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Bifurcations of two-dimensional diffeomorphisms with a homoclinic tangency are studied in one­
and two-parameter families. Due to the well-known impossibility of a complete study of such 
bifurcations, the problem is restricted to the study of the bifurcations of the so-called low-round 
periodic orbits. In this connection, the idea of taking !l-moduli (continuous invariants of the 
topological conjugacy on the nonwandering set) as the main control parameters (together with 
the standard splitting parameter) is proposed. In this way, new bifurcational effects are found 
which do not occur at a one-parameter analysis. In particular, the density of cusp-bifurcations 
is revealed. 

1. Introduction 

As is well known, the development of the theory 
of global bifurcations of multi-dimensional systems 
was started in 60's and first of all with works of 
L. P. Shil'nikov. In particular, he discovered a re­
markable phenomenon that a multi-dimensional sys­
tem with a homoclinic loop of a saddle equilibrium 
state can possess an infinite number of periodic or­
bits, in distinction with the two-dimensional case. 
The first example of such complicated behavior is 
given by a homoclinic loop of an equilibrium state 
of saddle-focus type (Fig. 1) in a three-dimensional 
space. Such eqUilibrium state has the characteristic 
roots ->. ± iw and I where I, >., and ware positive; 
besides, the so-called saddle index p = >'Ir is less 
than unity. 

It was found in Shil'nikov [1965, 1970J that the 
structure of the set N composed by the orbits lying 
entirely in a small neighborhood of the homo clinic 
loop is not just nontrivial but it also depends es­
sentially on the value of p. This dependence is such 
that, when p varies continuously, the structure of 
the set N permanently varies in anyone-parameter 
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r 

P=NY is a saddle index. 
Fig. 1. A three-dimensional flow X with the homoclinic loop 
r of the equilibrium state 0 of saddle-focus type (Le., the 
equilibrium state 0 possesses characteristic roots -A ± iw 
and 'Y where A, 'Y, and ware positive). Shil'nikov has shown 
that if the value p = Air is less than 1, then the set N 
of orbits lying entirely in a small neighborhood of r has a 
nontrivial structure which depends essentially on the value 
of p. 
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family Xp of systems holding a saddle-focus homo­
clinic loop. 1 

In modern terms, the results of Shil'nikov 
[1965, 1970] imply that the value p is a modulus 
of the O-equivalence of systems with a homo clinic 
loop of a saddle-focus. Recall the definition: 

Definition. We say that a system X has a modu­
lus if, in the space of dynamical systems, a Banach 
subspace M passes through X, and on M a locally 
nonconstant continuous functional h is defined such 
that in order for two systems Xl and X 2 from M to 
be equivalent it is necessary that h(X1) = h(X2 ). 

We shall say that X has at least m moduli if a Ba­
nach subspace passes through X on which m in­
dependent moduli are defined, and that X has a 
countable number of moduli if X has an arbitrary 
finite number of moduli. 

Among different types of equivalences in the 
space of dynamical systems, the most known are the 
topological and the O-equivalence (the topological 
equivalence on nonwandering sets). The topologi­
cal moduli in systems with simple dynamics were 
discovered by Palis [1978] for diffeomorphisms of a 
plane which have an orbit of heteroclinic tangency. 
Figure 2(a) represents such a diffeomorphism. It 
has two saddle-fixed points 0 1 and O2 with multi­
pliers Ai and "Ii where IAil < 1, hil > 1 (i = 1, 2). 
It also has a heteroclinic orbit fo at the points of 
which the manifolds W U (02) and WS(Od have a 
tangency. Palis established that two such diffeomor­
phisms f and f' can be topologically conjugated in 

- -, 
some neighborhoods U(fo) and U'(fo) only in the 
case where the values of the invariant a = _lin 1>'2

1
1 

n 1'1 
are the same for f and f'. 

This means that a is a modulus of the topo­
logical equivalence for diffeomorphisms with a het­
eroclinic tangency. At the same time, any two dif­
feomorphisms of the Palis example are O-conjugatej 
that is, the value a is not a modulus with respect 
to the O-equivalence. 

If we identify the saddles 0 1 & O2 , we get a dif­
feomorphism with a homo clinic tangency [Fig. 2(b)]. 
The invariant a is equal, in this case, to the value 

lIn particular, it was established in Ovsyannikov & Shil'nikov 
[1987, 1992) that the values of p for which Xp has a struc­
turally unstable periodic orbit compose a dense set. 

2 

0 1 

a) a=-lnIA21 \ lnlyJI 

o 
b) 8=-lnIAI \ lnlyl 

Fig. 2. In Fig. 2(a) a two-dimensional diffeomorphism with 
a heteroclinic tangency is represented. It possesses two sad­
dle fixed points 0 1 and O2 with multipliers Ai and /i where 
lAd < 1, lTd > 1, i = 1, 2. There exists also a structurally 
unstable heteroclinic orbit ro at the points of which the man­
ifolds WU(02) and W'(Od are tangent. Palis established 
that two such diffeomorphisms f and I' may be topologi­
cally conjugate only in the case if the value 0: = - \~ I~~I is 

the same for / and 1'. In Fig. 2(b) a two-dimensional dif­
feomorphism with a homo clinic tangency is represented. It 
has a saddle fixed point 0 with multipliers A and / where 
IAil < 1, lTil > 1, i = 1, 2. It possesses also a structurally 
unstable periodic orbit r at the points of which the mani­
folds WU(O) and W'(O) are tangent. The value () = -Gt 
introduced by Gavrilov and Shil'nikov is an analogue of the 
invariant 0:. Note that here, in distinction with a heteroclinic 
situation, the value () may be a modulus of the n-equivalence. 
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which is traditionally denoted as 8: 

8= -~ 
bl 

where A and 'Yare the multipliers of O. 
Note that in distinction with the heteroclinic 

situation the invariant 8 may be a modulus not only 
for the topological but also for the O-equivalence. 
It should be mentioned here that topological mod­
uli appear, mainly, as obstacles to the existence of 
a conjugating homeomorphism whereas O-moduli 
have an essentially different sense. To our opin­
ion, O-moduli should be considered as parameters 
determining the structure of the nonwandering set. 
Historically, it is exactly the context in which 
O-moduli were found (the mentioned value p for a 
saddle-focus homoclinic loop and the value () for ho­
moclinic tangencies [Gavrilov & Shil'nikov, 1973]), 
essentially earlier than when the notion of a topo­
logical modulus were introduced in the theory of 
dynamical systems. 

For the bifurcation theory, importance of the 
study of specifically O-moduli is obvious. Indeed, it 
is clear that if a system is perturbed so that the 
value of an O-modulus is changed, then bifurca­
tions of nonwandering orbits (periodic, homoclinic, 
etc.) must occur. First, this phenomenon was re­
vealed in Gavrilov & Shil'nikov [1973] at the study 
of bifurcations of periodic orbits on the bifurca­
tional surface 1{ composed by systems with a 
quadratic homoclinic tangency. Namely, there was 
shown that for anyone-parameter family X(J of sys­
tems on 1{ the values of () are dense for which X(J 
has a structurally unstable periodic orbit. 

Note also that () is not a unique O-modulus for 
the systems with a homo clinic tangency. It was es­
tablished in Gonchenko et al. [1991, 1993] that the 
systems may be dense in 1{ which have a count­
able number of independent O-moduli. Since an 
independent variation of the values of each of the 
O-moduli leads to bifurcations in the nonwander­
ing set, a joint variation of the infinite series of the 
O-moduli may lead to infinitely degenerate bifur­
cations. Specifically, it was shown in Gonchenko 
et al. [1991, 1993] that systems with arbitrarily de­
gener:ate periodic orbits and with homoclinic orbits 
of any order of tangency may be dense in 1{. 

Immediately, there arise a number of problems. 
On the one hand, systems with homo clinic tangen­
cies compose bifurcational surfaces of co dimension­
one in the space of dynamical systems. Therefore, 
such systems occur in general in one-parameter 
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families. On the other hand, the proven presence 
of systems with arbitrarily degenerate periodic and 
homoclinic orbits in an arbitrarily small neighbor­
hood of any system with a simple homo clinic 
tangency shows that no finite number of control pa­
rameters is sufficient for a complete study of bifur­
cations of such systems. The analogous result can 
be also shown to hold for systems with a homoclinic 
loop of a saddle-focus. 

In principle, we have to give up the ideology 
of "complete description" and to restrict ourself to 
the study of some most typical features' and prop­
erties of such systems. Particularly, the problem 
of the study of main bifurcations in low-parameter 
families takes such a sense. 

In the latter sentence, we must, of course, clar­
ify the term "main bifurcations". We must also 
solve the question on the choice of the control 
parameters. 

