ¼ bð�;HÞ, and

�ð�;HÞ such that d; b; �=H ! 0, as �! 0, and the function

~W �ð ~QÞ ¼ Wðd ~Q þ b; �Þ � �
Hd3=2

(20)

converges as �! 0 to a Crþ1 function ~W0ð ~QÞ, either for
~Q > 0 or for all real ~Q. The convergence is Crþ1-uniform on
any closed finite interval of values of ~Q from the domain of
definition. Furthermore, the integral

ðþ1
1

~W 0�ðqÞ
dqffiffiffi

q
p (21)

converges uniformly for all sufficiently small �.
This scaling assumption is satisfied by all the potentials

that we examined so far and serves to determine the de-

pendence of the scaling parameters on � and the energy (see

Table II). The following theorem is the main result of

Ref. 3:

Theorem 5. Consider a family of dispersing billiards Dc

having a simple non-degenerate tangent periodic orbit at
c ¼ 0. Consider a two-parameter family of Cr; r � 5, smooth
Hamiltonian flows htð�; cÞ with billiard-like potentials approx-
imating the billiard flows as ð�; cÞ ! 0. Assume that the bar-
rier function near the point of tangency satisfies the scaling
assumption [S] for some dð�;HÞ and that the associated func-
tion F is such that the range of values of F0(v) includes R�

(all negative values).
Then, for small �, in the ð�; cÞ plane, there exists a wedge

C�dð�;HÞ < c < Cþdð�;HÞ (with some constant C6) such
that for all parameter values in this wedge, on the energy
level H, there exist elliptic islands of width proportional to
dð�;HÞ.

The proof of this theorem is constructive. The asymp-

totic normal form, as �! 0, of the return map of the

TABLE II. Islands scalings near tangent periodic orbits.

Potential Islands’ scaling E-shift Q-shift Return map

WðQ; �Þ dð�;HÞ �ð�;HÞ bð�;HÞ ~W 0ð ~QÞ FðvÞ

e�
Q
� � 0 ��lnðd3

2HÞ e�
~Q

ffiffi
p
p

2
e�v

ð1� QaÞ
1
� �

1
a

a ð�lnð� 3
2aHÞÞ

1
a�1

0 ��lnðd3
2HÞ

� 1
a

e�
~Q

ffiffi
p
p

2
e�v

ð �QÞ
a �a

H


 � 1
aþ3=2 0 0 1

~Q
a

ffiffi
p
p
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Hamiltonian flow in an OðdÞ-neighborhood of the tangent

periodic trajectory is the two-dimensional map,

�u ¼ v; �v ¼ n vþ affiffiffi
j
p FðvÞ

� �
� ðn� 2ÞC� u; (22)

where

FðvÞ ¼ �
ðþ1

0

~W 00ðvþ x2Þdx

¼ � 1

2

ðþ1
v

~W 00ðQÞ
dQffiffiffiffiffiffiffiffiffiffiffiffi
Q� v
p : (23)

F(v) is well defined, by Eq. (21), either on Rþ or on R (i.e.,

on the domain of definition of ~W0) and it is Cr-smooth.

Table II provides its form for various potentials. The pa-

rameter j is the billiard’s curvature at the tangency. n is

the sum of the singular multipliers of L, which are the mul-

tipliers of L�c for c! 0þ (i.e., the multipliers of L if one

disregards the influence of the tangent point). Since we

consider here dispersive geometry, it follows that jnj > 2

and the sign of n equals to ð�1Þn, where n is the number

of reflections of L�c at sufficiently small c. The parameter

C ¼ c=d is the rescaled unfolding parameter, and a is a ge-

ometrical parameter defined by the billiard return flow near

L0 at � ¼ c ¼ 0 (a > 0 for dispersive billiards). To com-

plete the proof, the return map (22) is analyzed. One shows

that it has a fixed point, that its eigenvalues have to sweep

the unit circle as C sweeps a finite interval and that the

Birkhoff coefficient cannot be identically zero along this

interval. Hence, one concludes that the return map (22) has

an elliptic island of finite size (in the rescaled variables u
and v).

In the original, non-scaled variables and parameters, the

island exists in a d-size wedge of c values and its area is of

order
ffiffiffiffi
H
p

d2=na in the ðy; pyÞ cross-section. Table II presents

the calculation of the scaling and shifting factors and the return

map function F(v) for several typical potentials. Notably,

islands appear at any fixed H value and scale as a power law in

(�). Their scaling for large energies H ¼ Hð�Þ may be calcu-

lated as long as dð�;HÞ ! 0 as �! 0, see Table II. Finally,

we notice that n, the sum of the singular multipliers of L is

expected to increase exponentially with the number of reflec-

tions of L. Hence, the tangent orbits with the smallest period

are expected to have the largest islands.

The above results are derived for two-dimensional dis-

persing billiards, or, more generally, for tangent periodic

orbits with exactly one tangent collision and with all

the regular collisions occurring with dispersing parts of

the boundary components. It may be interesting to study the

behavior near tangencies when some of the components are

focusing and the behavior when more than one tangency

occurs (with or without symmetry). A generalization of this

construction to higher-dimensional settings is possible and

should lead to a proof of the existence of center-saddle peri-

odic orbits, namely, to proving non-hyperbolic behavior

for arbitrary small � even when the limiting billiard is

hyperbolic.

B. Islands produced by corners

The other mechanism for creating elliptic motion in

smooth Hamiltonian families that limit to dispersing billiards

is corners. Here, we consider a sequence of regular billiard

reflections that begins and ends at the same corner point of

the billiard. Such a sequence is denoted by P0 and is called a

corner polygon (see Fig. 5). Notice that such a sequence is

not an orbit of the billiard. Denote by h the angle created by

the billiard boundary arcs joining at this corner, and define

/in;/out to be the angles created by the corner polygon with

the corner bisector (notice the different directions of /in and

/out). As opposed to the tangent singularity, such a corner

polygon may produce a number (possibly zero) of periodic

orbits of the smooth flow. The number and the stability of

the emerging orbits depend on both the billiard geometry (in

particular, on /in;/out; h) and on the form of the potential.
Here, we assume that the potentials are billiard-like (satisfy-

ing conditions I–IV of Sec. II) and that there is sufficient

repulsion from the corner regions so that trajectories cannot

remain in the corner for unbounded times (the scattering

assumption). We show that usually the produced periodic

orbits are hyperbolic. Yet, by introducing an additional geo-

metrical parameter, c, it is often possible to create wedges in

the plane of parameters ðc; �Þ which corresponds to the exis-

tence of stable periodic orbits.

