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Abstract

The equivariant dynamics near relative equilibria to actions of noncompact,
finite-dimensional Lie groups G can be described by a skew-product flow on a
center manifold: ġ = ga(v), v̇ = ϕ(v) with g ∈ G, with v in a slice transverse
to the group action, and a(v) in the Lie algebra of G. We present a normal form
theory near relative equilibria ϕ(v=0) = 0, in this general case. For the specific
case of the Euclidean groups SE(N), the skew product takes the form

Ṙ = Rr(v), Ṡ = Rs(v), v̇ = ϕ(v)

with r(v) ∈ SO(N), s(v) ∈ RN . We give a precise meaning to the intuitive idea
of tip motion of a meandering spiral: it corresponds to the dynamics of S(t). This
clarifies the notion of meander radii and drift resonance in the plane N = 2. For
illustration, we discuss the unbounded tip motions associated with a weak focus
in v, on the verge of Hopf bifurcation, in the case of resonant Hopf and rotation
frequencies of the spiral, and study resonant relative Hopf bifurcation. We also
encounter random Brownian tip motions for trajectories v(t) → Γ, which become
homoclinic for t → +∞. We conclude with some comments on the homoclinic
tip shifts and drift resonance velocities in the Bogdanov-Takens bifurcation, which
turn out to be small beyond any finite order.

1. Introduction

Going beyond rigidly rotating spirals, meandering and drifting spiral wave
patterns have been observed in Belousov-Zhabotinsky media [UNUM93, JSW89,
BE93] and in low-pressure CO-oxidation on platinum monocrystals [NvORE93].
Mathematically speaking, the wave patterns are described by concentration vectors
u = u(t, x) depending on time t and location x ∈ R2. The partial differential
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equations, which model the dynamics of the solutions u(t, x), are equivariant with
respect to the standard affine action of the planar Euclidean group E(2).

The Euclidean group E(N),N = 2, 3, . . . , is a semidirect product E(N) =
O(N)×RN of the orthogonal groupO(N)with the Abelian translation group RN .
The composition for (R, S), (R′, S′) ∈ O(N)× RN is defined by

(R, S) ◦ (R′, S′) := (RR′, S + RS′);(1.1)

this rule is compatible with the standard affine representation

(R, S)x := Rx + S(1.2)

on x ∈ RN . Equivariance of our dynamical system means that u(t, ·) is a solution if
and only if (R, S)u(t, ·) is a solution for any (R, S). Here the linear representation
of (R, S) in the state space X of solution x-profiles u(t, ·) is given by

((R, S)u(t, ·)) (x) := u(t, (R, S)−1x).(1.3)

The inverse (R, S)−1 is given explicitly by

(R, S)−1 = (R−1,−R−1S).(1.4)

A spiral wave u(t, ·) is a special time-periodic solution, for which the time orbit
is contained in a single group orbit. After a fixed shift of x-coordinates, it can be
written as

u(t, ·) = (R(t), 0) u(0, ·).(1.5)

The rotations R(t) ∈ SO(N) are given as a periodic one-parameter subgroup

R(t) = exp(r0t)(1.6)

generated by r0 in the Lie algebra so(N) of anti-symmetric matrices. In the termi-
nology of [Ran82, Ren82, Fie88], and others, non-stationary spiral waves are called
rotating waves; see also Section 3. The term “spiral” arises from the applied con-
text, where the concentration patterns u(t, ·) largely follow Archimedian spirals.
Quite analogously, a meandering wave u(t, ·) is a special solution of the form

u(t, ·) = (R(t), S(t)) v(t, ·),(1.7)

where now v(t, ·) is a nonstationary time-periodic solution and the shifts S(t)
remain bounded. If the shiftsS(t) are unbounded, we call the solutionu(t, ·)drifting.

Numerically, meandering and drifting one-armed spirals have been observed in
planar (N=2)models by Barkley [Bar94]. Emphasizing the lack of a theoretical
framework, based on Euclidean E(2) equivariance, he also presented an ad-hoc
heuristic ordinary differential equation model exhibiting meandering and drifting
solutions.

The first mathematically rigorous analysis of these phenomena has recently
been achieved by Wulff; see [Wul96]. Her result is based on a careful Lyapunov-
Schmidt reduction in a scale of Banach spaces. This resolves the difficulties of
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non-differentiability and, in some cases, non-continuity of the group action (1.3)
on the infinite-dimensional Banach spaceu(t, ·) ∈ X. For technically related earlier
results, restricted to compact group actions, see [Ren82, Ran82]. For recent progress
concerning meandering and drifting multi-armed spirals with nontrivial isotropy
of u0 see [GLM97, AM97]. The method of center bundles used there is similar
in spirit to a previous approach to bifurcation from relative equilibria of compact
group actions due to Krupa; see [Kru90].

It has recently been shown, for the first time, that a center-manifold reduction
to a finite-dimensional globally group-invariant and locally time-invariant Ck+1

manifold M ⊆ X can also be achieved in an E(2)-equivariant context, if the non-
linearity of the differential equation governing the dynamics of the spiral waves is
smooth; see [SSW97a, SSW97b]. The reduction is based on the assumption that
the linearization at the spiral wave does not exhibit continuous spectrum near the
imaginary axis. Most notably, the group action becomes differentiable on M , even
though it is possibly not continuous on X. For differentiable noncompact group
actions on Banach spaces, the first center-manifold reduction near relative equilib-
ria is due to [Mie91]. His reduction is carefully designed to preserve symplectic
Hamiltonian structure. From this abstract viewpoint, early observations of what we
now call drifting spirals go back as far as [Lov92], in the context of buckling of
elasticae in continuum mechanics.

In [FSSW96] we have therefore considered a finite-dimensional, typically non-
compact Riemannian manifold M with a differentiable proper action of a possibly
non-compact finite-dimensional Lie groupG. We recall that a (local) flow on M is
G-equivariant, provided that g ·u(t) is a solution whenever u(t) ∈ M is a solution
and g is fixed in G. We call u0 ∈ M a relative equilibrium if the solution curve
u(t) through u0 = u(0) lies entirely in the group orbit G · u0 of u0. Equivalently,
the manifoldG · u0 is flow-invariant. We also recall thatG · u0 is diffeomorphic to
G/H, where H is the isotropy of u0:

H := {h ∈ G|hu0 = u0}.(1.8)

It was shown in [FSSW96] that G-equivariant flows in a tubular neighborhood U
of a relative equilibriumG · u0, u0 ∈ M, with compact isotropy H of u0, can be
represented by a skew product flow

ġ = ga(v), v̇ = ϕ(v).(1.9)

Here g is in the Lie group G and a is in the associated Lie algebra alg (G). The
vector v is in a “linear” slice V , transverse to the group action. The slice V is called
a Palais slice, and (g, v) are Palais coordinates near the relative equilibrium. Note
the nonuniqueness of these coordinates due to a certain arbitrariness in our choice
of the Palais slice V .