We will study the structure of the set N of 
the orbits lying entirely in a small neighborhood 
U of a homoclinic orbit. In the case of a two­
dimensional diffeomorphism with a homoclinic tan­
gency this neighborhood is the union of a small 
disc Uo, containing the fixed point 0, and a finite 
number of small neighborhoods of the homo clinic 
points which lie outside Uo (Fig. 3). As we men­
tioned, the complete study of all bifurcations in U 
is impossible and we restrict ourself to the study of 
low-round periodic and homo clinic orbits (single-, 

Fig. 3. The neighborhood of a structurally unstable homo­
clinic orbit. The neighborhood U is a union of a small neigh­
borhood Uo of the saddle fixed point 0 and of a finite number 
of small neighborhoods of homo clinic points lying outside Uo. 
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double-, triple-, ... ). A periodic orbit lying in U 
will be called k-round if it leaves and reenters Uo k 
times for the period. Analogously, the roundness of 
a homo clinic orbit is defined. The low-round orbits 
are, naturally, most interesting from the application 
point of view. Moreover, the high-order degenera­
tions occur only for quite high roundnesses. 

The question of what concerns the right choice 
of the control parameters has a principal meaning 
for the systems with complex dynamics. There is 
no problem with finding appropriate control param­
eters in the classical bifurcation theory going back 
to the studying of flows on a plane: here, each pa­
rameter is responsible for unfolding some definite 
degeneration of the system (for instance, the con­
trol parameters govern independently the splitting 
of separatrices, variation of values of critical charac­
teristic exponents of equilibrium states and multi­
pliers of periodic orbits, variation of Lyapunov val­
ues, etc.). For the multi-dimensional systems with 
homo clinic tangencies the so-called splitting param­
eters must clearly be taken as one of the main con­
trol parameters for the study of bifurcations. 

However, according to what was said above 
about !1-moduli, it becomes clear that to obtain 
a more detailed bifurcational picture one must take 
!1-moduli as additional bifurcation parameters (or 
such values whose variation leads to variation of 
values of the !1-moduli). 

In the present paper, we demonstrate the ef­
fectiveness of this approach to the study of main 
bifurcations in systems with complex dynamics for 
the case of two-dimensional diffeomorphisms with a 
homo clinic tangency. 

2. Two-Dimensional Diffeomorphisms 
with a Homoclinic Tangency. 
Geometric Constructions 

2.1. The neighborhood of a 
structurally unstable 
homoclinic orbit 

We consider a Cr+2-smooth (r ?: 3) two-dimensional 
diffeomorphism f which has a saddle-fixed point a 
with multipliers>. and'Y where 0 < 1>'1 < 1, 111 > 1. 
We consider the case where 1>'''11 < 1. The case 
1>'''11 > 1 is reduced to that under consideration by 
transition to the inverse map f- 1 instead of the 
initial map fi the special case 1>'''11 = 1 requires a 
separate investigation (see, for instance, Gonchenko 
& Shil'nikov [1987]). 

Suppose the stable and unstable manifolds of 
o have a quadratic tangency at the points of a ho­
moclinic orbit r. 

Let U be a small neighborhood of the set our. 
The neighborhood U is the union of a small disc 
Uo containing a and of a finite number of small 
discs surrounding the points of r which are located 
outside Uo (Fig. 3). The subject of our study is the 
set N of orbits of the map f that lie entirely in U. 

2.2. The local and global maps 
To and Tl 

Let To be the restriction of f onto Uo (it is called 
the local map). Note that the map To in some 
Cr+1-coordinates (x, y) can be written in the form 
[Gonchenko & Shil'nikov, 1990, 1992J 

x = >.x+ f(x, y)x2y, Y = 'Yy+g(x, y)xy2. (2.1) 

By (2.1), the equations of the local stable mani­
fold Wl~c and local unstable manifold Wl~c are y = 0 
and x = 0, respectively. Representation (2.1) for 
the local map is convenient because in these coor­
dinates the map Tt for any sufficiently large k is 
linear in the lowest order. Specifically, we have the 
following representation [Gonchenko & Shil'nikov, 
1990, 1992J for the map Tt : (xo, yo) t--+ (Xk' Yk): 

Xk = >.kxo + 1>.lkl'Yl-k<pk1(xo, Yk), 
(2.2) 

where <Pk1 and <Pk2 are functions uniformly bounded 
at all k along with their derivatives up to the 
order r. 

Let M+(x+,O) and M-(O, y-) be a pair of 
points of r which lie in Uo and belong to Wl~c and 
Wl~c' respectively. Without loss of generality we 
can assume x+ > 0 and y- > O. Let IIo and III be 
sufficiently small neighborhoods of the homo clinic 
points M+ and M- such that To (IIo) n III = 0 and 
To(III) n III = 0. Evidently, there exists an inte­
ger q such that fq(M-) = M+. We denote the 
map f q : III --t IIo as TI (it is called the global 
map). The map TI can obviously be written in 
the form 

x-x+ =ax+b(y-y-)+ ... , 

y = ex + d(y _ y-)2 + ... , 
(2.3) 

where be =1= 0 since TI is a diffeomorphism, and 
d =1= 0 since the tangency is quadratic. 
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Fig. 4. The figure illustrates the method of a construction 
of strips at k = I, I + 1, ... which lie in IIo and which are 
the domains of the maps T; : IIo -4 III. The points of IIo 
targeting to III after k iterations of the map To belong to 
the set Tok nIIo. The neighborhood III is contracted in 1'-1 
times along the vertical direction and it is expanded in A-I 
times along the horizontal direction under the action of the 
map To-I. Moreover, TO-l (IId nIIl = 0. Respectively, the set 
To-k(IId is a narrow rectangle which is stretched along the 
x-axis and lies at a distance of order 1'-1c from it. Besides, the 
rectangles To-Ie (III) and TO-<k+l ) (III) are not intersected. For 
sufficiently large k, the intersection To-Ie (IId n III is the strip 
O"~, as is shown. The strips O"~ accumulate at the segment 
W· n IIo as k -4 00. 

2.3. Strips and horseshoes 

Note that orbits of N must intersect the neighbor­
hoods ITo and ITI (otherwise, these orbits would be 
far from r). However, not all orbits that start in 
ITo arrive in ITI. The set of the points whose or­
bits get into ITI fills a countable number of strips 
O'g = ITo n To-kITI which accumulate on WS

• The 
way of constructing these strips is obvious from 
Fig. 4. In turn, the images of the strips O'g un­
der the maps T~ give on ITI a sequence of vertical 
strips O'l which accumulate on Wl~c (Fig. 5). 

Neighborhoods ITo and ITI may be taken so that 
to contain all the strips O'g and O'l with numbers 
k 2: k and not to intersect with O'g and O'l for k < k. 
Obviously, if diamITo . diamITI ...... 0, then k ...... 00. 

The images TIO'l of the strips O'l have a shape 
of horseshoes accumulated at TI Wl~c as k ...... 00 

(Fig. 6). It is clear that orbits of N must inter­
sect ITo in points lying in intersections of horseshoes 
TIO'l and strips O'J for i, j 2: k. Hence, the structure 
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• • • 

• • • M+ 

Fig. 5. The figure illustrates a method of construction of 
the strips 0"1, k = I, I + 1, ... which lie in III and which are 
the ranges of the maps T; : IIo -4 III. 

of N depends essentially on geometrical properties 
of such intersections. 

2.4. The types of intersections of the 
strips and horseshoes 

Different types of intersections of a horseshoe TIO'[ 
with the strips are shown in Fig. 7. The horseshoe 
has a regular intersection with the strip O'J, an ir­
regular intersection with the strip O'g, and empty 
intersection with the strip O'p. 

The intersection is called regular if the set 
TIO'l n O'J is nonempty and consists of two con­
nected components O'JI and O'Jl (Fig. 8), and the 

maps TiOt = TITj : O'?Ot ...... O'J, a = 1, 2, are saddle 
(Le., they are contracting along the coordinate x 
and expanding along the coordinate y). Here, O'?l 
and 0'?2 are upper and lower parts of the strip O'? 
They are separated by the central part of O'? (de­
noted as O'?c in Fig. 8) which is mapped by TITj 
onto the top of the horseshoe TIO';. 
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d 0 1 
k k 

Fig. 6. The images TlU~ of the strips u~ have a shape of 
horseshoes which are accumulated at Tl (WI~c) as k -+ 00. 

Orbits of the set N must intersect no in the points of in­
tersections of the "horseshoes" Tlu1 and the strips uJ for i, 
j ~ k. 

d: 
J 

Fig. 7. Various types of intersections of the "horseshoe" 
Tl u1 with the strips. The horseshoe has a regular intersec­
tion with the strip uJ; it has an irregular intersection with 
the strip uf and an empty intersection with the strip u? 