To provide precise statements, we recall first the behav-

ior of the billiard near corners and then the behavior of

smooth flows near corners.

Billiard reflections near a corner may be characterized by

the outgoing angles U6ðu; hÞ. Provided h > 0, an incoming

parallel ray enters the corner with an angle u and exits a

neighborhood of the corner after a finite number of reflections

(Nh :¼ bphc or Nh þ 1). The angles that the outgoing trajecto-

ries of the parallel ray make with the corner bisector are close

(up to corrections associated with the curvature of the billiard

boundary near the corner) to one of two possible angles

U6ðu; hÞ. The angle Uþðu; hÞ is realized if the upper bound-

ary is hit first, and U�ðu; hÞ is realized otherwise. The billiard

scattering angles U6ðu; hÞ and the number of reflections at

FIG. 5. Corner polygon geometry. The return map to the cross section x¼R
is constructed by following the regular billiard reflections at x > R and the

properties of the scattering function near the corner (see Ref. 4).
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the corner may be explicitly computed by geometrical means,

see, e.g., Ref. 4. When h ¼ p
N the two scattering angles are

equal: Uþðu; hÞ ¼ U�ðu; hÞ ¼ ð�1ÞNþ1u.

To describe the behavior of smooth billiard-like systems

near the corners, we introduce an additional ingredient, the

scattering function. This function captures the main features

of the scattering by the potential at the corner point. To

define the scattering function, we make some natural scaling

assumptions on the potential V near the corner. Let (x,y)

denote Cartesian coordinates with the x-axis being the bisec-

tor of the billiard corner, and the origin at the corner point

(see Fig. 5). We assume there exists a scaling

ð�x; �yÞ ¼ 1

dðeÞ ðx� xe; y� yeÞ

such that in the scaled coordinates the potential has a finite

limit as e! 0,

Vðxe þ d�x; ye þ d�y; eÞ ! V0ð�x; �yÞ:

Let the level set V0ð�x; �yÞ ¼ h be a hyperbola-like curve,

which asymptotes the lines �y ¼ 6�x tan h
2
þ c6 as �x !1.

This level curve bounds an open wedge V0 
 h which

extends towards �x ¼ þ1. For the scaled system given by

the Hamiltonian

H ¼ 1

2
ðp2

x þ p2
yÞ þ V0ð�x; �yÞ; (24)

every trajectory with energy H¼ h lies in this wedge.

Under some natural assumptions on V, we show that the

solutions to the scaled equations go towards �x ¼ þ1 as t!
þ1 and as t!�1, and that they always have asymptotic

incoming (/in ¼ � limt!�1 arctan
pyðtÞ
pxðtÞ, j/inj 
 h

2
) and out-

going angles (/out ¼ limt!þ1 arctan
pyðtÞ
pxðtÞ ; j/outj 
 h

2
). More-

over, there is a well defined limiting scattering function

/out ¼ U0ð/in; gÞ, where g is a scattering parameter of a paral-

lel beam entering the wedge at x ¼ þ1 with incoming angle

/in. This scattering function U0 carries the needed information

on the dynamics near the corner. In particular, the range of

U0ð/in; Þ provides the interval I of allowed outgoing angles.

While Ibillð/inÞ ¼ ½U�ð�1ÞNh ð/inÞ;Uþð�1ÞNh ð/inÞ� � Ið/inÞ,
there are natural examples in which the interval Ið/inÞ is

strictly larger than the billiard scattering range Ibillð/inÞ. For

example, when h ¼ p
N the interval Ibillð/inÞ degenerates to a

point, so generically, we expect Ið/inÞ to be strictly larger than

Ibillð/inÞ when h is close to p
N. Moreover, for such h values, the

scattering function must be non-monotone (see Ref. 4 for an

explicit example).

A corner polygon of the billiard is said to be non-

degenerate if /out 2 Ið/inÞ, and infinitesimally small changes

in /out change the return position of the trajectory so that the

corner is missed. A billiard corner polygon with incoming

angle /in and outgoing angle /out may produce a periodic

orbit of the smooth Hamiltonian flow (8) at small nonzero e
if and only if /out ¼ U0ð/in; gÞ for some g. Given a /out 2 I,
there exists a set (discrete, in general) of g’s such that

/out ¼ U0ð/in; gÞ. To produce a periodic orbit, the scattering

function needs to be monotone and the global behavior near

the corner polygon needs to be non-degenerate:

Theorem 6 (Ref. 4). Consider a family Vðx; y; eÞ of
billiard-like potentials limiting to a billiard in D and satisfy-
ing the scattering assumption and the corner scaling
assumption. Assume D has a non-degenerate corner polygon
with incoming and outgoing angles ð/in;/outÞ. Then, for suf-
ficiently small e, for every g such that /out ¼ U0ð/in; gÞ and
@
@g U0ð/in; gÞ 6¼ 0, the Hamiltonian family has a hyperbolic
periodic orbit which, as e! 0; limits to the billiard corner
polygon.

To prove this theorem, a return map of the smooth flow

to an interior cross section of the corner polygon is con-

structed. The outer part of the map is well approximated by

the regular billiard reflections, whereas the behavior near the

corner is controlled by the scattering function. The monoto-

nicity of the scattering function together with the hyperbolic-

ity of the outer map allows to prove that saddle periodic

orbits are created. If, on the contrary, /out corresponds to a

maximum or minimum of U0ð/in; gÞ as a function of g then

elliptic motion may emerge. As the appearance of such an

extremum is a codimension-1 phenomenon, to obtain a ro-

bust picture, it is necessary to consider here an additional pa-

rameter and to ensure that the appropriate non-degeneracy

conditions are set. We thus introduce, as in the tangent case,

a geometrical parameter c which is responsible for regular

changes in the geometry of the billiard. The corresponding

two-parameter family of billiard-like potentials Vðx; y; e; cÞ
is called a tame perturbation of the billiard-like potential

Vðx; y; e; 0Þ if the barrier functions W do not depend on c, the

pattern functions Q, defined in some neighborhood of the

open boundary arcs without the corners, are Cr-smooth with

respect to c and the scaled potentials Ve depend Cr-smoothly

on c as well. Finally, this tame family is called non-

degenerate if some explicit expression does not vanish (the

return map to the corner along the regular reflections must

change with c in a generic fashion).