The induced local flow (1.9) on G × V is equivariant under the action of
(g0, h) ∈ G×H on (g, v) ∈ G× V, given by

(g0, h) · (g, v) = (g0gh
−1, hv).(1.10)
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Specifically, {id} ×H -equivariance of the flow on G× V implies that

ϕ(hv) = hϕ(v),

a(hv) = ha(v)h−1
(1.11)

for all h and v. The original flow onU is equivalent to the induced flow on {id}×H -
orbits in G× V .

The special case M = T ∗G, the cotangent bundle of G, with trivial isotropy
H = id arises in Hamiltonian dynamics. Aimed at applications in elasticity, G =
SE(2) or SE(3), a skew product formulation like (1.9) was derived in [Mie91].

In the following we fix any arbitrarily large, finite smoothness Cκ for the func-
tions a : V → alg (G) and ϕ : V → Rn. Note that

ϕ(0) = 0(1.12)

because u0, corresponding to v = 0, is a relative equilibrium.
The main goal of the present paper is a normal form method which further

simplifies system (1.9) and applies in bifurcation situations where

a = a(λ, v), ϕ = ϕ(λ, v).(1.13)

depend on one or several additional real parametersλ. As usual in bifurcation theory,
we first consider the parameter-independent case, suppressing λ notationally.

We may assume the driving v̇-equation in the skew product (1.8) to be in normal
form already. To preserve equivariance with respect to the (orthogonal) action of
the compact isotropy H on V , we favor the approach of [ETB+87]; see [Van89].
Of course, we assume in particular that the linearization matrix

M = ϕ′(0)(1.14)

at the relative equilibrium v = 0 is already in (complex) linear Jordan normal form:

(Mv)pq = µpvpq + vp,q+1 for 1 < q < dp,

(Mv)pq = µpvpq for q = dp.
(1.15)

Here 1 5 p 5 m enumerates the Jordan blocks of size dp and with (not necessarily
distinct) eigenvalues µp. The vpq enumerate the components v1, . . . , vN of v.
Equivariance with respect to H is preserved here.

Our normal form method aims at eliminating as many monomials

akv
k = ak

∏
p,q

v
kpq
pq(1.16)

as possible from the Taylor expansion of the coupling term a(v) of the Lie algebra
skew product in the ġ-equation

ġ = ga(v)(1.17)
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of (1.9). To this end, we consider the adjoint action

ad (a0) : alg (G) → alg (G)
γ 7→ [a0, γ ] := a0γ − γ a0

(1.18)

of a0 := a(v = 0) on the Lie algebra. Let ηi denote the distinct eigenvalues of
ad(a0) and decompose spectrally

alg (G) =
⊕
i

Ai

ak =
∑
i

a
(i)
k .

(1.19)

Definition 1.1. We call a term a
(i)
k v

k in the Taylor expansion of a(v) resonant if
the nonnegative integer k-components kpq, 1 5 p 5 m, 1 5 q 5 dp satisfy the
resonance condition

0 = ηi + (k, µ)(1.20)

with the eigenvalues ηi of ad(a0). Here (k, µ) = ∑
p,q

kpqµp.

Theorem 1.2. With the above assumptions and notations, for any finite order κ of
differentiability, there exists a transformation

g 7→ g g0(v)(1.21)

on g ∈ Gwhich preserves the skew product structure (1.9) and equivariance (1.11),
but eliminates all nonresonant terms a

(i)
k
vk for

1 5 |k| =
∑
p,q

kp,q 5 κ.(1.22)

In the parameter-dependent case a = a(λ, v), ϕ = ϕ(λ, v) the same statements
remain valid, with a0 := a(λ= 0, v= 0), and for suitable transformations g0 =
g0(λ, v) and resonant terms a

(i)
k
(λ)vk .

It is worthwhile to briefly interpret our normal-form transformations (1.21)
geometrically in terms of the skew product (1.9). The Palais coordinates (g, v) are
nonunique, because the Palais sliceV just needs to be chosen locally transversely to
the group orbits. Geometrically, the normal-form transformation only corresponds
to a correction in the choice of the Palais slice V . Algebraically, however, this
correction may significantly simplify the form of the bifurcation equations in Palais
coordinates (g, v), as we will see below.

We give an outline of the paper. In Section 2, we prove Theorem 1.2. The special
caseG = SE(N) is addressed in Section 3. The skew product (1.9) takes the form

Ṙ = Rr(v), Ṡ = Rs(v), v̇ = ϕ(v)(1.23)

with r(v) ∈ so(N), s(v) ∈ RN, in that case. For specM = {0} and N even, we
obtain Ṡ = 0 for the drift components, to any finite order and even in absence of
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further nontrivial isotropy H ; see Lemma 3.2. For odd N , a drift along an axis can
occur, but again the axis itself remains fixed to any finite order.

We caution our readers that these results hold in normal form, only. For proper
interpretation, they have to be translated back to the original coordinates (g, v) by
inversion of the normal-form transformation (1.21). This point is important since,
for example, the changes of coordinates that are used to transform to normal form
can mix the R and S variables. For example, the equation Ṡ = 0, for even N ,
amounts to a “slaving principle”

S = S(R, v) = −RS0(v)+ const(1.24)

for the drift variable S, in original coordinates, which holds to any finite order
in v.

For a first illustration of this effect consider the trivial case of a saddle-node
bifurcation of relative equilibria to G = SE(2). Typically, relative equilibria are
rigidly rotating waves, for example, of spiral profiles. The associated simple zero
eigenvalue, in the v-equation, produces an equation Ṡ = 0 for the drift component,
in normal form. In original coordinates, however, the bifurcating spirals generically
exhibit nonstationary drift components, according to our slaving principle (1.24).
Indeed, the rotation angleR ∈ SO(2) generically rotates at constant nonzero speed,
accounting for a synchronous circular motion of the drift component S. Of course, a
simple time-independent transformation in SE(2) eliminates this circular motion of
S. Our normal-form transformation performs this elimination, automatically, to any
finite order. For further details and examples concerning normal forms involving
multiple zero eigenvalues we refer to Sections 3 and 8 below.

