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This paper presents the 1: 1 resonant hom bifurcation phenomena for the forced van der Pol - Dulling 
equation. It is shown that the transition to chaos in the case of small dissipation evolves in two parallel 
processes: a sequence of period-doubling bifurcations and the birth, growth and merging of homoclinic 
structures. 

Recently much attention was paid to research of 
bifurcation phenomena within resonant horns and on 
their outlet [Aranson et al., 1982; Ostlund et al., 1983]. 
Both situations can be described rigorously (see, for 
example, Morozov & Shil'nikov [1983]; Afraimovich 
& Shil'nikov [1983]; Turaev & Shil'nikov [1986]) as 
well as by computer simulation, but certain details of 
the bifurcation process in concrete systems with large 
amplitude of external force are certainly of special 
scientific interest. One of the least studied is the 1: 1 
resonance. 

One of the simplest systems where we can study the 
corresponding regularities, is the van der Pol - Dufling 
equation with harmonic external forcing: 

Different aspects of the rise and development of 
complicated dynamics in the given system were dis­
cussed in Ueda, [1979]; Van Buskirk & Jeffries [1985]; 
Holms [1979]; Dmitriev & Kislov [1989]. In this 
paper, we study the case of small dissipation: e = 0.006. 
Forcing frequency w is selected so that the system is 
in strict 1: 1 resonance with the frequency of the 
self-oscillatory regime, established with A = 0; w = 2;, 
where T = 3.8876. The magnitude A - the forcing 
amplitude - was taken as bifurcation parameter. 
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For A = 0 the phase plane of the system is char~cter­
ized by an unstable equilibrium state (X = 0, X = 0), 
which is encircled by a period-T-limit cycle. With small 
A, according to the Andronov-Vitt theory [Andronov 
& Vitt, 1930], there exist two resonant periodic trajec­
tories (cycles) of period T: stable L\, and saddle L 2• In 
addition, the equilibrium state is followed by an 
unstable cycle L3 of period T. Along with it, all the 
trajectories, excluding L 3, L2 and the stable separatrices 
of L2 cycle, tend to L\. As we increase the value of A, the 
vector field structure undergoes considerable changes, 
and approximately atA = 11 a chaotic oscillatory regime 
is observed in the system. It turns out that the transition 
to chaos in the given system has a number of essential 
features, conditioned by the effect of small dissipation. 
We consider that the most important of these peculiar­
ities is the absence of a strict parameter borderline, that 
divides the vector field into regular and chaotic regimes. 

Our research was performed by numerically integrat­
ing the map F of the plane (X, X) over one period T. 
The fixed points of the map F correspond to the cycles 
with period T of system (1); the points of period in 
correspond to cycles with period nT. It is necessary to 
note that system (1) is symmetric with respect to the 
following transformation 

(X -- - X, t -- - t + n/w) . (2) 
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We consider the periodic points of the map F to be 
symmetric, if they correspond to cycles which are 
symmetric with respect to the transformation (2). The 
above mentioned cycles L I , Lz, L3 are symmetric with 
respect to (2). We will designate the points of their 
intersections with the plane t = 0 as OJ, Oz, 0 3 

correspondingly. 
Bifurcations of the fixed points of the map F do not 

happen until A = 0.6. Figure 1 shows the phase portrait 
for A = 0.2. It is evident that the longest part of the 
unstable manifold of the saddle point Oz aims towards 
0 1, Homoclinic intersections of the stable and the 
unstable manifold is a characteristic feature of the 
given situation, as can be observed in Fig. 2, which 
shows the vicinity of the saddle point on a large scale. 
The birth of the homoclinic structure in this case can 
be explained by the fact that the dissipation is close to 
zero: the matter is, that the presence of homoclinic 
structures ("chaotic layers") is characteristic of conser­
vative maps, and they cannot possibly disappear at 
small dissipation. It is evident from the figure, that the 
homoclinic structure here is very "narrow", and most 
trajectories of the F-map iterations tend to 0 1, It 
should be mentioned, that, judging by Fig. 2, the stable 
and the unstable manifolds come into contact with Oz 
for A close to 0.2. So, because of Gavrilov & Shilnikov 
[1973], or A = 0.2, or for close values of A, the system 
possesses other stable periodic trajectories of rather 
large period besides 0 1, They cannot, however, be 
revealed by numerical research. 

For A = 0.6, Oz and 0 3 merge and disappear. The 
next bifurcation is the appearance of two symmetric 
trajectories of period 3. For A = 2.64 there appears one 
more period-3 symmetric trajectory of the saddle-knot 
type (one multiplicator is equal to 1, the other is 
smaller), which for A > 2.64 is divided into a saddle 
and a stable periodic trajectory (see Fig. 2, showing 
phase portrait for A = 2.7). As A increases, period-3 
saddle trajectory approaches 0 1 and, for A = 2.84, 
comes as close to it as 0.03 by X and 0.3 by X. At this 
moment the basin of attraction of 0 1 is very small (it 
is limited by the stable manifolds of the period-3 
saddle trajectory), and most trajectories aim to the 
fixed point of period 3. As A increases further, the 
saddle trajectory comes off 0 1 again, and at A = 3.67 
it merges with the stable trajectory into a saddle-knot 
of period 3, which then disappears. The described 
sequence of bifurcations is characteristic of systems 
with small dissipation. In conservative systems the 
birth of secondary resonances near a stable (elliptic) 
fixed point with the change of parameter takes place 
permanently, but with the introduction of dissipation 

only a part of them survives. In our case the dissipa­
tion turns out to be sufficiently large to preserve only 
"the strongest" secondary resonance - 3 period one. 