Theorem 7 (Ref. 4). Consider a family of billiard-like
potentials Vðx; y; eÞ limiting to a billiard in a domain D and
satisfying the scattering assumption and the corner scaling
assumption with a scaling parameter dðeÞ. Assume D attains
a non-degenerate corner polygon with incoming and out-
going angles ð/in;/outÞ. Let Vðx; y; e; cÞ be a one-parameter
tame perturbation of Vðx; y; eÞ, satisfying the non-
degeneracy assumption. Then, for every g� such that /out ¼
U0ð/in; g

�Þ is a strict extremum (i.e., @
@g U0ð/in; g

�Þ ¼ 0 and
@2

@g2 U0ð/in; g
�Þ 6¼ 0), there exists a wedge of width d2ðeÞ in

the ðe; cÞ parameter plane in which the Hamiltonian flow
defined by the potential Vðx; y; e; cÞ has elliptic islands of
size Oðd2Þ, where the islands limit to the billiard corner
polygon as e! 0.

To prove this theorem, the return map is again con-

structed. Here, using the extremal behavior of the scattering

function, it is shown that in some rescaled coordinates the

return map becomes, to leading order, the area-preserving

Hénon map. Moreover, it is established that if the corner

polygon has nþ 1 edges, then the bifurcation coefficient a in

the Hénon map is proportional to k2n=d2 and the rescaling
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of the phase space area includes factors proportional to

k3n=d4. Hence, the size of the islands, in both parameter

space and phase space, decreases exponentially with the

number of reflections and as a power law with e. The non-

monotonicity of the scattering function naturally arises when

its range is larger than the billiard scattering range Ibillð/inÞ
as occurs when h is close to p

N.

The stability of the corner-passing periodic orbits is

solved here in terms of the scattering function U which is

defined only by the potential at the corner, and is almost in-

dependent of the geometrical properties of the underlying

billiard (the genericity condition is the only place where the

geometry enters: this condition is always fulfilled if the bil-

liard is dispersive and the corner polygon is never tangent to

the boundary, while in the non-dispersive billiard where the

boundary contains convex components, this condition may

be violated, but it may always be achieved by a small smooth

perturbation of the boundary). This fact is somewhat surpris-

ing in view of the behavior near tangencies. In particular, it

shows that contrary to the previously studied cases (of non-

singular periodic orbits and of tangent periodic orbits), the

existence of the periodic orbit which limits to a corner poly-

gon is not determined by the billiard geometry alone.

In Theorem 7, which is concerned with the general case,

we cannot know if a stable periodic orbit is produced by a

corner polygon without computing the potential-dependent

scattering function. Unfortunately, there seems to be no

explicit formulas which would relate the scattering function

to the potential V. We prove that U0ð/; gÞ is a smooth func-

tion and that as g! 61 it approaches the billiard scattering

angles U6ð/; hÞ. Finding an analytical form for U and for its

critical values is probably an unsolvable question in the gen-

eral case. Indeed, it is known42 that in the case V0ð�x; �yÞ ¼
e�y�k�x þ e��y�k�x (here, k ¼ tan h

2
, so k 2 ð0; 1Þ), the system

given by Eq. (24) has no other analytic integrals which are

polynomial in momenta for k 6¼ 1 and k 6¼ 1=
ffiffiffi
3
p

(i.e., when

the corner angle h differs from p=2 and 2p=3). The non-

existence of meromorphic integrals for this system is proven

in Ref. 43 (based on the method of Ref. 44) for

k 6¼ 4=ðmðm� 1ÞÞ2;m 2 Z. While we conclude that U can-

not be expected to be explicitly written, it is straightforward

to recover it numerically.

Nonetheless, there is one case in which we can prove

the creation of elliptic islands by using only asymptotic in-

formation about the scattering function. This occurs when a

billiard corner polygon bifurcates into a regular periodic

orbit of the billiard: a billiard periodic orbit may detach from

the corner point under a small perturbation of the boundary

if and only if /out ¼ U6ð/in; hÞ. In terms of the scattering

function U, this case corresponds to g ¼ 61 and it is not

covered by the above mentioned Theorems 6 and 7. The

behavior of the corner-passing periodic orbits of the Hamil-

tonian flow at non-zero e has in this case a more profound

relation with the billiard geometry:

Theorem 8 (Ref. 4). Consider a dispersing billiard-like
family, with a non degenerate corner polygon satisfying
/out ¼ Uþð/inÞ. If U0ð/in; gÞ is monotone, then, for suffi-
ciently small e, an elliptic periodic orbit is produced by the
billiard corner polygon if ðph � p

h

� �
� 1

2
Þh < /in <

p
2

.

Note that the nature of the billiard flow at the corner is

highly sensitive to the numerical properties of h, with bifurca-

tion points at hN ¼ p
N and h�N ¼ p

Nþ1
2

. The influence of these

bifurcations on the limiting Hamiltonian flow has yet to be

studied—it may produce nontrivial dynamics (e.g., the analysis

of Sec. IV). The effect is especially relevant for small angles.

IV. FULLY ELLIPTIC ORBITS IN MULTI-DIMENSIONAL
BILLIARD-LIKE POTENTIALS

The possibility of extending the two-dimensional results

regarding the destruction of ergodicity by the smooth poten-

tials to higher dimensions is not obvious. Intuitively, one

could argue that in the higher-dimensional setting there will

be always enough unstable directions to destroy any stability

region and might conclude that the above results are inher-

ently two-dimensional. From a mathematical point of view,

the appearance of islands of stability is natural in Hamilto-

nian systems which are not hyperbolic or partially hyper-

bolic, see Ref. 45 and references therein for the (C1)-version

of this conjecture. However, a specific family of systems like

(1), limiting to the hyperbolic Sinai billiards, may turn out to

be non-generic (see the introduction in Ref. 6), and it is

unknown if generic (C1)-perturbations are relevant in the

framework of mechanical systems. Crucially, it is not imme-

diately obvious whether the Hamiltonian systems under con-

sideration are partially hyperbolic or not.