2.5. The conditions of regular and 
irregular intersections of the 
strips and horseshoes 

It is established in Gonchenko & Shil'nikov [1987] 
that if the inequality 

Ticr.ol 
° I 

T i o .Oe 

° I 

cr
j

O

I 

__ .---------~ crOe ""-______ .. -- I 

cr.02 __ -
I 

Fig. 8. The case of regular intersection of the horseshoe 
Tl u1 with the strip uJ. The intersection is called regular 
if (a) the set Tlu1 n uJ is nonempty and consists of two con­
nected components uJl and uJl and (b) the maps Tia == 
Tlro : uJf -+ uJ, Q = 1, 2, are of saddle type (i.e., they are 
contracting along the x-coordinate and expanding along the 
y-coordinate). Here, u?l and u?2 are upper and lower parts 
of the strip up. They are separated by the central part u?C 
of u? which is mapped by Tl T~ onto the top ofthe horseshoe 
Tlu1· 

is satisfied, where Sr(i, j) = 51(1Ali +h'I-i)·h'I-k/2 

and 51 is some positive constant independent from 
i, j and k, then the intersection of TI0} with C1J is 
regular. 

The inequality 

db-iy- - CAix+] < -Sr(i, j) (2.5) 

is a sufficient condition for an intersection of Tl C1[ 
and C1J to be empty. 

It is clear from (2.4) and (2.5) that the 
inequality 

Idb-iy- - CAi X+lI ~ 5k(i, j) (2.6) 

is necessary in order for the horseshoe TIU[ to have 
an irregular intersection with the strip uJ. 

Inequalities (2.4)-(2.6) have quite a simple geo­
metrical sense (Fig. 9). The strip uJ is a thin rectan­
gle with the central line y = ,-iy-. The strip U[ is 
a thin rectangle with the central line x = Aix+. The 
strip C11 is mapped by the map Tl onto a horseshoe 
with the parabola y = CAix+ + d((x - x+)/b)2 as a 
central line. The condition db-iy- - CAix+] > 0 
means that the straight line y = ,-iy- and the 
parabola intersect in two points, and the condition 
db-iy- - CAix+] < 0 means that they have no 
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W." lot 

o 

Fig. 9. The strip uJ is a thin rectangle with the central line 
y = -y-i y-. The strip ul is a thin rectangle with the central 
line x = ~iX+. The strip ul is mapped by the map Tl onto a 
horseshoe with the parabola y = C~ix+ + d«x - X+)/b)2 as 
a central line. 

intersection. The coefficient S;;(i, j) in (2.4)-(2.6) 
is due to the nonzero thicknesses of the strip and 
horseshoe. 

2.6. Codes 

Let Q be an orbit lying in U entirely and nonasymp­
totic to O. This orbit intersects ITo in an infinite 
sequence of points Ms. Each point Ms belongs to 
some strip Uk.; here, successive points Ms and Ms+1 
are connected by the relation 

The infinite sequence of integers {ks } is called 
a natural code of the orbit Q. 

Definition. A pair of integers (i, j) is called inad­
missible if i < I, or j < I, or inequality (2.5) is ful­
filled. Otherwise, the pair (i, j) is called admissible. 
An admissible pair is called regular if it satisfies in­
equality (2.4). A sequence of integers {k s } is called 
inadmissible if at least one of the pairs (ks, ks+1) is 
inadmissible, and it is called admissible otherwise. 
An admissible sequence {ks} is called regular if each 
pair (ks, ks+1) is regular. 

Since Ms+1 E Twt nU£'+I' the following asser­
tion is evident: for each orbit Q lying in U entirely, 
the code is an admissible sequence. 

On the other hand, it is shown in Gavrilov & 
Shil'nikov [1973] and Gonchenko [1984] that if a 
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sequence {ks } is regular, then there exists a con­
tinuum of saddle orbits in N which have the given 
sequence as the code. 

The last is connected with the fact that inequal­
ities (2.4) guarantee that the intersection TIUk. n 
uko is regular. It consists of two connected com-.+1 
ponents UkOl k and Uk02 lk (Fig. 8), and points .+1 • .+ • 
belonging to different components may be distin-
guished. Therefore, for the orbits in U with the 
regular" natural codes, a more precise code can be 
constructed. Namely, it is a sequence {(ks, as)} 
(as E {I, 2}) such that the point Ms belongs to 
ukO

a , k C u£ (we will also use an equivalent no-,+1 • , 
tation for the code {(ks, as)} as a sequence of the 
symbols "0", "1", and "2": 

k. k.+l 
~~ 

... , as-I, 0, ... ,0, as, 0, ... ,0, as+1, ... ). 

By definition, 

(2.7) 

where the map 'h.a. == TIT;',uo... is saddle. By 
Ie. 

the "lemma on a saddle-fixed point in a countable 
product of spaces" from Shil'nikov [1967], there ex­
ists a unique sequence of points satisfying Eq. (2.7). 
Thus, to each code {(ks, as)} where {ks} is regu­
lar and {as} is an arbitrary fixed sequence of the 
symbols "I" and "2" there corresponds a unique or­
bit Q E N (the set of the orbits which correspond 
to different sequences {as} has the cardinality of 
continuum). 

Note also that if a nonsaddle orbit exists in N, 
then its code {ks} must be such that inequality (2.6) 
is satisfied for at least one of the pairs (i = ks, 
j = ks+1)' 

3. The Types of Two-Dimensional 
Diffeomorphisms with a 
Homoclinic Tangency 

Thus, an analysis of the structure of integer solu­
tions of inequalities (2.4)-(2.6) is an essential part 
of the study of orbits of the set N. The sets of such 
solutions obviously depend on the signs of param­
eters A, ,,(, c, and d. Geometrically, it is connected 
with the fact that the signs of these values deter­
mine the character of the reciprocal position of the 
manifolds Wl~c and Tl Wl~c in a neighborhood of 
the homoclinic point M+. We restrict ourself to 
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o o 

a) c<O, d<O b) c>O, d<O c) c<O, d>O d) c>O, d>O 

Fig. 10. Various types of diffeomorphisms with a homoclinic tangency in the case when both>' and 'Yare positive. These 
types correspond to different cases of a reciprocal position of the stable and unstable manifolds which depends on the signs of 
the values c and d. When d is negative, W U is tangent to WI~c from below [Figs. 10(a) and 10(b)]j when d is positive, W U is 
tangent to WI~c from above [Figs. lO(c) and lO(d)]. The sign of the value c determines how the shaded semineighborhood of 
the homo clinic point M- is mapped onto the neighborhood of the point M+. 

the case of positive A and ,.2 The different cases 
possible here in dependence on signs of c and dare 
shown in Fig. 10. 

According to Gavrilov & Shil'nikov [1973], the 
diffeomorphisms under consideration are divided 
into the three classes for which the structure of the 
set N is essentially different. 

3.1. Systems of the first class 

The systems of the first class are those for which 
A > 0, , > 0, d < O. The following theorem takes 
place: 

Theorem 3.1. [Gavrilov & Shil'nikov, 1973] Let f 
be a diffeomorphism of the first class. Then the set 
N is trivial: N = {O, r}. 

This result can be obtained from the analysis 
of the set of integer solutions of inequalities (2.4)-"­
(2.6): one can prove that if A > 0, , > 0, d < 0, 
any sequence {k s } is inadmissible. Geometrically, 
this can be verified in the following way. If c < 0, 
d < 0, then the horseshoes Trut and the strips O'J 
do not intersect since they lie at the opposite sides 
from Wl~c [Fig. l1(a)]. Thus, in this case, the set 
N has a trivial structure indeed: N = {O, r}. 

In the case c > 0, d < ° [i.e., when "parabola" 
Tl Wl~c is tangent to Wl~c from below; see 
Fig. l1(b)], the set N has a trivial structure also. 

2The cases of different signs of >. a.nd 'Yare considered, for 
instance, in Gonchenko & Shil'nikov [1990, 1992]. 

It is connected with the fact that here the intersec­
tion Tl at n O'J may be nonempty only for j > i . 
Indeed, the strip O'J lies at a distance of an order 
,-j from w,ls and the top of the horseshoe T1o"llies oc . 
at a distance of an order N from Wi~c [Fig. l1(b)]. 
Since AI < 1, it follows that Ai « ,-i, so any 
horseshoe Tl at lies below the corresponding strip 
a? and, hence, below any strip O'J with j < i . As 
a consequence we have that the negative semi-orbit 
of any initial point on ITo (except M+) leaves the 
neighborhood U. 

3.2. Systems of the second class 

The systems of the second class are those for which 
A > 0, , > 0, c < 0, d > 0. In this case, evidently, 
inequality (2.4) is fulfilled for any sufficiently large i 
and j; that is, the intersection of Tl at with O'J is reg­
ular for any i, j ~ k [Fig. 11(c)] . Correspondingly, 
any sequence of integers ks ~ k is regular in this 
case. Therefore, the following statement [Gavrilov 
& Shil'nikov, 1973] takes place: 

Theorem 3.2. In the case c < 0, d > ° all orbits 
from N\r have a saddle type and N is in one-to-one 
correspondence with the quotient-system no which is 
obtained from the Bernoulli scheme on three sym­
bols {O, 1, 2} by identification of two homoclinic 
orbits: ( ... ,0, ... ,0, 1, 0, ... ) and ( ... , 0, .. . , 0, 
2,0, ... ).3 

3Both these two codes correspond to the orbit r. 