For A = 4.7, 0 1 becomes a saddle point. It gives rise 
to a pair of stable fixed points 0 4 and O~ (cycles of 
system (1), that go through 0 4 and O~ at t = 0 are 
symmetric to each other with respect to the transfor­
mation (2». Figure 4 shows a phase portrait at A = 5. 
With the growth of A there appears a homoclinic 
intersection of the stable and the unstable manifolds of 
0 1 (see Fig. 5, illustrating a phase portrait for A = 6). 
At A = 6.3 there appears a pair of fixed cycles of the 
saddle-knot type, symmetric to each other with respect 
(2). At A> 6.3, the saddle-knots are divided into pairs 
of saddle and stable fixed points: Os, O's and 0 6, 0 6 
respectively. At A = 6.296, the stable points 0 4 and 0 4 
undergo a period-doubling bifurcation. Then, at A = 

7.395, the stable cycles of period 2 come back into 0 4 

and O~, and the latter become stable again. For A = 

8.428, 0 4 and O~ merge with 0 5 and O's respectively 
and vanish. So, for 6.3 < A < 8.428, the system has 
four stable modes, and hysteresis phenomena may be 
observed. Figures 6 and 7 show the phase portraits at 
A = 6.5 and A = 7.4, respectively. It can be seen, that as 
A increases the reorganization of the stable and the 
unstable manifolds of saddle fixed points takes place. 
This is associated with the formation of homoclinic 
intersections and homoclinic contacts. Such homo­
clinic structures contain [Shil'nikov, 1967; Gavrilov & 
Shil'nikov, 1973] a limited number of saddle periodic 
trajectories and can also contain stable large-period 
trajectories. It's worth mentioning that in this case, for 
most initial conditions, phase trajectories tend to one 
of the stable fixed points, or to period-2 fixed points. 
Hence, despite the presence of homoclinics structures 
in the range of A parameter variation, one cannot 
assert the establishing of chaotic fluctuations, but only 
a chaotic transient process. 

For A > 8.428, there exist three fixed points: saddle 
0 1 and stable 0 6 and 0 6 (phase portrait for A = 9.5 in 
Fig. 8). With an increase in A there appear sequences 
of bifurcations such as period-doubling cascades: at 
A = 9.961, 0 6 and 0 6 lose stability, period-2 trajecto­
ries, sprung from 0 6 and 0 6, lose stability at A = 

10.996, trajectories of period 4 at A = 11.108, trajec­
tories of period 8 at A = 11.121 and so on. We see, that 
the distances between parameter bifurcation values 
decrease much faster than that with strongly dissipa­
tive systems, which is caused by a small dissipation. 
More important, in comparison with strongly dissipa­
tive systems, is the fact that, along with period­
doubling, there proceeds a competing process of the 
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Figs. 1-2. Representative phase portraits in the 1:1 resonance horn: (1,2) - A - O, 2. 
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Figs. 3-4. Representative phase portraits in the ]:] resonance horn: (3) - A = 2.7; (4) - A = 5.0. 
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Figs. 5-6. Representative phase portraits in the 1:1 resonance hom: (5) - A = 6.0; (6) - A = 6.5. 
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Fia. 7. 

x 

Fig. 8. 

Figs. 7-8. Representative phase portraits in the 1: 1 resonance horn: (7) - A = 7.4; (8) - A - 9.5. 
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Fig. 10. 

Figs. 9-10. Representative phase portraits in the 1: 1 resonance hom: (9) - A = 10.0; (10) - A = 11.0. 
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transition to chaos through the birth of homoclinic 
structures. 

Figure 8 illustrates that, for A close to 9.5, the stable 
and the unstable manifolds come into contact with 0/. 
Then a nonattractive homoclinic structure is formed 
(see Fig. 9 with a phase portrait for A = 10). At A = 11 
(after second doubling) a homoclinic structure be­
comes "wide", and due to the formation of hetero­
clinic trajectories it comprises cycles 0 6 and 0 6, which 
have become saddle-type cycles (see Fig. 10, showing 
the intersection of the 0 6 unstable manifold and the 
0/ stable manifold). The appearance of homoclinic 
structures for saddle points which occur as a result of 
period-doubling might be expected because of small 
dissipation. It was quite unexpected, however, that 
homoclinic structures, referring to different saddle 
points, unite before the sequence of flip bifurcation is 
finished. 

As can be seen from Fig. 10, for A = 11 the basin of 
attraction of period-4 stable trajectories is narrow and 
disjoint. So we may think, that for A = 11 the chaotic 
fluctuations are established in the system. Period-4 
trajectory can be regarded as a "window" in the sphere 
of chaotic dynamics, along with, for example, long­
period stable trajectories, which occurs as a result of 
homoclinic contacts (one of these contacts can be seen 
in Fig. 9). We think that the above reported process of 
transition to chaos through birth, growth and merging 
of homoclinic structures, which is parallel to doubling, 
is common for weak dissipative systems. It should be 
mentioned, that such a way of transition to chaos, in 
contrast to period-doubling in strong dissipative sys­
tems, cannot be characterized by a strict parameter 
borderline which divides the vector fields of regular 
behavior (as it is impossible to draw a strict borderline 
between the "wide" and the "narrow" homoclinic 
structures, or between the "wide" and the "narrow" 
basins of attraction). 
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