In Section 4, we begin a detailed analysis of the case G = SE(2) which has
motivated our introduction, and has driven much of the previous theoretical and
experimental work. We give a precise meaning to the intuitive idea of tip motion of
a meandering spiral. Section 5 applies these notions to epicyclic meandering of tips
in the plane. We clarify the notion of meander radii and address drift resonance.
Section 6 investigates Hopf bifurcation under m : 1 drift resonance of Hopf and
rotation frequencies of the spiral. In Section 7, we discuss the unbounded tip motions
associated with a weak focus in v, on the verge of Hopf bifurcation, in this case of
resonant frequencies. In Section 8, we compute tip shifts associated with homoclinic
and heteroclinic orbits v(t) ∈ Γ . We also discuss random Brownian tip motions for
trajectories v(t) → Γ,which become homoclinic for t → +∞. We conclude with
some comments on the homoclinic tip shifts and drift resonance velocities in the
Bogdanov-Takens bifurcation, which turn out to be small beyond any finite order.

2. Normal Forms of Skew Products

In this section, we prove Theorem 1.2. We recall that transformations

gnew = g g0(v)(2.1)

on the Lie group G do not change the general form

ġ = ga(v), v̇ = ϕ(v)(2.2)
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of the skew product (1.9). Indeed, the new a(v), after transformation (2.1) is given
explicitly by

anew(v) = g0(v)
−1a(v)g0(v)+ g0(v)

−1g′
0(v)ϕ(v).(2.3)

It is our goal to successively eliminate nonresonant terms a(i)vk ∈ Ai with |k| =∑
p,q kp,q = 1, for which

ηi + (k, µ) = ηi +
∑
p,q

kp,qµp |= 0.(2.4)

Here µp ∈ spec M indicate the eigenvalues of the Jordan blocks 1 5 p 5 m

of M = ϕ′(0), and ηi is the eigenvalue of A = ad a(0) on the generalized
eigenspace Ai in alg (G). Specifically, we proceed by induction on multiindices k

with |k| = 1. In fact, we will define a total order ord(k) on k, i. e., on the monomials
vk . We then show how nonresonant terms a(i)vk with |k| = 1 can be eliminated,
successively with respect to ord(k), by specific choices

g0(v) = exp (γ vk),(2.5)

with γ = γk ∈ Ai . We conclude the proof by showing how equivariance with
respect to the isotropy H of the relative equilibrium u0 is preserved.

We now define the total order ord(k) of k, i. e., of the monomials vk . If |k| >
|k′|, then ord(k) > ord(k′). If |k| = |k′|, consider |k|p := ∑

q kpq and the smallest
p such that |k|p |= |k′|p. Then define ord(k) > ord(k′), if |k|p > |k′|p. Finally, if
|k|p = |k′|p, for all p, then choose the smallest p, and subsequently the smallest
q = qp, such that kpq |= k′

pq . Define ord(k) > ord(k′), if kpq < k′
pq, in that case.

Note the reversal of inequalities, in this last definition.
This order is well adapted to compute the effect of the transformation g 7→

g g0(v),with g0(v) := exp(γ vk), on anew(v) given by (2.3). Indeed, let us expand

a(v) = ∑
|k′|5κ ak′vk′ + · · · ,

ϕ(v) = Mv + · · · ,
g0(v) = id + γ vk + · · · ,

g0(v)
−1 = id − γ vk + · · · .

(2.6)

Then our transformation g0(v) does not change lower-order coefficients of a. In-
deed,

(anew)k′ = ak′(2.7)

for |k′| < |k|. Even on the level |k′| = |k|, the order ord(k) has been defined
such that (2.7) still holds, for ord(k′) < ord(k), by expansions (2.6) and the Jordan
normal form (1.15) forM . Indeed, for |k| = 1 and up to terms of order higher than
ord(k), we compute

g−1
0 g′

0(v)ϕ(v) = (id − γ vk)γ (vk)′Mv + · · ·
= (k, µ)γ vk + · · · .

(2.8)
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For k′ = k, we compute the correction

(anew)k = ak + (ad a0)γ + (k, µ)γ(2.9)

again by (1.15), (2.6), (2.8), with the abbreviation

(ad a0)γ = a0γ − γ a0.(2.10)

Again by definition of ord(k), the remaining corrections in the Taylor expansion
of a(v) are of order higher than ord(k).

We now choose γ = γk such that (anew)k = 0, for as many k as possible. More
precisely, we decompose ak = ∑

i a
(i)
k according to the spectral decomposition

of alg (G) with respect to the eigenvalues ηi of ad a0. We now use the crucial
assumption that a

(i)
k v

k is nonresonant; see Definition 1.1 and (2.4). Since (k, µ) is
not resonant to the eigenvalue ηi of ad a0, we can invert on Ai and define

γ = γ
(i)
k := −

(
((k, µ)+ ad a0)|Ai

)−1
a
(i)
k .(2.11)

This immediately implies that

a
(i)
new,k = 0,(2.12)

eliminating all nonresonant terms.
In the parameter-dependent case ϕ=ϕ(λ, v), a=a(λ, v), we subsume the arti-

ficial equation λ̇ = 0 in the v̇-equation: vnew := (λ, v). The above procedure then
puts ġ = ga(vnew) into normal form, as before. Note that the additional λ-terms do
not contribute to the resonance conditions (1.20), (2.4). Moreover, our normal-form
transformation of g does not alter the parameter foliation λ̇ = 0. Therefore, our
results remain valid in the parameter-dependent case.

It remains to address equivariance of a(v) with respect to the compact isotropy
H of the relative equilibrium u0, i. e., v = 0. To ensureH -equivariance as in (1.11),

anew,k(hv) = hak(v)h
−1,(2.13)

we would like to simply integrate with respect to Haar measure dh over H :

ãnew(v) :=
∫
H

hanew(h
−1v)h−1dh.(2.14)

Here anew is determined as in (2.9) above, and ãnew is our candidate for the trans-
formed a. ByH -invariance of Haar measure, ãnew now is indeedH -equivariant as
required in (2.13). It remains to be shown, however, that ãnew can be obtained by
a transformation g 7→ g g0(v) and, moreover, still consist of only resonant terms.