In
t. 

J.
 B

if
ur

ca
tio

n 
C

ha
os

 1
99

6.
06

:9
69

-9
89

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 I
M

PE
R

IA
L

 C
O

L
L

E
G

E
 L

O
N

D
O

N
 o

n 
02

/1
2/

13
. F

or
 p

er
so

na
l u

se
 o

nl
y.

Complexity of Homoclinic Bifurcations and O-Moduli 977 

(l 
I 

c) c<o d) c>O, d>O 
Fig. 11. The reciprocal position of the strips and the horseshoes. In the case c < 0, d < 0 [Fig. l1(a)] the horseshoes T1ut 
and the strips uJ lie from the opposite sides from WJ~c. In the case c > 0, d < 0 [Fig. l1(a)], any horseshoe T1ut lies below 
its "own" strip u? and, hence, below any strip u2 with k < i. Actually, the strip uJ lies here at a distance of order -y-i from 
WJ~cj the top of the horseshoe Tlu1 lies at a distance of order .xi from W J: c• Since l.xhl is less than unity, then .xi « -y-i. 
In the cases of Figs. l1(a) and l1(b) the set N has the trivial structure: N = {a, n. If c < 0, d> 0 (Fig. l1(c)], then 
the intersection of Tl u1 with uJ is regular for any i, j ~ k. In this case, the set N has a nontrivial structure which may be 
described completely. In the case c > 0, d > 0 [Fig. 11 (d)] , any horseshoe Tlut is intersected regularly with its "own" strip 
u?, with all strips lying above it and with some number (depending on i) of strips lying below. The set N has a nontrivial 
structure for this case. But, the description of N depends essentially on parameters of a homoclinic structure (such as the 
O-moduli (J and TO). 

3.3. Systems of the third class 

The systems of the third class are those for which 
A > 0, , > 0, c > 0, d > 0. In this case, TIWl~c 
is tangent to Wl~c from above (c > 0, d > 0) 
[Fig. l1(d)]. The study of systems of the third 
class (and nearby systems) is the main scope of the 
present paper. 

4. Nontrivial Hyperbolic Subsets of 
Systems of the Third Class 

Taking logarithm of both parts of (2.4) we rewrite 
the condition of regular intersection as 

j < i(J - T - S,-k/2 (4.1) 

and the condition of empty intersection as 

j > i(J - T + S,-k/2 (4.2) 

where 
0- _In IAI 

- lnbl' 

T = In ~'Iln I c;: I ' 
and S is some positive constant. It is convenient 
to rewrite inequalities (4.1), (4.2) in an "invariant" 
form 

(j + m) < (i + m)O - TO - s,-(k+m)/2 , (4.3) 

(j + m) > (i + m)e - TO + s,-(k+m)/2 , (4.4) 

where m is the constant defined by the condition 
M+ = jm(M-) and TO is defined as 

TO = T - m(O -1). 

Note that the value (J is independent of smooth 
transformations of the coordinates. The value TO 

can also be proved [Gonchenko & Shil'nikov, 1990] 
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to be independent of smooth coordinate transforma­
tions preserving form (2.1) for the map To as well 
as of the choice of homo clinic points in Uo. The 
number (li + m) is invariant also in the sense that it 
is equal to the minimal period of periodical orbits 
ofN. 

Let us consider the subsystem 01 [Gavrilov & 
Shil'nikov, 1973; Gonchenko, 19841 belonging to 00 
(see Theorem 3.2) and composed by the orbits of 
the form 

... , as-I, 0, ... , 0, as, 0, ... , 0, a s+l,"') 

where: 

(1) as E {1, 2}; 
(2) the length of any complete string of zeros is not 

less than (li + m); and 
(3) the lengths (ks+m) and (ks+1 +m) of successive 

complete strings of zeros separated by a nonzero 
symbol satisfy inequality (4.3) with i = ks and 
j = ks+1 (i.e., the sequence {ks} is regular). 

Theorem 4.1. If k is large enough, then in the 
case c > 0, d > ° there exists a subsystem fir in N 
which is conjugate to the symbolic system 01 and 
such that all orbits from fir have a saddle type. 

Note that the set fir may not coincide with N 
but it nevertheless forms a substantial part of N. 
Indeed, for a nonsaddle orbit, at least two subse­
quent points Ms and Ms+l of intersection with ITo 
must lie in the strips O'ko and O'kO whose numbers _ _+1 
satisfy the inequality 

I (ks+1 +m) - (ks +m)O+Tol ~ s,-(f+m)/2, (4.5) 

which is equivalent to (2.6). 
The set of integer solutions (i, j) of the last 

inequality will lie in the narrow strip on the plane 
(the greater k, the more narrow is the strip). This 
set depends essentially on the values 0 and TO. For 
instance, if 0 is rational: 0 = p/q, and Toq ¢ Z, then 
this set is empty for k large enough. This implies 
the following statement: 

Theorem 4.2. If 0 = p/q and Toq ¢ Z, then there 
exists such k = k(O, TO) that all orbits from N\r 
are saddle and N\{r, O} is conjugate with 0 1 , 

Geometrically, the fact that the set of integer 
solutions of inequality (4.5) is empty for rational 0 
and suitable TO means that for such 0 and TO tops of 
all horseshoes get to the "holes" between the strips. 

5. Moduli of the n-Equivalence 
for Systems of the Third Class 

As we mentioned, the structure of the set N of all 
orbits lying in the neighborhood U entirely is in 
a close connection with the structure of the sets 
of integer solutions of inequalities (4.3) and (4.5). 
These sets are different for different values of the 
invariants 0 and TO. Therefore, the structure of the 
set N depends essentially on the values of 0 and 
TO. Moreover, the following result shows, that the 
invariants 0 and TO are moduli of the O-equivalence. 

Theorem 5.1. [Gonchenko & Shil'nikov, 1990, 19921 
Let f and f' be difJeomorphisms of the third class 
and let f and f' be locally 0-conjugate.4 Then 
o = 0'. If, moreover, the value 0 is irrational, then 
TO = T6. If 0 is rational (0 = p / q), then there exists 
such integer s that TO and T6 satisfy simultaneously 
the inequalities s ~ Toq ~ S + 1, s ~ T6q ~ s + 1. 

We give a sketch of the proof of the theorem. 
Let f and f' be locally O-conjugate and let M+, 

'+ ' M- and M ,M - be conjugate pairs of homo clinic 
points. Evidently, fm(M-) = M+ and j'm(M'-) = 
M'+ for some natural m. Suppose that 0> 0'. Con­
sider the set of pairs of integers (i, j) satisfying the 
inequality 

(i + m)O - TO - s,-(f+m)/2 > j + m 

> (i + m)O' - T~ + S,,-(f+m)/2. (5.1) 

According to conditions (4.3), (4.4), this in­
equality means that the pair (i, j) is regular for the 
diffeomorphism f, but it is inadmissible for the dif­
feomorphism f'. Since 0 > 0', the set of pairs (i, j) 
satisfying condition (5.1) is infinite. 

Note that ifa pair (i, j) satisfies condition (5.1), 
then the pair (j, i) is also regular for the diffeomor­
phism f because here j > i and the inequality 

(i + m) < (j + m)O - TO - s,-('k+m)/2 

obtained from inequality (4.3) by substitution j in­
stead ofi and i instead of j is automatically fulfilled 
(we take into account that 0 > 1 and 0' > 1 since 
we consider the case >., < 1). 

For such i and j the intersection of the horse­
shoe Tl (O'J ) with the strip O'? and the intersection of 

4That is, there exist such neighborhoods U and U' for which 
the sets N and N' have the same structure. 
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(J~ 
I 

(J~ 
J 

a) b) 

Fig. 12. . Since 8 > 8', it follows that there exists a countable 
set of pairs (i, j) which are regular for the diffeomorphism 
f, but are inadmissible for the diffeomorphism /'. If (i, j) is 
such a pair, then the corresponding strips and horse-shoes are 
positioned as follows. For the diffeomorphism f: the inter­
section of the horseshoe Tl (o-J) with the strip u? is regular as 
well as the intersection of the horseshoe Tl (tTl) with the strip 
uJ [Fig. 12(a)]. For the diffeomorphism /': the intersection 
of the horseshoe THuJ) with the strip u? is regular, but the 
horse-shoe T{(ul) does not intersect the strip uJ [Fig. 12(b)]. 

the horseshoe Tl ( U{) with the strip uJ are regular 
[Fig. 12(a)], and the code { ... ijijij ... } is regu­
lar. By Theorem 4.1 the diffeomorphism f has a 
double-round saddle periodic orbit which intersects 
successively the strips u? and uJ. 