In fact, the analysis we did for the two-dimensional case

(Sec. III) can be carried out onto higher dimensions in order

to show that the smooth approximation of any dispersive bil-

liard cannot be uniformly hyperbolic. The arguments are

based on the same geometrical structure which ensures the

uniform hyperbolicity of the dispersive billiards themselves. It

was noted by Krylov46,47 that the key to the Boltzmann con-

jecture is a characteristic instability of the hard-sphere gas in

the space of dimension two and higher. It is related to the con-

vex shape of the colliding bodies (so it does not take place in

one-dimensional systems). Sinai showed that this instability is

an inherent property of dispersive billiards and built with co-

workers a deep mathematical theory which indeed relates this

instability to the statistical properties of the hard-spheres

gas.9–11,24 For a general dispersive billiard (a domain with a

piece-wise concave boundary), the Krylov-Sinai instability is

expressed as follows: a parallel beam diverges after reflecting

from the boundary. In the phase space, this translates to a

cone-preservation property: the positive cone dq  dp � 0 is

mapped inside itself by the derivative of the billiard flow

(here, q is the vector of coordinates and p is the vector of

momenta). This is equivalent to the hyperbolicity of the bil-

liard flow: at each point of every regular orbit, there are stable

and unstable subspaces invariant with respect to the derivative

of the billiard map, the unstable directions belong to the posi-

tive cone and the stable directions belong to its comple-

ment.9,10,48 This cone structure is independent of the

particular shape of the dispersive billiard, so it creates a uni-

versal reason for the ergodicity of any such billiard.

However, the dispersing property has other universal

consequences. As the unstable subspace belongs to the posi-

tive cone, it is uniquely parameterized by momenta, and

026102-12 V. Rom-Kedar and D. Turaev Chaos 22, 026102 (2012)

Downloaded 19 Oct 2012 to 82.13.78.192. Redistribution subject to AIP license or copyright; see http://chaos.aip.org/about/rights_and_permissions



since every collision changes the orientation in the momenta

space, it follows that the orientation in the unstable subspace

flips at every collision.1,6 We can, therefore, always have a

continuous family of initial conditions such that the flow

map (for some fixed time) will keep the orientation of the

unstable subspace for some initial conditions (those having

an even number of regular collisions at the given time inter-

val) and will change the orientation for the other initial con-

ditions (those having an odd number of regular collisions);

the transition happens at initial conditions that have singular

orbits. There can be no uniformly hyperbolic smooth flow

with the same behavior (as there will be no singular orbits at

which such transition can happen). Therefore, the uniformly

hyperbolic structure of dispersive billiards cannot survive

any smooth approximation of the billiard potential.

These arguments do not preclude the existence of some

hypothetical partially hyperbolic structure in a dispersive bil-

liard of dimension higher than 2. However, in Ref. 6, we (to-

gether with Rapoport) showed that no such universal

structure could exist which cannot be destroyed by the

smooth approximation. Indeed, we showed that in any

dimension fully elliptic orbits appear in a predictable way in

smooth systems that are arbitrarily close to Sinai billiards,6

thus providing the first explicit mechanism for the creation

of stable periodic orbits in high-dimensional smooth near

dispersing-billiard systems.

In our constructions, the stability zones in the

n-dimensional settings are created by trajectories that enter a

corner point. At the corner, n codimension-1 surfaces meet

in a symmetric fashion, so that the corresponding solid angle

is controlled by a single geometrical parameter l (see Fig. 6

and Eq. (25)). We find, first numerically for the 3-dimen-

sional case,7 and then analytically for the general case,6 that

a corresponding smooth steep potential family has a stable

orbit in wedges of parameters ðl; eÞ that extend towards the

l axis. Thus, our main result is:

Theorem 9 (Ref. 6). There exist families of analytic bil-
liard potentials that limit (in the sense of Sec. II A, see Eqs.
(2)–(8)) to Sinai billiards in n-dimensional compact domains
(in particular, for any finite n such billiards are hyperbolic,
ergodic, and mixing), yet, for arbitrarily small e, the corre-
sponding smooth Hamiltonian flows have fully elliptic peri-
odic orbits.

To establish this result, we generalize the geometrical

construction depicted in Fig. 6 to n-dimensional billiards

depending on a geometrical parameter l (see more details

below). These billiards are Sinai billiards for any l 2 ð0; 1Þ
and depend smoothly on l. We then consider families of

symmetric potentials Wðq; l; eÞ that limit as e! 0, for any

fixed l, to these billiards. These potentials preserve the

symmetry (qi $ qj); hence, the motion along the diagonal

is invariant for all e values. We thus establish that for

FIG. 6. The billiard geometry and the stability islands in the three-dimensional case (the geometrical parameter in the bifurcation diagram is related to l, yet

is defined a bit differently, see Ref. 7 for details).
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sufficiently small e, these Hamiltonian flows have a periodic

orbit cðt; l; eÞ along this diagonal and prove that the 2n Flo-

quet multipliers of this orbit may be found by solving a single
second order linear equation with a time-periodic coefficient.

This coefficient depends on l; e, and n as parameters, and it

approaches a sum of delta-like functions as e! 0. For certain

classes of Wðx; l; eÞ (e.g., when Wðx; l; eÞ decays as a power-

law in the distance to the scatterers), we are able to analyze

the asymptotic behavior of the emerging linear second order

equation: we prove that for these potentials there are count-

able infinity values of l, one of them given by 1ffiffi
n
p (i.e.,

bounded away from l ¼ 0; 1), from which a wedge of stabil-

ity region in the ðl; eÞ plane emerges. Namely, we prove that

for any n, for arbitrarily small e, there exists an interval of l
values at which cðt; l; eÞ is linearly stable.

Next, we provide a few more details regarding the construc-

tion and the definition of l and Wðq; l; eÞ. These are then uti-

lized to state precisely the stability results regarding the smooth

systems, including some estimates on the e-dependence of the

parameter range of l at which elliptic behavior appears.