For this double purpose, we consider slightly more general transformations

g0(v) := exp(γ (v))(2.15)
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where γ (v) is now a polynomial in v, homogeneous of degree κ = |k|,with values
in alg (G). We introduce some notation: Let alg κ(G) denote the space of these poly-
nomials. With terms of lower degree left unchanged, the effect of transformation
(2.15) on terms aκ of degree κ in the Taylor expansion is

anew,κ (v) = aκ(v)+ (ad a0)γ (v)+ γ ′(v)Mv,(2.16)

similar to (2.9) above. In particular, the range of anew,κ which is obtained by trans-
formations (2.15) with γ (·) ∈ alg κ(G), is an affine linear subspace aκ(v) + Aκ

through aκ(v) in alg κ(G). The subspace Aκ is the range of the linear map

A : alg κ(G) → alg κ(G)

γ (v) 7→ (ad a0)γ (v)+ γ ′(v)Mv
(2.17)

We consider the linear H -action

(hγ )(v) := hγ (h−1v)h−1,(2.18)

on γ ∈ alg κ(G).
We now reach our double purpose. To prove that averaging (2.14) produces

ãnew(v), which can be realized by a transformation (2.15), we only have to show
that the affine subspace aκ(v)+Aκ is invariant under theH -action (2.18). Indeed

(haκ)(v) = haκ(h
−1v)h−1 = aκ(v),(2.19)

by equivariance (1.11) of the original Lie algebra term a(v). Moreover, the linear
map A, with range Aκ , is H -equivariant by (2.17), (2.18):

(h(Aγ ))(v) = h((ad a0)γ (h
−1v)+ γ ′(h−1v)Mh−1v)h−1

= (ad a0)hγ (h
−1v)h−1 + h(γ ′(h−1v)h−1Mv)h−1

= (ad a0)(hγ )(v)+ (hγ )′(v)Mv

= (A(hγ ))(v).

(2.20)

Therefore Aκ = rangeA is alsoH -invariant. In particular, averaging (2.14) remains
in the subspace which can be reached by transformations (2.15).

Finally, we have to prove that averaging (2.14) lets us remain in the subspace
of resonant terms. This subspace is precisely the kernel of the semisimple part As

of A, given by

(Asγ )(v) = (ad a0)
sγ (v)+ γ ′(v)Msv.(2.21)

Here Ms denotes the unique semisimple (here: diagonal) part of M = ϕ′(0). But
A is H -equivariant, by (2.20), and therefore As is also H -equivariant, and so is
kerAs , i. e., the subspace of resonant terms. This completes the proof of normal-
form Theorem 1.2. ut
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Obviously, more refined results are possible, which exploit the possible nilpo-
tency of both ad a0 andM . Specifically, only terms in an H -invariant complement
to range A need to remain, in normal form. Because

codim range A = dim kerA 5 dim kerAs,(2.22)

these can be fewer terms than those of kerAs which are called resonant in Definition
1.1. For the applications which we have in mind in the present paper, however, the
(semi-)simpler normal-form Theorem 1.2 proves sufficient.

3. Relative Equilibria of SE(N) with Zero Eigenvalues

In this section, we apply normal-form Theorem 1.2 to relative equilibria v = 0 of
the special Euclidian groupSE(N); see (1.1)–(1.4) for notation. Here and below, for
simplicity of presentation, we only consider the case of trivial isotropy H = {id}.
Nontrivial isotropy can eliminate further terms in our normal forms, of course,
according to Theorem 1.2, because the normal form preserves any additional H -
equivariance.

In coordinates (R, S) on SE(N), and (r, s) on se(N), the skew product (1.9)
takes the form

Ṙ = Rr(v), Ṡ = Rs(v), v̇ = ϕ(v).(3.1)

In Lemma 3.1, we compute and interprete the eigenvalues ηi of a0, which are used
in Definition 1.1 of resonance. In Lemma 3.2, we compute and discuss the normal
form of (1.9), (3.1), given by Theorem 1.2, in the case of an equilibrium v = 0
with only zero eigenvalues µp of M = ϕ′(0). We conclude this section with a
discussion of additional formal integrals, appearing in normal form, and of their
proper interpretation as integrals beyond finite order in the context of the original
system.

To compute the spectrum of ad a0, we first recall the commutator on elements
(r, s) of the Lie algebra se(N) = so(N)× RN to be given by

[(r0, s0), (r, s)] = ([r0, r], r0s − rs0);(3.2)

see for example [FSSW96, (4.3)]. To compute spec(ad a0), let l = [N/2] and
a0 = (r0, s0). Note that the infinitesimal rotation matrix r0 is skew symmetric, and
hence is (orthogonally) diagonalizable with purely imaginary spectrum. Typically

spec r0 =
{ {±iωj ; j = 1, . . . , l} for N = 2l,

{0} ∪ {±iωj ; j = 1, . . . , l} for N = 2l + 1
(3.3)

with ωj > 0.

Lemma 3.1. Assume that (3.3) holds. Then spec (ad a0) is given by

spec (ad a0) = {0} ∪ {±iωj ; 1 5 j 5 l}
∪ {±i(ωj1 ± ωj2); 1 5 ji, j2 5 l}.(3.4)
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Proof. We first observe that (r, s) ∈ {0} × CN form an invariant subspace. In fact

(ad a0)(0, s) = (0, r0s)(3.5)

embeds spec r0 into spec (ad a0). Also by (3.5) and (3.2), it is therefore sufficient
to study

spec (adso(N) r0)(3.6)

in order to determine spec (ad a0).
We describe r0 in block-diagonal form by complex eigenvectors. Let ej denote

the eigenvectors in CN of the eigenvalues iωj of r0 ∈ so(N), for 1 5 j 5 l. The
complex conjugates ēj belong to −iωj . For oddN = 2l+1, include a real nonzero
eigenvector e0 ∈ ker r0 of ω0 = 0. Then the complex matrix ej1e

T
j2

∈ gl(N) is an
eigen“vector” of [r0, ·] with eigenvalue

i(ωj1 + ωj2)(3.7)

for 0 5 j1 5 j2 5 l. Indeed,

[r0, ej1e
T
j2

] = r0ej1e
T
j2

− ej1e
T
j2

r0

= i(ωj1 + iωj2)ej1e
T
j2
.

(3.8)

The complex conjugate transpose ēj2 ē
T
j1

is another eigen“vector” corresponding to

the same eigenvalue. In particular, their skew-Hermitian sum ej1e
T
j2

− ēj2 ē
T
j1

is an

eigen“vector” of ad r0. Note that the real and imaginary parts of this matrix are
each skew symmetric, and hence in so(N), by block diagonalization of r0, for
0 5 j1 < j2 5 l. This accounts for eigenvalues ±i(ωj1 + ωj2) of ad r0. Similarly,
ej1 ē

T
j2

produce eigenvalues ±i(ωj1 −ωj2), this time for 0 5 j1 5 j2 5 l, excepting
the case j1 = j2 = 0. Note that the matrix for j1 = j2 has zero real part and
zero diagonal. Counting dimensions right, we therefore have spanned so(N). This
proves the lemma. ut

We now proceed to compute the normal form of an SE(N)-equivariant skew
product (1.9) near a relative equilibrium v = 0. By Theorem 1.2, nonresonant terms
in a(v) can be eliminated, up to any finite order in v. If a(v) is analytic and contains
only resonant terms, at all orders, we call the skew product (1.9) a formal normal
form.