On the other hand, for the diffeomorphism f', 
the horseshoe T{ (U[) does not intersect the strip 
uq [Fig. 12(b)], although i and j are the same as 
a~ove. This follows from the fact that the pair (i, j) 
is inadmissible by virtue of the right of inequalities 
(5.1). Therefore, f' does not have periodic orbits 
intersecting successively the strips u? and uJ. It is 
clear that the diffeomorphisms f and f' are not 0-
conjugate in this case. Thus, for the O-conjugacy it 
is necessary that f) = f)'. 

Let now f) = f)'. Suppose TO > TO. If f) = f)' is 
irrational, then inequality (5.1) again possesses in­
finitely many natural solutions for sufficiently large 
k and the diffeomorphisms f and f' are not 0-
conjugate. Hence, for the O-conjugacy of the dif­
feomorphisms, the equality TO = TO must hold in 
this case. 

Let f) be rational, f) = p / q. If, for some integer 
So, inequality Toq > So > Toq holds then the integer 
points on the straight line 

. .p So 
J = z- --

q q 

satisfy inequality (5.1) and the diffeomorphisms f 
and f' are not O-conjugate again. Hence, for the 
O-conjugacy of f and f' in this case, it is necessary 

Complexity of Homoclinic Bifurcations and fl.-Moduli 979 

that Toq, Toq E Is, S + 1] for some integer s, what 
completes the proof of the theorem. 

6. Infinite Degenerations in 
Systems of the Third Class 

We see that the cases of rational and irrational f) are 
principally different. In the rational case almost 
all systems admit a complete description (Theo­
rem 4.2) and all orbits of N\r are saddle. In the 
irrational case, condition (necessary) (4.5) of an ir­
regular intersection has a countable set of integer 
solutions for any k. Correspondingly, here a count­
able number of strips and horseshoes may have ir­
regular intersections that leads to a very nontrivial 
dynamics. Namely, the following result [Gonchenko 
et al., 1991, 1993] takes place: 

Theorem 6.1. If H3 is a bifurcational surface com­
posed by diJJeomorphisms of the third class, then 
systems with a countable number of saddle periodic 
orbits each of which has a homoclinic tangency are 
dense on H3. 

The values f) calculated for these periodic or­
bits are O-moduli, according to Theorem 6.1. These 
values are independent of each other. Therefore, we 
arrive at the following corollary [Gonchenko et al., 
1991, 1993]: 

Theorem 6.2. Systems with a countable number of 
O-moduli are dense on H3. 

As we mentioned in the Introduction, when the 
value of an O-modulus is changed, bifurcations of 
periodic, homoclinic, etc., orbits occur inevitably. 
The presence of an infinite number of independent 
O-moduli may lead to infinitely degenerate bifur­
cations. Indeed, the following result [Gonchenko 
et al., 1991, 1993] takes place: 

Theorem 6.3. Systems with homoclinic tangencies 
of any order and with structurally unstable periodic 
orbits of any degree of degeneracy are dense in H 3 . 

It should be noted that the degenerations 
indicated in this theorem may exist only for peri­
odic and homo clinic orbits of extremely high round­
nesses. In the present paper, we will not consider 
the questions connected with the infinite degen­
eracies. Further, we will study bifurcations of 
low-round periodic orbits in the framework of 
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low-parameter families. The control parameters be 
the splitting parameter as well as the O-moduli. 

First, let us consider the bifurcations of single­
round periodic orbits. 

7. Bifurcations of Single-Round 
Periodic Orbits 

Note that for any system belonging to the bifur­
cational surface H3 single-round periodic orbits are 
structurally stable. Here, for any i sufficiently large, 
the horseshoe TI (0'1) intersects its "own" strip up 
regularly [inequality (4.1) is evidently fulfilled for 
j = i due to the condition e > 1]. Herein, the struc­
ture of the nonwandering set for the map TITj : 
up --t up is the same as for the famous Smale's 
horseshoe example. 

However, when the system is perturbed such 
that the homoclinic tangency is destroyed, the 
single-round periodic orbits may undergo bifurca­
tions. To study the bifurcations, we imbed the 
diffeomorphism 1 into a one-parameter family Ip. 

where J.L is the splitting parameter for the tangency. 
We assume that when J.L < 0, the parabola TI Wl~c 
intersects Wl~c at two points; when J.L = 0, the 
parabola TI Wl~c is tangent to Wl~c at one point, 
and when J.L > ° there is no intersection (Fig. 13). 
The family f p. is supposed to depend smoothly on J.L. 
The requirement of the general position is that the 
family 1 p. is transverse to the bifurcational surface 
H3 in the space of dynamical systems. 

Clearly, the local and global maps To and TI de­
pend now on J.L. The map To(J.L) can be represented 

o o 

in the form 

x = AX + f(x, y, J.L)x2y, Y = ,y + g(x, y, J.L)xy2 , 
(7.1) 

and the global map TI (J.L) is represented in the form 

x - x+ = ax + b(y - y-) + ... , 

y = ex + d(y - y-)2 + J.L + .... 
(7.2) 

Below, we will denote the coordinates on IIo 
as (xo, Yo) and the coordinates on III as (Xl, YI). 
If (xo, yo) E 0'£ and (Xl, YI) = Tt(xo, yo) E Uk, the 
following formula takes place [we change slightly no­
tations in comparison with (2.2)]: 

Xl = AkxO + IAlk lrl-k1>k1(xo, Yk, J.L), 

Yo = ,-kYI + 1r1-2k 1>k2(XO, Yk, J.L). 
(7.3) 

It is clear that if the bottom of the parabola 
TI Wl~c descends sufficiently low (large and negative 
J.L), then each horseshoe intersects each strip. In this 
case, the set Np. is a hyperbolic set similar to the 
invariant set in the Smale horseshoe. However, if J1. 

is sufficiently large and positive, then the horseshoes 
and the strips do not intersect at all, and all of the 
orbits except 0 will escape from U. 

The main question is what happens when the 
parameter J.L varies from the negative to the positive 
values. First of all, it is necessary to study the 
structure of the bifurcation set corresponding to one 
strip, that is, to study the bifurcations in the family 
of the first return maps Tk(J.L) := TITt : 0'£ --t 0'£. 
The following result (see Tedeschini-Lalli & Yorke 

o 

a) ~<O b) ~=O b) ~O 
Fig. 13. The behavior of WU(O) for one-parametric family II' where I' is the splitting parameter. When p. < 0, the parabola 
Tl Wl~c intersects Wl~c at two points; when I' = 0, the parabola Tl W1: c is tangent to Wl~c at one point, and when I' > 0 there 
is no intersection. 
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[1986]) makes the analysis of the map Tk very 
simple. 

Lemma 7.1. By means of a transformation of the 
coordinates and the parameter, the map Tk(tt) can 
be brought to the form 

x = y + clk(x, y, tt), 

Y = M - y2 + c2k(X, y, tt), 
(7.4) 

where 
cik(X, y, tt) = o(>,k'l + 'Y-k). (7.5) 

Here the rescaled splitting parameter M = 
-d'Y2k (tt - 'Y-ky- + ... ) may take arbitrary finite 
values for sufficiently large k. 

Proof. It is convenient to use the so-called 
Shil'nikov variables as the coordinates for points on 
(72. In our case this is a pair (xo, yd. We can use 
the coordinate Yl instead of Yo because the value Yo 
is determined uniquely by formula (7.3) as a func­
tion of (xo, Yl) for a fixed k. By virtue of Eqs. (7.3), 
(7.2), the map Tk(tt) is written in the form 

Xo - x+ = a>.kxo (1 + ... ) 

+ b(Yl - Y-) + ... , 

'Y-kYl(1 + 'Y-kTJk(xo, Yl)) = tt + c>.kxo(1 + ... ) 

+ d(Yl - y-)2 + .... 
(7.6) 

With the shift of the origin: Yl --t Y + y-, Xo --t 

X + x+, we write the map Tk (tt) in the form 

x = by + O(>.k) + O(y2), 

'Y-ky + 'Y-2kO(y) = Ml + dy2 

+ >.kO(lxl + Iyl) + O(y3) , 

where 

M \k + -k - + 1 = tt + c/\ X - l' Y . .. . 

Now, rescaling the variables 

1 -k 
Y --t --1' Y 

d 

(7.7) 

(7.8) 

brings Eqs. (7.7) to form (7.4) where M = -d'Y2k MI. 
This completes the proof of the lemma. • 
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Map (7.4) is close to the one-dimensional 
parabola map 

- M 2 y= -y (7.9) 

whose bifurcations have been well studied, so that 
it is possible to recover the bifurcation picture for 
the initial map Tk. For the parabola map, the bi­
furcation set is contained in the interval [-i-, 2] of 
values of M: at M = -i- there appears a fixed point 
with the multiplier equal to +1, this fixed point 
is attractive at M E (- i-, i) and it undergoes a 
period-doubling bifurcation at M = i; the cascade 
of period-doubling bifurcations lead to chaotic dy­
namics which alternates with stability windows and 
the bifurcations stop at M = 2 when the restriction 
of the map onto the nonwandering set becomes con­
jugate to the Bernoulli shift of two symbols and the 
map no longer bifurcates as M increases. 