Define the n-dimensional billiard’s domain D as the

region exterior to ðnþ 1Þ spheres Sn�1: one sphere Cnþ1 of

radius R which is centered on the diagonal at a distance L

from the origin, i.e., at the point 1ffiffi
n
p ðL; :::; LÞ, and n spheres

C1;…;Cn of radius r, each centered along a different princi-

ple axis at a distance 0 
 l 
 r
ffiffiffiffiffiffi

n
n�1

p
from the origin, i.e., the

sphere Ck is centered at ð0;…; l k;…; 0Þ (Fig. 6). To obtain a

bounded domain, we enclose this construction by a large

n-dimensional hyper-cube centered at the origin (we will

look only at the local behavior near the diagonal connecting

the radius-r spheres C1;…;Cn to the radius-R sphere Cnþ1

and thus we will not be concerned with the form of the outer

boundary). The diagonal line ðn; :::; nÞ intersects the radius-R
sphere in the normal direction and the spheres C1;…;Cn at

their common intersection point Pc ¼ ðnc; :::; ncÞ, where

nc ¼ l
nþ 1ffiffi

n
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � l2ð1� 1

nÞ
q

. Thus, for L > Rþ ffiffiffi
n
p

nc, the

diagonal line defines a corner ray

c ¼ ðn; :::; nÞj n 2 nc;
L� Rffiffiffi

n
p

� �� ��

that starts at the corner Pc, gets reflected from the radius-R
sphere, and returns to Pc (and then gets stuck as there is no

reflection rule at the corner).

Notice that the dynamics in the billiard is unchanged

when all the geometrical parameters are proportionally

increased; hence, with no loss of generality, we may set

r¼ 1 and regard all the other parameters as scaled by r. It is

convenient for us to express the scaled l and L through

l ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

�
1� 1

n

�
l2

r2

s
; d ¼ L� R� ffiffiffi

n
p

nc

r
: (25)

Consider the smooth motion in the scaled billiard

region, governed by the Hamiltonian equation (1), i.e.,

H ¼
Xn

i¼1

p2
i

2
þWðq1;…; qn; eÞ; (26)

with

Wðq; eÞ ¼ 1

n

Xn

k¼1

V
Qk

e

� �
þ V

Qnþ1

e

� �
; (27)

where QkðqÞ (the pattern function of Sec. II) is the distance

from x to Ck,

QkðqÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1

q2
i � 2lqk þ l2

s
� 1ðk ¼ 1;…; nÞ; (28)

Qnþ1ðqÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1

�
qi �

Lffiffiffi
n
p
�2

vuut � R

(recall that we scale r¼ 1). The potentials associated with

the r-spheres (i.e., V Qk

e


 �
) are multiplied by the 1/n factor so

that for all n values the potential height near the corner is of

the same magnitude as the potential near the R-sphere.

The Ckþ1 (k � 1) smooth function V satisfies at z > 0,

VðzÞ > 0; V
0 ðzÞ < 0; (29)

so the potentials are repelling. We further assume that V
00 ðzÞ

decays sufficiently rapidly for large z (similar to the assump-

tions in Sec. III B), so there exists some a > 0 such that

V
00 ðzÞ ¼ O

1

z2þa

� �
as z! þ1: (30)

One can take, for example, power-law, Gaussian, or expo-

nential potentials: VðzÞ ¼ 1
z


 �a
, (a > 0), VðzÞ ¼ expð�z2Þ;

VðzÞ ¼ expð�zÞ. These potentials naturally appear in appli-

cations (e.g., the Gaussian form arises in the problem of cold

atomic motion in optical traps,33 whereas the power-law and

exponential potentials are abundant in various classical mod-

els of atomic interactions).

The potential Wðq; eÞ given by Eqs. (27) and (28) is

symmetric with respect to any permutation of the qi’s

ði ¼ 1;…; nÞ. This strong symmetry enables us to derive a

one-degree of freedom equation for the motion along the di-

agonal. To study the stability of the periodic orbit, one needs

to linearize the Hamiltonian equations of motion, solve

the corresponding 2n-dimensional linear system with the

time-periodic coefficients for a set of 2n orthonormal initial

conditions, and find the stability of the associated ð2n� 2nÞ-
dimensional monodromy matrix. Such a computation finally

leads to a set of 2n Floquet multipliers (2 of which are trivi-

ally one). The symmetric form of the potential, together with

some change of coordinates, allows to reduce this formidable

task to a much simpler one—to solving a single second order

homogeneous equation with a time periodic coefficient: €y þ
aðtÞy ¼ 0: Indeed, we establish that the 2n Floquet multi-

pliers are simply ð1; 1; k; 1
k ; :::; k;

1
kÞ, where k is the eigen-

value of the monodromy matrix of this second order linear

equation. The periodic coefficient a(t) is explicitly found in

terms of the diagonal periodic orbit (which also depends on

the energy level h) and the geometric parameters of the prob-

lem. In particular, the dependence of a(t) on n turns out to be

particularly simple, allowing to study in a transparent
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manner the role of the dimension n. A careful (non-trivial)

analysis of the scattering properties of the second order equa-

tion leads to the following general result:

Theorem 10. Suppose the potential function V satisfies
Eqs. (29) and (30). Then, given any h 2 ð0; 2Vð0ÞÞ, any natu-
ral n � 2, and any positive d and R, there exists a tending to
zero countable infinite sequence 1 � l0 > l1 ¼ 1=

ffiffiffi
n
p

>
… > lk > … > 0 such that arbitrarily close to every point
ðl ¼ lk; e ¼ 0Þ, there are wedges of ðl; eÞ at which the orbit
c is linearly stable.

More detailed information regarding the wedges charac-

ter may be obtained in two specific cases as explained next.

First, we may estimate the wedges height in e provided the

scaling parameter b ¼ 1�l2

ðn�1Þl2 is sufficiently small and the

following integral (which is well defined for potentials satis-

fying Eqs. (29) and (30)) is positive,

IðhÞ ¼ 2ffiffiffi
h
p
ðþ1

V�1ðh=2Þ
V
00 ðzÞ dzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h� 2VðzÞ
p :

Theorem 11. Provided IðhÞ > 0, the diagonal periodic orbit
c is stable for ðl; eÞ values in the wedge enclosed by the two
curves,

eþ0 ¼ IðhÞ 1� l2

ðn� 1Þl2
1þ 1

d þ R

� ��1

þ o
1� l2

ðn� 1Þl2

� �
;

and

e�0 ¼ IðhÞ 1� l2

ðn� 1Þl2
1þ 1

d

� ��1

þ o
1� l2

ðn� 1Þl2

� �
:

In particular, notice that the wedge height is polynomial

in n-namely, the region of stability does not shrink exponen-

tially with the dimension as one may have expected.