An actual smooth transformation may reduce the system to its formal normal
form only up to terms of some prescribed order κ . Therefore, the original vector
field (3.2), after normal-form transformation (1.21), differs from its formal normal
form of Theorem 1.2 by some terms of order O (‖v‖κ), where κ may be taken
arbitrarily large. The influence of such terms becomes significant on times of order
ε−k, where ε is the size of the small neighborhood of the origin in the slice V in
which the system is defined.

Therefore, the pictures given by formal normal forms are approximately valid
on finite time intervals |t | < t(ε), with error terms as just described, for t (ε)
tending to infinity as ε → 0, proportionally to any finite power of ε−1. This simple
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observation is completely analogous to the usual normal-form theory for vector
fields; see for example [Van89]. In short, we say that formal normal forms are valid
beyond finite order.

Let us, for a moment, consider the v̇-equation of system (1.9) separately. It
describes the flow of v in a small neighborhood of the equilibrium v = 0. If some
number (say, nc) of the eigenvalues µj of the linearization matrix M = ϕ′(0) lie
on the imaginary axis, then it is well known that there exists a smooth invariant
nc-dimensional center manifold Wc which we denote schematically as

Ψ (v) = 0(3.9)

where Ψ : Rn → Rn−nc . The center manifold contains the relative equilibrium
v = 0 and it is tangent, at the equilibrium, to the generalized eigenspace of M
which corresponds to the purely imaginary and zero eigenvalues.

For the complete system (1.9), equation (3.9) still defines an invariant manifold
Mc = Wc×SE(N) in SE(N)×Rn. This is no longer a local manifold, since the
“global” factorSE(N) is not compact. Nevertheless, Mc still contains all solutions
which remain in a sufficiently small neighborhood of the relative equilibrium {0}×
SE(N), for all real times. Therefore, without loss of generality, we may restrict any
bifurcation considerations to Mc. On Mc, all eigenvaluesµp lie on the imaginary
axis. Specifically, we now consider the simplest case where all µp are zero.

Lemma 3.2. Let v = 0 be a relative equilibrum of (1.9) such that all eigenvalues
µp of the linearizationM = ϕ′(0) at v = 0 are zero. Furthermore assume that the
eigenvalues ±iωj of r0 = r(v = 0) to be distinct with ωj > 0, j = 1, . . . , l, l =
[N/2]. Then the formal normal forms of systems (1.9), (3.1) are as given below.

If N = 2l is even, then

Ṙ = R



Ω1(v) 0

. . .

0 Ωl(v)


 , Ṡ = 0, v̇ = ϕ(v).(3.10)

If N = 2l + 1 is odd, then

Ṙ = R



Ω1(v) 0 0

. . .
...

0 Ωl(v) 0
0 . . . 0 0


 , Ṡ = R




0
...

0
σN(v)


 , v̇ = ϕ(v)(3.11)

where

Ωj(v) =
(

0 −ωj (v)
ωj (v) 0

)
.

Proof. Since all eigenvalues µp of M are zero, the term a
(i)
k v

k is resonant if and
only if

ηi = 0;(3.12)
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see (1.20). We therefore have to compute the generalized kernel of ad a0, with a
little help from Lemma 3.1.

We note that conjugation of a0 = (r0, s0) by (R0, S0) ∈ SE(N) does not
change spec(ad a0); it corresponds to a basis change in alg (G) and is an automor-
phism of the commutator. Because

(R0, S0)(r0, s0)(R0, S0)
−1 = (R0r0R

−1
0 ,−R0r0R

−1
0 S0 + R0s0),(3.13)

we can always assume that

s0 ∈ ker r0 = (range r0)
⊥(3.14)

after a translation R0 = id, S0 ∈ RN . Also, the skew symmetric matrix r0 can be
assumed to be block-diagonal, by some R0 ∈ SO(N) and S0 = 0.

We first consider the caseN = 2l even. Then ker r0 = {0}, by assumption, and
hence s0 = 0, by (3.14). In particular, (3.2) implies that

(ad a0)(r, s) = ([r0, r], r0s).(3.15)

Therefore, ad a0 is semisimple, and resonant terms belong to the kernel, rather
than to the generalized kernel. The kernel is given by s = 0 and r an arbitrary
block-diagonal matrix of rotations Ωj(v), one for each eigenspace of eigenvalues
±iωj of r0. See the proof of Lemma 3.1 for further details.

Now we consider the case N = 2l + 1 odd. If s0 = 0, the previous arguments
apply and yield σN(v) ≡ 0 in the formal normal form. If s0 |= 0, we may assume
that s0 = e0 spans ker r0, without loss of generality; see the proof of Lemma 3.1
for notation. Then

(ad a0)(r, s) = ([r0, r], r0s − re0).(3.16)

The expressions for r(v), s(v) appearing in the right-hand sides of (3.1), (3.11)
span ker(ad a0), as before. A generalized kernel does not appear. Indeed, [r0, ·] is
semisimple on so(N). In particular, r ∈ kerso(N)[r0, ·] for (r, s) in the generalized
kernel. Therefore, re0 = 0, and r0s = 0. This implies that (r, s) ∈ ker(ad a0),

and the lemma is proved. ut
We now discuss the evolution (R(t), S(t)) on the group, which is generated by
the v-flow in the (formal) normal forms (3.10), (3.11) of Lemma 3.2. By SE(N)-
equivariance, we can always take R(0)= id, S(0)= 0 as an initial condition. As
was pointed out earlier, our conclusions on the formal normal flow, that is, the flow
of the formal normal form, are valid beyond finite order ε−κ in time.

We begin with the formal normal flow for N = 2l even; see (3.10). Then

R(t) =


R1(t) 0

. . .

0 Rl(t)


(3.17)
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preserves block-diagonal form for all t, with (2 × 2)-blocks

Rj (t) =
(

cosαj (t) − sin αj (t)

sin αj (t) cosαj (t)

)
.(3.18)

In particular,R(t) possesses l fixed two-dimensional planes of rotation. The rotation
phases αj in these planes are found by direct integration of

α̇j = ωj (v)(3.19)

with initial conditions αj (0) = 0. Moreover, Ṡ = 0 in (3.10) implies

S(t) ≡ 0.(3.20)

In particular, we obtain 1
2N

2 integrals of motion on the group SE(N) of dimension
1
2N(N + 1): the components of the shift, and the positions of the l rotation planes.

For proper interpretation of this nondrift result in terms of the original evolution
(R̃(t), S̃(t)) on SE(N), we have to invert the normal-form transformation (1.21).
We should also remember the approximate nature of our (and any) formal normal
form, due to error terms of order O (‖v‖κ) in formal normal form vector fields.