By Lemma 7.1, similar bifurcations take place 
for the map Tk. The map has an attractive fixed 
point Ok at tt E (tttl , tt;,l) which arises at the 
saddle-node bifurcation at tt = tttl and loses stabil­
ity at tt = tt;,l) at the period-doubling bifurcation. 
Here, 

+1 -k - k + 1 -2k 
ttk = l' Y - CA x + 4d l' + ... , 

-1 -k - \k + 3 -2k + tt k = l' Y - c/\ X - 4d l' . . . . 

The bifurcation set of the map Tk is contained 
in the interval [ttt l , tt~S] where 

hI! -k - k + 2 -2k ttk = l' Y - CA x - d'Y + .... 

Fig. 14. The last homoclinic tangency of the manifolds of 
the fixed point of Tic at I-' = I-'~'. An invariant set similar 
to those of the Smale's horseshoe example arises after this 
bifurcation. 
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At J.l = J.l~s the fixed point of Tk has the last homo­
clinic tangency (Fig. 14) and an invariant set similar 
to those of the Smale's horseshoe example arises af­
ter this bifurcation. Note that these bifurcational 
intervals do not intersect each other for different k. 

8. Bifurcations of Double-Round 
Periodic Orbits 

The study of double-round periodic orbits is re­
duced to the study of the fixe~ points of the second 
return maps Tij = T1 TdT1 TJ : ITo --+ ITo which, 
by virtue of Eqs. (7.3), (7.2) are represented in the 
form 

X'o - x+ = a)..jxo + b(Y1 - Y-) + '" , 
"(-i1h (1 + ... ) = c)..jxo + d(Y1 - y-)2 + J.l + ... , 

X'o - x+ = a)..iX'o + b(fh - Y-) + ... , 

"(-jY1(1 + ... ) = c)..iX'O + d(]h - y-)2 + J.l + ... , 
(8.1) 

where (xo, Y1) and (X'o, 111) are the coordinates on 
the strip aJ for an initial point and its image by 
the map Tij, respectively, and (X'o, 'fh) are the coor­
dinates for the intermediate point T1Tl(xo, yd on 
the strip a? 

The map Tij is a co~position of the successively 
acting maps Tj == T1TJ and Ti == T1Td which are 
defined, respectively, on the strips aJ and a? The 
map Ti transforms the strip a? into the horseshoe 
Tw}, and the map Tj transforms the strip aJ into 
the horseshoe T1 a} . 

T ,O" 

O'~ 
I 

0'0 
J 

a) 

8.1. Bifurcations on H3 

Let us consider here the case J.l = O. Different cases 
of the reciprocal position of the strips and horse­
shoes a?, aJ, T1a}, Tw} are shown in Figs. 15(a)-
15(c). We assume here j > i (we do not consider 
the case i = j). The horseshoe Tw} intersects both 
strips a? and aJ regularly, and the horseshoe T1 at 
intersects regularly the strip a? For the intersec­
tion of Twt n aJ different possibilities may take 
place: T1a[ n aJ = 0 in the case of Fig. 15(a); 
the intersection of T1 at with aJ is regular in the 
case of Fig. 15(b) and irregular in the case of 
Fig. 15(c). 

The conditions of the regular, irregular, and 
empty intersection of the corresponding strips and 
horseshoes are written by the use of inequalities 
(4.1)-(4.2). Note that since we are interested now 
in the bifurcations of the double-round periodic or­
bits which do not intersect no above the strip a?, 
we may assume i = k in these inequalities. 

If Twt n aJ = 0, then the map Tij has no 
fixed points. In this case i and j satisfy the 
inequality 

j - iO + T > S,,(-i/2 . (8.2) 

On the other hand, if i and j satisfy the 
inequality 

j - iB + T < -S'Y- i
/

2 
, (8.3) 

the intersection of T1 at with aJ is regular, and the 
map Tij has saddle fixed points: there are exactly 

T ,O' 
I 

O'~ O'~ 
I I 

0'0 
O'? J J 

b) c) 

Fig. 15. The various cases of the reciprocal position of the strips and horseshoes O'?, O'J, T10'1, T1o} are shown for the case 
J.L=o. 
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four such points; two of them have positive multi­
pliers, and two have negative multipliers. 5 

It is clear that if one changes the system on Ha 
so as to come from the situation of Fig. 15(a) to the 
situation of Fig. 15(b), then bifurcations connected 
with the appearance of fixed points of 7ij (double­
round periodic orbits f) will occur on the way. 

To follow these bifurcations it is convenient to 
consider one-parameter families of systems on Ha 
where the invariant () is the control parameter (note 
that when proving Theorem 5.1, which establishes 
that () is an n-modulus for the systems on Ha, we 
just used the fact that the variation of () is connected 
with the changes in the structure of intersections of 
the strip and horseshoes). 

Let fe be such a family. Let i and j be suffi­
ciently large fixed integers. By virtue of (8.2), if 

j 1 1 -i/2 () < ()l == -;- + -;-7 - -;-8, , (8.4) 
~ ~ ~ 

then T1o} n oJ = 0 and the map 7ij does not have 
fixed points. When () increases, the bottom of the 
horseshoe Tl uI moves down, and for the values of 
() such that 

j 1 1 -i/2 o > O2 == -;- + -;-7 + -;-8, , (8.5) 
~ z z 

the intersection of TwI with uJ will be regular and 
the map Tij will have four saddle fixed points. 

We, therefore, get that all bifurcations of the 
double-round periodic orbits which intersect the 
strips u? and aJ occur for the values of 0 belonging 
to the interval 

j 1 1 -i/2 -;- + -;-7 - -;-8, == 01 ::; 0 ::; 02 
z ~ z 

j 1 1 -i/2 == -;- + -;-7 + -;8, . (8.6) 
z z z 

To clarify how the bifurcations go, we give a 
more detailed geometric construction (see Fig. 16). 
The horseshoe Tl a] intersects the strip a? in two 
connected components which are denoted as Li}j 

and liD' The pre images of these components with 
respect to the map Tj are the two "substrips" ~}j 

5 Moreover, Theorem 4.1 implies that the nonwandering set 
of the map Tij is nontrivial in this case and has a hyperbolic 
structure. 

Complexity of Homoclinic Bifurcations and n-Moduli 983 

Fig. 16. Details of the geometric structure for the bi­
horseshoe composed by the strips and horseshoes a?, aJ, 
Tl al. Tl aJ. The horseshoe Tl a; intersects the strip a? on 
two connected components Litj and Li~j. Two "substrips" 
~tj and ~~j in aJ are the preimages of these components; 
i.e., Tj(Liij) = ~ij, a = 1,2). The image of the strip ~ij 
under the map Tij is the narrow horseshoe Tij (~ij ) belonging 
to Tlal. 

and ~;j lying on aJ (so, Tj(Liij) = ~ij, a = 1, 2). 
The image of the strip ~ij with respect to the map 
Tij is a thin horseshoe Tij (~ij) lying in Tl aI. 

The dynamics of the map Tij : aJ ~ aJ is de­
termined by how it acts in restriction onto the sub­
strips ~}j and ~;j' Particularly, the fixed points 
of Tij are divided into two groups: the first are the 

fixed points of the map Ti(J~) = Tijl~L' and the sec-
'] 

ond are the fixed points of the map 1i(J~) = 7ijl~2 .. 
'] 

Since the regions ~}j and ~;j do not intersect for 
all 0, the fixed points of each of the maps bifurcate 
independently. 

It can be shown (see [Gonchenko & Shil'nikov 
[1987]) that exactly two bifurcations take place in 
each group when 0 varies; namely, a pair of sad­
dle and stable fixed points of Ti)Q) appears at Oij+ 
through the saddle-node bifurcation corresponding 
to the presence of a multiplier equal to "+1", and 
the stable fixed point loses its stability at Oij­
through the period-doubling bifurcation corre­
sponding to the presence of a multiplier equal to 
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984 S. V. Gonchenko et al. 

"-1". The following asymptotics takes place: 

O?'.± = t + ~+(_l)a~ 1 - by- /x+ r;r -i/2 + 
%J iii y- In 'Y Y d'Y ... , 

(8.7) 

where a = 1 is assumed to correspond to the up­
per of the substrips ~ij and a = 2 to the lower 
one (Fig. 16). Note that the asymptotics for the 
moments corresponding to the "+1" and "-I" bi­
furcations coincide in the main order. Nevertheless, 
the intervals 

are, evidently, nonempty and they correspond to 
the presence of a stable double-round periodic orbit. 

8.2. Systems on H3 with infinitely 
many stable periodic orbits 

Since <7 = IA'YI < 1, it follows that the Jacobian 
of the map Tij equal to (bc)2(A'Y)i+j(1 + ... ) is less 
than unity if i and j are sufficiently large. Thus, the 
saddle-node bifurcations of double-round periodic 
orbits indeed lead to the appearance of the stable 
periodic orbits. 