Second, the wedges structure for the power-law poten-

tial case may be described in detail (see Ref. 6 for numerical

verifications of these formulas),

Theorem 12. Consider the power-law potential

VðQ; eÞ ¼ e
Q

� a
. Then, for sufficiently small e and l, there

exists an infinite number of disjoint stability tongues in the
ðl; eÞ plane at which cðt; l; e; nÞ is linearly stable. For suffi-
ciently large k, the kth stability zone emanates from the l
axis near the bifurcation value,

lk �
1

k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðaþ 1Þ
aðn� 1Þ

s
;

and extends up to the e-axis, intersecting it near

ek � ðh=2Þ1=a ðaþ 1Þ
aðn� 1Þ

4

p2k2

�ðp=2

0

ðsinhÞ1=adh
2

;

at a stability interval of length

ðDeÞk �
4ek

pkGð0; aÞdð1þ d
RÞ

4aðaþ 1Þ
n� 1

ð2ekÞa

h

� �1=2ðaþ1Þ
;

where Gð0; aÞ > 0 is (non-trivially) computable function
which depends only on a.

Rewriting the above formulas (with (c1;2) as shorthand

notation), we obtain

ek �
h1=a

n� 1
c1ðk; aÞ;

ðDeÞk
ek
� 1ffiffiffiffiffiffiffiffiffiffiffi

n� 1
p c2ðk; aÞ

dð1þ d
RÞ
:

In particular, to leading order, the wedges relative heights

are independent of the energy level and decay as (1=
ffiffiffi
n
p

)

with the dimension.

The analysis is performed only for the symmetric case.

It is quite possible that one may extend it to the nearly sym-

metric case. Indeed, it is easy to break the symmetry, by, for

example, multiplying the terms VðQkðxÞ=eÞ in Eq. (27) by

slightly different coefficients,

Vpert
k ðq; eÞ ¼ ð1þ dakÞVkðq; eÞ; (31)

where ak are uniformly distributed on the unit interval (i.e.,

we consider the case in which each sphere has a slightly dif-

ferent potential). The phase portraits of the perturbed motion

with d ¼ 0:001 are shown in the right column of Fig. 7 (we

do verify that the projection plots of X ¼ jjx� cð0Þjj;P ¼
jj _x � _cjj remain bounded, namely, that there is no instability

FIG. 7. Islands in a 20-dimensional symmetric (left) and asymmetric (right)

systems. Return map projection to the (x1; p1) plane is shown (see Ref. 6).
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in any direction of the 20-dimensional phase space). We see

that such a modification appears to preserve the elliptic char-

acter of the periodic orbit (this is not an obvious statement as

the Flouqet multipliers of cðtÞ are in the strong 1:1:...:1

resonance).

The considered example is clearly highly symmetric and

is not directly linked to the smooth many particle case (the

“smooth Boltzmann gas”). Nonetheless, the possibility of ex-

plicitly constructing stable motion in smooth n degree of free-

dom systems that limit to strictly dispersing billiards is now

established. Thus, the grand program of proving that arbitra-

rily large systems of particles interacting via a steep repelling

potential may, at arbitrarily high energies, have fully elliptic

orbits appears to be reachable in a few years work.

V. SCATTERING PROBLEMS

Scattering problems with smooth steep potentials appear in

diverse field of physics (notably chemical reactions) and are

thus of practical significance. In these problems, one considers

a potential which rapidly decays to zero outside a compact do-

main (called the scattering region) and examines the evolution

of a ray of initial conditions that hit the scattering region. Math-

ematically, the key ingredient for analyzing such problems is

the detection and characterization of the compact invariant set

associated with the potential. The methods described in Secs.

I–IV may be applied to study such questions when the potential

is steep, or at high energy levels (if the potential is unbounded).

We describe here some of the results achieved, together with

Rapoport, in the two-dimensional setting.8

We start with the formal definition of the scattering map

for the limit billiard case. Namely, consider a scattering bil-

liard in R2; that is, a collection D of disjoint hard-wall

obstacles (Di) which reside strictly inside the centered at

zero disc of a sufficiently large radius �R. We call D a Sinai
scatterer if each Di is bounded by a finite number of Crþ1-

smooth strictly convex (when looked from inside of Di) arcs

that meet each other at non-zero angles.

Let a particle come from infinity with the momentum

ðpx; pyÞ ¼
ffiffiffiffiffi
2h
p
ðcosuin; sinuinÞ, where h is the energy (recall

that the energy is conserved). The parallel rays corresponding

to the same value of uin are distinguished by their impact pa-

rameter bin; the absolute value of bin equals to the distance

between a particular ray and the origin. Given the energy

value, the incoming orbit is uniquely defined by the data

ðuin; binÞ. For typical initial conditions, orbits that come from

infinity must go to infinity (by Poincare recurrence theorem).

The outgoing angle and impact parameter are determined by

elastic reflections from the obstacles Di. Thus, the scattering

map S : ðbin;uinÞ ! ðbout;uout; toutÞ is defined. The interac-

tion time tout is defined as tout ¼ lim �R ! þ1L �R�2 �Rffiffiffiffi
2h
p , where

L �R denotes the length of the orbit inside the centered at zero

disc of radius �R. For a fixed uin, the scattering functions U
and T are defined as

ðUðbÞ; TðbÞÞ ¼ ðuoutðb;uinÞ; toutðb;uinÞÞ:

The scattering functions and their fractal properties had been

extensively studied by numerical simulations, see, e.g., Refs.

34–37.

We call ðbin;uinÞ regular, if the corresponding orbit

makes a finite number of reflections from the obstacles

before leaving the scattering region, and all these reflections

are regular (i.e., the orbit does not visit the corner points and

all the reflections are non-tangent). Then all close-by initial

conditions are also regular and the scattering map is Cr-

smooth.

The complement to the set of regular initial conditions

is a compact set of measure zero. There are exactly two sour-

ces for non-smooth behavior of S: interior singularities that

are associated with singular reflections from the scatterers,

and trapping singularities which correspond to the number of

reflections tending to infinity.

The interior singularities have a simple signature in

terms of the scattering map. Namely, if the trajectory is tan-

gent to the scatterer boundary at one of the reflections, then

UðbÞ has a square root singularity fold. Notice that both

UðbÞ and TðbÞ are continuous across the tangent singularity

line (see Fig. 8). If the trajectory ends up in a corner, then

the scattering map S is not defined at that point, having a dis-

continuous behavior of both UðbÞ and T(b) along this corner

singularity line.