Inverting the normal form transformation (1.21), we still obtain 1
2N

2 first in-
tegrals for the original evolution (R̃(t), S̃(t)) on SE(N), up to order O (‖v‖κ).
With g0(v) =: (R0(v), S0(v)), these approximate integrals are given by (1.21) as
relations

R̃(t)R0(v(t)) = R(t),

R̃(t)S0(v(t))+ S̃(t) = S(t) = 0
(3.21)

in terms of the block structure of R(t) and the vanishing of S(t).
Recall that these are only formal integrals: they are approximately conserved

for only finite, though very large, time — beyond finite order κ . For example, we
observe a relative slaving beyond finite order of the original drift S̃ in terms of
original rotation R̃ and original shape v:

S̃(t) = −R̃(t)S0(v(t))+ tO (‖v‖κ) = S(R̃, v)+ tO (‖v‖κ).(3.22)

Here ‖v‖ refers to the sup norm over the interval from 0 to t .
In the odd-dimensional caseN = 2l+1, integration of the formal normal form

(3.11) gives the rotation matrix R(t) in block-diagonal form again:

R(t) =



R1(t) 0

. . .

Rl(t)

0 1


(3.23)

where Rj (t) and the evolution of the rotation phases αj are as in (3.18), (3.19).
Thus, there are l fixed two-dimensional rotation planes and one axis of rotation
which remain fixed under the action ofR(t). Also, there is no shift in the directions
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orthogonal to the rotation axis. At the same time, the shift s(t) along the rotation
axis is governed by

ṡ = σN+1(v).(3.24)

Returning to the original system by transformation (1.21), we obtain 1
2 (N

2 − 1)
formal integrals, which define the v-dependence of the rotation axis, of the rotation
planes, and of the shift in the directions orthogonal to the rotation axis. Mutatis
mutandis, our interpretation of the case of even N applies.

4. Tip Motion in SE(N) Systems

The partial differential equations mentioned in the introduction exhibit solution
patterns u = u(t, x), both experimentally and numerically, which intuitively look
like spirals with a superimposed rotational and translational motion; see Fig. 4.1.
In a local center manifold Mc near a relative equilibrium G · u0, G = SE(N),

the dynamics is described by

Ṙ = Rr(v), Ṡ = Rs(v), v̇ = ϕ(v);(4.1)

see (3.1) and Section 3. In experiments, the translational motion is usually repre-
sented as the motion of some distinguished point x(t) ∈ RN on the solution profile;
for N = 2 see Fig. 4.1. Examples for x(t) are the “tip” (b) of maximal curvature
of a distinguished, sharp reaction front, the inflection point (d) of the front, or the
“core” (a) of the spiral. In the present section, we try to clarify both ambiguity
and benefit of these concepts. We give a precise, albeit general, meaning to the
concept of a “tip” x(t); see Definition 4.1. In Proposition 4.2 we then prove that the
tip motion x(t) satisfies a differential equation which coincides with Ṡ = Rs(v)

from (4.1), except for an explicit correction term of the vector field s(v) ∈ RN . In
discussing the dynamical behavior of systems (4.1), for general s(v), it is therefore
justified to call S(t) itself a “tip motion”.

Definition 4.1. Let u0 be a relative equilibrium toG = SE(N)with differentiable,
G-invariant local center manifold Mc. By “the” tip of u ∈ Mc, we mean the
value x(u) at u of a differentiable, G-equivariant function

x : Mc → RN(4.2)

Here G-equivariance is required with respect to the given action of G on Mc and
the affine representation (1.2) of G = SE(N) on RN .

Similarly, letH denote the (compact) isotropy of u0. Then a tip function x∗ on
the Palais slice V is a differentiable, H -equivariant function

x∗ : V → RN.(4.3)
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(a) (b)

(c)

(d)

Fig. 4.1. A spiral wave pattern in the Belousov-Zhabotinsky reaction, by courtesy of [MZ94].

Differentiability is required to derive a differential equation for x in Proposition
4.2 below. We restrict our definition to Mc, because typicalG-actions are not even
continuous on the underlying function spaces for u.

Our abstract definition of the tip x on Mc is motivated as follows. Let u = u(x)

be a function on Mc. Then a “distinguished” point x(u) of the profile u(·) can be
chosen as a “core” (a), a “tip” (b), a “rotation center” (c), an “inflection point” (d),
etc., by a lot of different extraction rules. A common feature of all rules should be
equivariance: a tip, core, etc., of (gu)(x) := u(g−1x) should sit at position gx if the
position for u is denoted by x ∈ RN . In other words, the function x = x(u(·)) in
(4.2) determines some specific extraction rule for whatever “distinguished” point is
of interest. This rule ought to be compatible with equivariance underG = SE(N).

This motivates our definition of x. To clarify the relation between tips x and tip
functions x∗, we represent the center manifold Mc by differentiable coordinates

Ψ : G× V → Mc(4.4)
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which is (G×H)-equivariant, that is,

Ψ ((g0, h) · (g, v)) = g0Ψ (g, v),(4.5)

under the action (1.10) of G × H on G × V . We recall from [FSSW96] that
G × V → Mc is a differentiable, H -principal fiber bundle with fibers given by
the H -orbits

(id, h) · (g, v) = (gh−1, hv).(4.6)

Now consider the composition

x̃∗ := x ◦ Ψ : G× V → RN(4.7)

for any given tip x on Mc. Then (G×H)-equivariance (4.5) implies that

x̃∗((g0, h) · (g, v)) = x(Ψ ((g0, h) · (g, v)))
= x(g0Ψ (g, v)) = g0x(Ψ (g, v))

= g0x̃
∗(g, v).

(4.8)

With h = id, g = id, this implies that

x̃∗(g0, v) = g0x̃
∗(id, v).(4.9)

Putting g0 = h, g = id in (4.8) and using (1.10), we obtain

x̃∗(id, hv) = hx̃∗(id, v).(4.10)

In other words, the tip x on the center manifold Mc defines a tip function x∗(v) :=
x̃∗(id, v) on the slice V . The converse is also true, because

x(Ψ (g, v)) := gx∗(v)(4.11)

is a well-defined tip on Mc, by H -equivariance of the tip function x∗ on V .
We now derive the differential equation for motion of the tip x on Mc.

Proposition 4.2. Let u = u(t, x) denote a trajectory of theG-equivariant flow on
the center manifold Mc, and define the tip motion as

x(t) := x(u(t, ·)),(4.12)

for some tip x on Mc as in Definition 4.1. Then x(t) satisfies the differential
equation

ẋ = R(t)s̃(v(t))(4.13)

where R(t), v(t) are solutions of (4.1) and s̃ is given explicitly by

s̃(v) = s(v)+ r(v)x∗(v)+Dx∗(v)ϕ(v).(4.14)

Here x∗(v) = x̃∗(id, v) is the tip function on the slice V associated with x(u) by
(4.7), (4.10) above.
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Proof. Following (4.4)–(4.10), we consider the dynamics of

x(t) = x(u(t, ·)) = (x ◦ Ψ )(g(t), v(t))
= x̃∗(g(t), v(t)) = g(t)x∗(v(t))

= R(t)x∗(v(t))+ S(t).