The following assertion was established in 
Gonchenko & Shilnikov [1986, 1987]: 

Let 10 be a one-parameter family of systems on 
H3 . Then, in the interval 0 > 1, the values 0* are 
dense such that the diffeomorphism fo* possesses 
infinitely many stable double-round periodic orbits. 

This result follows from the fact that the sta­
bility regions 8i ja may intersect for different (i, j). 
Indeed, as it follows from (8.7), the map TtJ has a 
stable fixed point if 

I . O' -i/2 2 v·· < J - Z + T - VO"V < V .. 
~ I~' 

(8.8) 

where vI. < V~. v~?2 = 0("V-i/2) and Vo does not 
%J %J' %J I 

depend on i and j. 
In order for an infinite number of stable double­

round periodic orbits to exist for the diffeomor­
phism fo, it is necessary and sufficient that in­
equality (8.8) would have infinitely many integer 
solutions (i, j). The standard fact from the number 
theory is that for any functions vi

l
/ tending to zero 

as i, j -+ +00, such inequality do have infinitely 
many integer solutions for a dense set of values 
of O. 

Note that inequality (8.8) is satisfied only if the 
invariants 0 and T admit "exponentially well" non­
homogeneous approximations by rational fractions. 

8.3. Bifurcations in the case J.L =1= 0 

Let us now consider bifurcations of double-round 
periodic orbits for the diffeomorphisms which are 
close to 1 and which may now not lie on H3. 

First, consider a one-parameter family lw Re­
call that the absolute value of the splitting parame­
ter J.L is exactly the distance between the bottom of 
the parabola TI(Wl~c) and the manifold Wl~c' The 
sign of J.L corresponds to that where the bottom of 
the parabola lies: above or below Wl~c' If J.L > 0, 
the diffeomorphism Ill- does not have single-round 
homo clinic orbits close to r, and when J.L < 0 the 
diffeomorphism has two such orbits. 

When J.L increases, the bottom of the parabola 
TI (Wl~c) will move up, and when J.L decreases, it 
will move down. Accordingly, the bottoms of all 
horseshoes will move up and down. It follows from 
Eqs. (7.1), (7.2) that the bottom of the horseshoe 
Tl <7[ lies on a distance of the order 

(8.9) 

from the manifold Wl~c' Recall also that the strip 
<7J lies on a distance of the order 

-j -
'Y Y 

from the manifold Wl~c' 

(8.10) 

Take some i and j such that, for J.L = 0, the 
horseshoe TI <7[ does not intersect the strip <7J 
[Fig. 15(a)]. Evidently, there is infinitely many such 
pairs (i, j). Since, for J.L = 0, the horseshoe TW[ lies 
above the strip <7J (i.e., CAiX+ > 'Y-jy-), we have by 
virtue of (8.9), (8.10), that it lies above this strip for 
all positive J.L. Therefore, for the given i and j, the 
map Tij does not undergo bifurcations for positive 
J.L. However, when J.L is negative, the horseshoe TW[ 
may have a nonempty intersection with the strip <7J 
(this intersection will be nonempty and regular for 
sufficiently large negative J.L). Thus, it is clear that 
there exists J.L = J.Lij < 0 for which the map Tij 
has a structurally unstable fixed point. Evidently, 
J.Lij -+ 0 as i, j -+ 00. 

Take another pair of i and j such that, for 
J.L = 0, the horseshoe TI <7[ has a regular intersec­
tion with the strip <7J; the set of such pairs is also 
infinite. Note that, for the given i and j, the horse­
shoe TI <7[ has a regular intersection with the strip 
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O'J for all negative J.L. Therefore, in this case, the 
map Tij does not undergo bifurcations for negative 
J.L. On the other hand, if J.L is positive, the horseshoe 
TIO'[ may have empty intersection with the strip O'J 
[if J.L + CAix+ > ,-jy-; see (8.9), (8.10)]. It is clear, 
therefore, that there exists J.L = Mj > 0 for which 
the map Tij has a structurally unstable fixed point. 
Note also that Mj ~ 0 as i, j ~ 00. 

We arrive at the following statement [Gavrilov 
& Shil'nikov, 1973]: 

There exists an infinite number of values of J.L 
accumulating at J.L = 0 from both sides which cor­
respond to the presence of the structurally unstable 
double-round periodic orbits. 

If, similar to the case J.L = 0, one considers 
the substrips Alj(J.L), A;j(J.L) and the corresponding 
horseshoes Tij(J.L)Alj and Tij(J.L)A;j, then repeating 
the arguments of Gonchenko & Shil'nikov [1987], 
one can show that the following asymptotics take 
place for the bifurcational values of J.L: 

( bY-) x 1- x+ (1+ ... ), a=1,2. (8.11) 

Here, a = 1 corresponds to the bifurcations of the 
fixed points of the map Tij(J.L)I~l., and a = 2 corre-

'3 

sponds to the bifurcations of the fixed points of the 
map Tij(J.L)I~l .. The signs ± in the left-hand side 

'3 

of formula (8.11) denote the bifurcation moments 
corresponding to the multiplier equal to "+1" or to 
"-1", respectively. 

Note that these bifur<;ation moments differ on 
a small value of order o(r-i/2). In spite that the 
intervals 8;j = (J.L0-, J.L0+) of existence of a sta­
ble double-round periodic orbit are extremely small, 
they, nevertheless, may intersect each other (which 
is not the case for the analogous intervals corre­
sponding to single-round orbits; see above), and 
even an infinite number of these intervals may in­
tersect. We have already seen this in the previous 
subsection, when proved that the value J.L = 0 be­
longs to the intersection of infinitely many regions 
of existence and stability of double-round periodic 
orbits if 0 and T admits exponentially well nonho­
mogeneous approximations by rational fractions. 

The structure of these intersections can not be 
studied in a one-parameter family fl-' because it de­
pends essentially on, for instance, the values of 0 

Complexity of Homoclinic Bifurcations and n-Moduli 985 

and T. Indeed, as we have shown, the structure of 
the set of the values of J.L corresponding to the bi­
furcations of double-round periodic orbits of II-' de­
pends essentially on the reciprocal position of the 
strips and horseshoes for the diffeomorphism 10. 
The latter is mainly determined by the values of 
o and T. If, for instance, 0 > 01

, then there would 
exist infinitely many pairs (i, j) such that, for the 
diffeomorphism fo, the horseshoe TW[ have regu­
lar intersection with the strip O'J, and the horseshoe 
Ti 0'[ has no intersection with the strip O'J for the 
diffeomorphism 10 (see Theorem 5.1). Therefore, 
for the family f IL , bifurcations of the double-round 
periodic orbits corresponding to the given values of 
i and j would happen at positive J.L and, for the fam­
ily I~, they would happen at negative J.L. In other 
words, an arbitrary variation of () changes the order 
of "double-round" bifurcations in the family I w 

In fact, using the machinery of "infinite degen­
erations" from Gonchenko et al. [1993}, one can 
show that, by an arbitrary small perturbation of 
the family I I-' in the space of one-parameter fami­
lies of dynamical systems, a family can be obtained 
for which values of J.L accumulate at J.L = 0, corre­
sponding to infinitely many coexisting structurally 
unstable double-round periodic orbits. 

This implies that no finite number of control 
parameters is sufficient to obtain a stable picture 
of the bifurcation set corresponding to all double­
round periodic orbits. At the same time, we have 
seen that if we restrict ourselves to the study of 
the bifurcations of one double-round periodic orbit 
corresponding to an arbitrary code {i, j}, the one­
parameter bifurcation analysis is quite satisfactory: 
there is a value of J.L corresponding to the saddle­
node bifurcation and a value of J.L corresponding to 
the period-doubling bifurcation and no other bifur­
cation values. 

9. Bifurcations of Triple-Round 
Periodic Orbits 

9.1. Bifurcations on Hs 

In this section, we consider the bifurcations of triple­
round periodic orbits. In particular, we show that, 
in distinction with the single- and double-round 
periodic orbits, structurally unstable triple-round 
periodic orbits can have additional degenerations; 
namely, the first Lyapunov value may vanish. This 
means that cusp-bifurcations take place here. 



In
t. 

J.
 B

if
ur

ca
tio

n 
C

ha
os

 1
99

6.
06

:9
69

-9
89

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 I
M

PE
R

IA
L

 C
O

L
L

E
G

E
 L

O
N

D
O

N
 o

n 
02

/1
2/

13
. F

or
 p

er
so

na
l u

se
 o

nl
y.

986 S. V. Gonchenko et al. 

This fact was established by Shil'nikov & 
Sten'kin [1995] in the study of two-parameter fami­
lies of systems on H3 for which the O-moduli e and 
r are taken as the control parameters. 