The trapping singularities have a more complex signa-

ture. Denote by RK the measure zero set of all ðbin;uinÞ for

which the orbit is trapped in the scattering region (i.e., it

makes an infinite number of reflections and does not go to in-

finity). Note that the scatterer D may have a nontrivial com-

pact invariant set K, i.e., the set of all orbits that stay

bounded for all time (from �1 to þ1). The above defined

set RK consists of all the initial conditions ðbin;uinÞ belong-

ing to the stable manifold of K.

Recall that we consider here Sinai scatterers, so all regu-

lar orbits in K are hyperbolic. If the hyperbolic set K is

bounded away from the singulariy set (corners and tangent

collisions) in the phase space, we call the Sinai scatterer reg-
ular. In this case, the scattering function near the trapping

singularities has a characteristic self-similar structure, e.g.,

for every uin the values of bin which correspond to the trap-

ping form a Cantor set which is diffeomorphic to a transverse

section of the stable manifold of K.

The set of regular Sinai scatterers is robust under smooth

perturbations. Indeed, the uniformly hyperbolic invariant set

K is structurally stable, i.e., a sufficiently small smooth de-

formation of D does not change the symbolic dynamic

description of the dynamics on K. In order to see that the set

of regular Sinai scatterers is non-empty, consider three iden-

tical circular disks of radius a that are centered at the vertices

of an equilateral triangle with edges of length R. When

R > 3a, the invariant set K is bounded away from any tan-

gent trajectory, and K is fully described by symbolic dynam-

ics on 3 symbols with a simple transition matrix.35

We call the Sinai scatterer singular if the set of trapping

singularities is no longer separated from the interior singular-

ities, and the simple Cantor-set structure is lost. This is due

to the fact that the invariant set K now includes tangent

and/or corner orbits. For example, as the three discs of the

above mentioned example get closer, tangent orbits are cre-

ated; At each such bifurcation point the phase space partition

changes and, as the scatterers get closer, the transition matrix
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becomes more complex—in the limit at which the discs

touch each other, infinite Markov partition is needed and the

invariant set has a full measure.35 For a general, say, one-

parameter family of Sinai scatterers, it is plausible that

parameter values that produce singular scatterers fill non-

empty intervals. More precisely, we suspect that tangent

bifurcations of (K) occur on a dense set of parameter values

belonging to these intervals (similar to the Newhouse phe-

nomenon49,50). It may be quite challenging to study the

structure of the scattering function for these singular Sinai

scatterers.

Now, consider the system (1) with a steep potential that

limits to a regular Sinai scatterer. Namely, we consider smooth

systems that satisfy conditions I-IV of Sec. II in the domain

D ¼ R2nD, with an additional assumption that the potential

decays sufficiently fast as jqj ! 1. For example, we consider

potentials of the form Vðq; eÞ ¼
Xn

i¼1
EiVi

QiðqÞ
e

� 
, where

Qijq2@Di
¼ 0; Qijq2D > 0, Ei � E > 0, and, for some a > 0,

Við0Þ � 1; Vi
0ðzÞ < 0;ViðzÞ ¼ O

1

za

� �
for z� 1: (32)

By construction, for all energies h 2 ð0; EÞ, for sufficiently

small e, the Hill’s region of the smooth flow approaches D.

Since the potential decays fast, every trajectory which

tends to infinity is asymptotic to a straight line, so there are

well-defined asymptotic direction u and impact parameter b.

Thus, one may define the scattering map of the smooth

flow, Se : ðbin;uinÞ ! ðbe
out;u

e
out; t

e
outÞ. Applying the regular

smooth limit results of Ref. 5 (see Sec. II C) to this setup

ensures that near regular initial data ðbin;uinÞ the smooth

scattering map converges to the billiard scattering map as

e! 0, along with all derivatives. Thus, for smooth-potential

approximations of regular Sinai scatterers, one expects the

scattering map to have the same structure as for the billiard

limit. Namely, we have the following result.

Theorem 13. Consider the Hamiltonian system (1) with
a rapidly decaying at infinity billiard-like potential Vðq; eÞ in
the complement D to a regular Sinai scatterer D. Let Kh be
the maximal compact invariant set of the billiard in D. Then,
for all small e, the maximal compact invariant set Ke

h in the
energy level h 2 ð0; EÞ is topologically conjugate to Kh.
Moreover, the local stable and unstable manifolds of Ke

h are
Cr close to the local stable and unstable manifolds of Kh.

The theorem implies that the scattering function has the

same qualitative structure for all small e. In particular, it has

the perfect self-similar behavior associated with regular hyper-

bolic scattering, see Refs. 34–37. In the case of singular Sinai

scatterers, the behavior of the scattering function for the

smooth flow is quite different. In particular, one cannot expect

structural stability as e varies. As our results suggest, the main

effect of the smooth potential is to destroy the hyperbolicity of

the invariant set of the singular Sinai scatterer. Indeed, billiard

singularities give rise to elliptic periodic orbits of the smooth

scatterer.

Numerous numerical studies of scattering by smooth

potentials demonstrate that elliptic islands play a significant

role in the structures of scattering maps. In particular, it has

been proposed that the existence of such elliptic component

leads to “fat” fractal behavior of the scattering function.51,52

FIG. 8. The scattering map (see Ref. 8).
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However, in general smooth systems, it is difficult to describe

invariant sets and to isolate the scattering signature of each in-

gredient. Examining the behavior of smooth systems that limit

to singular scatterers provides a method for studying such

effects. Indeed, by utilizing the singular mechanisms for creat-

ing stability islands (Sec. III), we can examine the scattering

by small stability islands with control over the size and struc-

ture of the islands and of the rest of the invariant set. In Ref.

8, two symmetric geometrical settings of singular Sinai scat-

ters (with corners—Figs. 9(a) and 9(b) and with tangencies—

Figs. 9(c) and 9(d)) were thus examined.

From these studies, the following scenario emerges (see

Fig. 10). Let l� denote a bifurcation value for which the bil-

liard invariant set has a singularity (e.g., a tangent periodic

orbit or a corner polygon). Then, as discussed in Sec. III,

under some conditions on the potential and the geometry,3,4

a stability wedge in the ðl; eÞ plane emanates from ðl�; 0Þ,
i.e., the smooth flow has stable periodic orbit for all parame-

ters in this wedge (as in Fig. 6). For a fixed l value intersect-

ing this wedge, there exists an interval of e values,

½e�ðlÞ; eþðlÞ�, at which the periodic orbit is stable. Fixing

such a “generic” l value close to l�, where at l the billiard

invariant set is hyperbolic and non-singular and e6ðlÞ are

small; the following sequence of bifurcations occurs as e is

increased from zero:

1. For a sufficiently small e, the non-hyperbolicity effects

are small so the scattering function looks self-similar, and

its fractal dimension approaches that of the billiard scat-

tering function at the given value of l. Discontinuities in

the billiard scattering function may lead to additional sin-

gular components in the scattering function of the smooth

flow (fourth column of Fig. 10).