(4.15)

By [FSSW96], the (G×H)-equivariant flow (3.1), (4.1) on the total spaceG× V

projects to the G-equivariant flow on the base Mc, in the H -principal bundle of
G× V over Mc. Differentiation of (4.15) with respect to t by the chain rule, and
(3.1), (4.1) therefore imply (4.13) and (4.14). This proves the proposition. ut

We remark that flows depending on parameters λ can be treated in exactly
the same way, with r = r(λ, v), s = s(λ, v), ϕ = ϕ(λ, v) in (4.1), and x =
x(λ, u), x∗ = x∗(λ, v) in (4.2), (4.3).

We now return to system (4.1), having identified S(t) as equivalent to tip motion
x(t). To be more specific, we discuss the planar case G = SE(2). We introduce
complex notation z(t) ∈ C, for S(t) ∈ R2, and exp(iα(t)) ∈ C, forR(t) ∈ SO(2).
With this notation, system (4.1) with parameters becomes

α̇ = ω(λ, v), ż = eiασ (λ, v), v̇ = ϕ(λ, v).(4.16)

Here v belongs to some neighborhood v of the origin in Rn, and λ ∈ Rk are some
small parameters; ω and ϕ are real-valued functions, and σ is complex.

We consider the case ω(0, 0) |= 0. Since we are in a small neighborhood of
the origin, we may assume ω(λ, v) |= 0 everywhere. Thus, we may rescale time so
that system (4.16) takes the form

α̇ = ω0, ż = eiα(ω0/ω)σ, v̇ = (ω0/ω)ϕ.(4.17)

This system has the same form as (4.16). Therefore we may just assume that ω =
ω0 ≡ const, in (4.16). The choice of ω0 |= 0 is, of course, completely arbitrary.

For ω ≡ ω0 the integration of the equations for α and the tip shift z is simple:

α(t) = α0 + ω0t,(4.18)

z(t) = z0 + eiα0

∫ t

0
eiω0sσ (v(s)) ds(4.19)

where v(t) is picked up from the last equation of (4.16). The evolution of v is
independent of α and z, and, in principle, an arbitrary dynamics in V ⊆ Rn is
possible. Again, we suppress λ.

According to (4.19), the increment of z(t) measures the Fourier harmonic of
the input σ(v(t)) at frequency ω0. In the following, we investigate various types of
dynamics of the tip motion in the z-plane, in response to various possible types of
time behavior of the v-variables (stationary states, periodic motions, homoclinics).
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Consider an equilibrium state: v(t) = v0 ≡ const, ϕ(v0) = 0. Then σ(v) =
σ0 ≡ const and we obtain the dynamics

z(t) = z0 − ieiα0
σ0

ω0

(
eiω0t − 1

)
.(4.20)

Thus, z moves along the circle with center (z0 + ieiα0 σ0
ω0
) and with radius | σ0

ω0
|.

Note that the coordinate transformation

znew = z+ ieiα
σ (v)

ω0
(4.21)

preserves the form of system (4.16), transforming σ(v) into

σnew(v) = i
σ ′(v)
ω0

ϕ(v).(4.22)

In particular, żnew vanishes at all relative equilibria with ϕ(v) = 0, in the new co-
ordinates. Therefore znew(t) = const for these solutions. Thus, after our coordinate
transformation, the value of the tip position z coincides with the center of rotation
of the rotating wave; see Fig. 4.1, point (c).

Of course, any coordinate transformation which preserves

σ(v) = 0 at ϕ(v) = 0(4.23)

is allowed. Therefore the tip of the wave is still not defined uniquely outside of the
relative equilibria — and cannot be.

5. Drift Resonance of Relative Periodics

LetG = SE(2). In this section, we consider relative periodics, that is, the case
of a periodic orbit in the v-variables of (4.1), (4.16). Then σ(v(t)) is a periodic
function, say with minimal period T > 0. In degenerate cases, this period can be
an integer fraction of the minimal period of v(t) itself. We exclude the case where
σ(v(t)) is stationary, but v(t) is not. We derive a general, at most quasiperiodic
expression for the tip motion of relative periodics, in (5.3). We then discuss tip mo-
tions in the case of drift resonance. We are mainly setting up notation in this section,
for our readers’ convenience, not claiming much originality; see also [FSSW96,
GLM97].

We denote the Fourier expansion for σ by

σ(v(t)) =
k=+∞∑
k=−∞

σke
ikω1t ,(5.1)

ω1 = 2π/T > 0. With time scaled to α̇ = ω0, as in (4.17), the tip motion of the
relative periodic is given by

z(t) = z0 + eiα0

k=+∞∑
k=−∞

σk

∫ t

0
ei(kω1+ω0)sds.(5.2)
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If ω0/ω1 6∈ Z, then there are no resonant terms, and

z(t) = C + eiω0tQ(t)(5.3)

where Q is a complex T -periodic function and C ∈ C is a constant. By (5.3), the
epicycle motion of z(t) is confined to the closed annulus bounded by the two circles
with center at z = C and radii

σ− := min
05t5T

|Q(t)|, σ+ := max
05t5T

|Q(t)|.(5.4)

If ω0 and ω1 are incommensurate, then the tip motion z(t) is quasiperiodic and
dense in the annulus. If ω0/ω1 ∈ Q, then the tip motion z(t) is periodic and hence
closes up in the annulus.

Note that the position of the center C depends on initial conditions z0, α0, and
the initial phase on the periodic orbit. The radii σ± of the annulus do not depend
on these initial conditions. We call the epicyclic motion (5.3) in the annulus a
meander, C is the center of the meander, and σ± are the radii of the meander.