Let fe,T be a two-parameter family in H3 . Then, 
the following result holds. 

Theorem 9.1. The values of (0, r) for which the 
system has a structurally unstable triple-round pe­
riodic orbit with one multiplier equal to unity and 
with the first Lyapunov value equal to zero are dense 
in the region L = {(e, r) : e > I} on the parameter 
plane.6 

Proof. The study of triple-round periodic orbits is 
reduced to the study of the fixed points of the third­
return maps Tijk == TIT~TITJTITj: crr -t crr. We 
will suppose i < j < k (this condition can be shown 
to be necessary for the existence of the cusp­
bifurcation). 

The analysis carried out in Shil'nikov & Sten'kin 
[1995] shows that the additional degeneration may 
take place only for the following structure of the 
intersections of the corresponding horseshoes and 
strips (Fig. 17): the horseshoe Twt intersects the 
strip crr regularly and intersects the strip crJ irreg­
ularly, the horseshoe TI cr] intersects t he strips cr?, 
crJ regularly and the strip cr2 is intersected irregu­
larly, and the horseshoe TI crt intersects all the strips 
regularly. 

The study of triple-round periodic orbits is ob­
viously reduced to the study of a system of equa­
tions connected to the coordinates (xo, YO) and 
(Xl, YI) of the points of intersection of the orbit 
with the neighborhoods ITo and IT I , respectively. 
We do not write down the system here. Note that 
the system is easily resolved with respect to all co­
ordinates except for the coordinates YI. If {ij k } 
is the code of the periodic orbit under considera­
tion, then the system takes the form [Shil'nikov & 
Sten'kin, 1995] 

,,(-jf! = de + (cx+ Ai - ,,(-jy-) + bCAi( + ... , 

"(-k( = df!2 + (cx+ Aj - ,,(-ky-) + bCAje + ... , 

-r-if! = d(2 + (cx+ Ak - ,,(-iy-) + bCAkf! + ... , 
(9.1) 

6Note that the second Lyapunov value does not equal to zero 
here, so these points are the cusp-points from which a pair of 
curves corresponding to saddle-node bifurcations go. 

Fig. 17. The geometric construction leading to the appear­
ance of doubly-degenerate triple-round periodic orbits (the 
cusp-bifurcation). The horseshoe Tlol intersects the strip o? 
regularly and it intersects the strip oJ irregularly; the horse­

shoe T10J intersects the strips o?, oJ regularly and it inter­
sects the strip '0£ irregularly; the horseshoe TIOl intersects 
regularly all the strips. 

where we denote the value YI - y- as e for the point 
of intersection of the orbit with the strip crt, as f! for 
the point of intersection with the strip cr], and as ( 
for the point of intersection with the strip crt. The 
degenerate periodic orbits (i.e., having one multi­
plier equal to unity) correspond to the degenerate 
solutions of system (9.1). 

Since i < k and A"( < 1, the last equation of 
system (9.1) is resolved with respect to (: 

( = ±~,-i/2(1 + ... ). (9.2) 

The substitution of expression (9.2) in the first 
and second equations of system (9.1) and a shift of 
coordinates e and f! on some small constants bring 
the system to the form 

,,(-j'fJ = de + (cx+ Ai - ,,(-jy-) + ... , 
-bCAje = df!2 + (cx+ Aj - ,,(-ky-) + ... . 

(9.3) 

Thus, the question about the degenerate triple­
round periodic orbits is reduced to the question 
about the degenerate solutions of the system (9.3) 
corresponding to large i, j, k and to small e and 'fJ. 
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Let us show that the system has a triple solu­
tion. Make the following rescaling of the variables: 
€ = El . U; 'f/ = E2 . v, where 

1/3 "/3 2 "/3 
El = -(bc) /d·)..J ',- J , 

E2 = (bc)2/3/d. )..2j/3 . ,-j/3 . 

Dividing the first and second equations of (9.3) 
on d . a2 and d . (32, respectively, we arrive at the 
following system: 

{ 
u2 = v + A + 81 (u, v) 

v2 = u+B+82(u, v)' 
(9.4) 

where 81,2 -+ 0 as i, j, k -+ +00 and the quantities 
A and B are as follows: 

A = (bc~2/3 )..-2j/3,4j /3 [y-,-j - cx+)..i + ... ], 

B = (bc~4/3)..-4j/3,2jf3 [y-,-k - cx+)..j + ... ]. 
(9.5) 

Evidently, A and B may take arbitrary finite values 
if i and j are sufficiently large. 

It is easy to see that the triple solution of sys­
tem (9.4) exists when A ~ 3/4, B ~ 3/4. The 
geometric illustration of this fact is represented in 
Fig. 18. 

We obtained a necessary and sufficient condi­
tion for existence of triple solution of system (9.1). 
This condition can be rewritten as 

y-,-j - cx+)..i + ... = 0, 

y-,-k _ cx+ )..j + ... = 0 . 
(9.6) 

Taking the logarithm of the both parts of each of 
the equations of the system obtained we arrive at 
the equivalent system: 

j = Oi - r + ... , 
k = OJ - r + ... . 

(9.7) 

This system can be shown to have arbitrarily 
large integer solutions for a dense set of values of 
the parameters (0, r). So we can conclude that 
there exists a dense set L * on the parameter plane 
such that for any pair (0*, r*) E L* there exists 
a triple solution of system (9.1) for some i, j, k. 
This means that the dynamical system has an as­
sociated structurally-unstable triple-round periodic 
orbit arising as the result of the coalescence of three 
periodic orbits. Such orbit has a multiplier equal to 
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v 

=u2 -3/4 
u=v2-3/4 

u 

Fig. 18. The case of the cubic tangency of two parabolas. 

unity and the first Lyapunov value is equal to zero. 
The theorem is proved. • 

Let us now construct the bifurcational curves, 
starting at the cusp points, which correspond to 
saddle-node triple-round periodic orbits. Let a = 
A - 3/4 and (3 = B - 3/4. System (9.4) takes the 
form 

u2 =v+3/4+a+ ... , 

v2 = u + 3/4 + (3 + ... . 
(9.8) 

On the plane (a, (3), the bifurcational curves 
corresponding to the degenerate solutions of system 
(9.8) have the following form (see Fig. 19): 

a = -3/4 + 1/(16t2 ) - t + ... , 
(3 = -3/4 + t2 - 1/(4t) + ... , 

(9.9) 

where t is some parameter; a triple solution exists 
when t = -1/2. 

Since 

3/4+a= (bc~2/3 )..-2j/3,4j /3[y-,-j -cx+ )..i+ ... ], 

3/4+(3= d )..-4j/3",2jf3[y-",-k_ cx+)..j+ ] 
(bc)4/3 I I ••• , 

(9.10) 

[see (9.5)] and since).. = ,-9, ,T = cx+ /y-, we can 
write the following formula connecting the values of 



In
t. 

J.
 B

if
ur

ca
tio

n 
C

ha
os

 1
99

6.
06

:9
69

-9
89

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 I
M

PE
R

IA
L

 C
O

L
L

E
G

E
 L

O
N

D
O

N
 o

n 
02

/1
2/

13
. F

or
 p

er
so

na
l u

se
 o

nl
y.

988 S. V. Gonchenko et al. 

,8( t) 

a(t) 

Fig. 19. The cusp-point on the plane (0:, (3). 

(a, (3) with the values of (0, T): 

3/4+a= (bc~2/3 ,2/3(6+2)j[y-,-j _y-,-r-Oi+ .. . J, 

3/4+{3= (bc~4/3 ,4/3(0+1/2)j[y-,-k_ y-,-r-oj + ... J. 
(9.11) 

This formula allows one to map the curves (9.9) 
onto the (0, T)-plane (see Fig. 20). 

9.2. Cusp-bifurcations in 
two-parameter families f,.,.,9 

For a two-parameter family fl-',o the condition of ex­
istence of a triple-degenerate triple-round periodic 
orbit is written in the form 

j = Oi - T + ... , 
y-,,(-k - cx+ Aj + J1 + ... = 0, 

(9.12) 

which is analogous to condition (9.7) obtained for 
J1 = O. One can see that in an arbitrarily small 
neighborhood of any point (0, J1 = 0) there exists a 
point (0*, J1*) for which system (9.12) has an integer 
solution. This implies that the following theorem 
holds. 

t 

e 
o 

Fig. 20. A fragment of the bifurcation diagram on the plane 
(9, -r). 

o 

Fig. 21. 
(9, 1-'). 

A fragment of the bifurcation diagram on the plane 

Theorem 9.2. In an arbitrarily small neighborhood 
of any point (0, J1 = 0) there exists a point (0*, J1*) 
for which the map fo* ,1-'* has a triply-degenerate 
triple-round periodic orbit. 

Note that J1* can be of arbitrary sign: J1* < 0 
when k > OJ - T, and J1 > 0 when k < OJ - T. The 
corresponding bifurcation diagram is represented in 
Fig. 21. 
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