2. Increasing e towards and through the interval ½e�ðlÞ; eþðlÞ�
leads to a sequence of Hamiltonian bifurcations of the hyper-

bolic periodic orbits that produces elliptic orbits. These bifur-

cations appear in the scattering function as the merge between

several unresolved regions. For e inside the wedges of stabil-

ity, the signature of non-hyperbolic chaotic scattering shows

up—the density of singularities is large and does not appear

to converge to a discrete set as further magnifications are

employed. We notice that the stability interval ½e�ðlÞ; eþðlÞ�
indicates the stability property of a single periodic orbit. At

least near the period-doubling end of this interval, there exist

a cascade of other periodic orbits that are stable; hence, the

visible non-hyperbolicity interval is certainly larger than

½e�ðlÞ; eþðlÞ� (second and third columns of Fig. 10).

3. Beyond the stability interval, intervals of seemingly

hyperbolic scattering or other interval of stability (that

stem from other stability wedges) can be encountered

(first column of Fig. 10).

FIG. 9. Singular Sinai scatters. (a) and (b) have corner singularities, whereas (c) and (d) provide a simple realization for a tangent bifurcation of the invariant

set (see Ref. 8).
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4. A larger increase in e is problem-specific and may involve

topological changes of the corresponding Hill’s region

(i.e., homoclinic bifurcations). In our examples, it finally

leads to the reduction of the invariant set to one unstable

periodic orbit and then to the destruction of the invariant

set.

The above description suggests that by choosing a one-

parameter family of steep potentials ðl; eðlÞÞ ! ðl�; 0Þ,
such that eðlÞ 2 ðe�ðlÞ; eþðlÞÞ for all l values the fractal

dimension of the corresponding scattering function is close

to two for arbitrarily small e. On the other hand, we have

seen that for a fixed l 6¼ l�, for sufficiently small e,
hyperbolic-like chaotic scattering is observed. Thus, near l�,
the fractal dimension of the scattering function can be con-

trolled by varying the appropriate combination of e; ðl�
l�Þ=e and h as derived from the form of the return map near

the singular orbit (see Sec. III).

VI. CONCLUSIONS AND PERSPECTIVES

The near-billiard paradigm allows to analyze a variety

of dynamical properties of multi-dimensional non-integrable

Hamiltonian systems. We conclude by listing some of the

problems that require further research.

One future direction concerns establishing the corre-

spondence between the smooth system and its singular limit

near regular collisions for a wider class of impact systems.

This may include time-dependent billiards, billiards on non-

flat manifolds, billiard motion with added magnetic field,

impact systems where the potential does not vanish inside

the billiard domain, systems with dissipation, and non-elastic

reflection law. For all these system classes, after the regular

collisions are studied, one should analyze the effect of

smoothing the system on the behaviour near singular orbits.

This includes studying the grazing bifurcation18,54 and its

smooth approximations.

For the billiards themselves, the analysis of singular

orbits and their transformations at a smooth approximation is

far from being complete. For example, we have not studied

the general behavior near corner orbits in dimension higher

than 2 (in Ref. 6, we considered only a particular case of a

very symmetric multi-dimensional corner). Nor have we

studied the behavior near corner angles large than p. We

have proved the birth of elliptic islands out of tangent peri-

odic orbits of dispersive billiards—what happens in the non-

dispersive case, when the tangent periodic orbit hits both

convex and concave boundary components? What happens

near degenerate tangencies, e.g., when the billiard orbit has a

cubic tangency to the boundary? Such tangencies can appear

near an inflection point of the billiard boundary (in the two-

dimensional case) or near any boundary point where the cur-

vature form is not sign-definite (in the multi-dimensional

case). In the billiard, an orbit with degenerate tangency can-

not, typically, be continued past the tangency point, so the

FIG. 10. Self-similar (outer columns) and singular (middle columns) scattering functions: close-ups of unresolved regions of the scattering function U2ðs; �Þ
for the corner case with n ¼ 2; l ¼ 0:9, and � ¼ 0:1842; 0:1403; 0:1146; 0:06654 are shown. The second and third values correspond to values that produce

elliptic islands (see Ref. 8).
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question of how the smooth approximation flow behaves

near the inflection and saddle boundary points is quite non-

trivial. This problem also includes the analysis of how

smoothing the system affects chattering (this phenomenon

corresponds to a billiard orbit that approaches an inflection/

saddle point by making infinitely many collisions in a finite

interval of time53). More generally, billiard trajectories can

make a long journey along a convex boundary component,

hitting it at a small angle. What happens with such orbits

when the billiard potential is replaced by its smooth steep

approximation?

Further, one should study periodic orbits that have sev-

eral tangencies to the billiard boundary (as well as corner

orbits that also have tangencies). What is the normal form of

the Poincaré map for the smooth system near such an orbit?

Is it true that given a (semi)dispersive k-dimensional billiard

with a periodic orbit that has (k–1) tangencies to the bound-

ary, a fully elliptic periodic orbit can be born for an arbitra-

rily steep smooth approximation? We proved this in the case

k¼ 2 in Ref. 3, the higher-dimensional case is open. A posi-

tive answer will give a working tool for establishing the non-
ergodicity of the motion in steep repelling potentials in any

dimension of the configuration space. A natural conjecture is

that periodic or corner orbits that make any given number of

tangencies to the billiard boundary can be obtained by an

arbitrarily small (in C1) deformation of the dispersive bil-

liard domain. Once this conjecture is proven, one should be

able to show that for any ergodic dispersive billiard, in any

dimension, the ergodicity can be ruined by arbitrarily steep

smooth approximation of the potential. Applying the tech-

nique to a system of high energy particles interacting via a

repelling hard-core potential would show that the non-

ergodicity is quite typical for the smooth Boltzmann gas. In

particular, one would be able to create stable configurations

out of many particles interacting by a repelling potential at

arbitrarily large kinetic energies.
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