In the resonant case ω0 = mω1 where m is some integer, formula (5.3) is not
valid and we have an m : 1 drift resonance between the rotation frequency ω0 of
the spiral wave and the frequency ω1 of its shape modulation v. Now, integral (5.2)
gives the tip motion

z(t) = c + eiα0σ−mt + eiω0t q(t)(5.5)

where q(t) is a complex periodic function and c ∈ C is a constant. From this point
of view, the center of epicyclic meandering

C = c + eiα0σ−mt(5.6)

moves to infinity along a straight line with the constant velocity |σ−m|. To study the
transition of ω0/ω1 ≈ m through m : 1 drift resonance, we single out the Fourier
term σ−m in (5.2), which accounts for the differenceQ− q. For the z-motion near
the drift resonance, we thus obtain

z(t) = c + eiα0σ−m
ei(ω0−mω1)t − 1

i(ω0 −mω1)
+ eiω0t q(t).(5.7)

From this point of view, the epicyclic meander eiω0t q(t) has radii min |q| and
max |q| and the center of this meander moves with velocity |σ−m| along a large
circle of radius |σ−m|/|ω0 −mω1|. The center of the large circle coincides with the
constant C in representation (5.3).
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6. Relative Hopf Bifurcation with Drift Resonance

In this section, we consider (relative) Andronov-Hopf bifurcation in the v-
variable of system (4.16). As in (4.17), we normalize ω(λ, v) = ω0 and consider

α̇ = ω0, ż = eiασ (λ, v), v̇ = ϕ(λ, v)(6.1)

with Hopf bifurcation in v. The nonresonant case is easy; see [FSSW96, GLM97].
In this section we derive and discuss the formal normal forms of the resonant cases,
as provided by Theorem 1.2. We put the v-equation in formal normal form

v̇ = ϕ̃(λ, |v|2)v(6.2)

with complex notation for v ∈ R2 = C. Note that ϕ̃ is complex-valued and

iω1 := ϕ̃(0, 0) |= 0.(6.3)

We first derive the resonance conditions (1.20) in this case. We then discuss the
case ω0 = mω1 of m : 1 resonance between the rotation frequency ω0 and the
relative Hopf frequency ω1.

To derive the resonance conditions we compute the spectrum of the adjoint
ad a0. We write a0 = (r0, s0), in the notation of Section 3. By the normalization
(4.21), (4.22), we can assume s0 = 0. By Lemma 3.1,

spec(ad a0) = {0,±iω0}.(6.4)

By the proof of Lemma 3.1, the eigenvalue η = 0 belongs to the so(2)-components,
here represented by the normalized equation α̇ = ω0. The eigenvalues η = ±iω0,
in contrast, belong to the R2-components s, here represented by σ(λ, v). Since
M = Dvϕ(λ=0, v=0) possesses only the eigenvalues ±iω1(λ=0), represented in
complex notation by coordinates v, v̄, respectively, the resonance condition (1.20)
becomes

−iω0 = −η = iω1(k1 − k2)(6.5)

for terms exp(iα)vk1 v̄k2 in the ż-equation. This implies that

ω0 = mω1(6.6)

produces the only possible resonance

k2 = k1 +m(6.7)

for nonzero integer m. If ω0, ω1 are of the same sign, then m in (6.6) is positive,
and

ż = eiασ̃ (λ, |v|2) · v̄m,(6.8)

with σ̃ complex, becomes the desired formal normal form for tip motion at m : 1
resonant relative Hopf bifurcation. If ω0, ω1 have opposite sign, thenm is negative
and we obtain

ż = eiασ̃ (λ, |v|2)v|m|(6.9)
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as the formal normal form. If we take z̄ as a new tip variable, then (6.9) coincides
with (6.8). For ω0 6∈ ω1Z, that is, in the absence of resonance, the formal normal
form becomes

ż = 0.(6.10)

Without proper interpretation, this “nondrift” result may look surprising — or
even wrong. To a naive reader, it might appear to be saying that meandering spirals
do not really meander — contradicting all experimental evidence and contradicting
the analysis in [Wul96, FSSW96, GLM97].

Of course, the proper interpretation of “nondrift” result (6.10) is similar to our
interpretation of the zero eigenvalue nondrift result (3.20) at the end of Section 3. We
have to invert the normal form transformation (1.21), with g0(v) =: (eiα0(v), z0(v)),
to obtain the original evolution (eiα̃(v), z̃(v)) on SE(2). For the tip motion z̃(t) in
the original system, the normal form transformation (3.20) implies that

z̃(t) = −eiω0t e−iα0(v(t))z0(v(t))+ z(t).(6.11)

Nondrift z(t) ≡ 0 now clearly yields a quasiperiodic motion for the original tip
position z̃(t), beyond finite order.

Our normal form approach in fact leaves open the possibility of perturbation
terms, beyond finite order, which destroy the very quasiperiodicity of the motion.
Such terms are however not present, as our direct analysis in Section 5 has shown.
In particular, our normal form analysis determines the coefficients C and Q(t),
beyond finite order.

It is now also easy to compute the epicycle expansion (5.7) for drift resonant
tip motion (6.8), along the bifurcating sheet of periodic solutions v(t). We consider
two parameters, λ = (λ1, λ2), normalized such that λ1/2

2 , for λ2 > 0, describes the
amplitude |v(t)|. Similarly, T = 2π/ω1 with ω1 = ω1(λ = 0)+ λ1 describes the
minimal period of the bifurcating periodic solutions v(t). Inserting these expres-
sions into (6.8) yields the tip motion

z(λ1, λ2, t) = z0 + eiα0

∫ t

0
eiω0s σ̃ (λ, λ2)λ

m/2
2 e−imω1sds

= c + eiα0 σ̃ (λ, λ2)λ
m/2
2

e−imλ1t − 1

−imλ1
.

(6.12)

Indeed, this has the form (5.7) with

c = z0, σ−m = σ̃ (λ, λ2)λ
m/2
2 , q(λ, t) ≡ 0(6.13)

in formal normal form. Passing to the tip shift z̃(t) in the original system, by
transformation (6.11), we obtain

q(λ, t) = −e−iα0(v(t))z0(v(t)).(6.14)

Note that the motion along the large circle persists, for λ → 0, with limiting speed

σ−m ∼ λ
m/2
2 .(6.15)
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Again by the analysis of Section 5, perturbation terms beyond finite order which
could destroy expressions (6.13), (6.14) for the coefficients in expansion (5.7) do not
exist. Therefore, (6.13), (6.14) themselves hold beyond finite order in |v(t)| = λ

1/2
2 .

7. Relative Weak Focus with Drift Resonance

A weak focus occurs at Hopf bifurcation, when third-order terms are nonde-
generate. The formal normal form for a weak focus is

v̇ = ϕ̃(|v|2)v,(7.1)

where ϕ̃(r2) = iω1 + ϕ1r
2 + · · · , ϕ1 ∈ C, ω1 ∈ R \ {0}. In the present section,

we study m : 1 resonances between the rotation frequency ω0 and the (relative)
Hopf frequency ω1. We consider the tip motion z(t) in the resonant cases, as given
by the formal normal form

ż = eiασ̃ (|v|2)v̄m,(7.2)

with α = α0 + ω0t , nonzero ω0, complex σ̃ , and m > 0; see (6.8). By putting
m = 0 in (7.2), the nonresonant cases ω0 |∈ Zω1 can be subsumed.

Throghout this section, we ignore the correction term (6.11) which distinguishes
tip motion z̃(t) in the original system from tip motion z(t) in formal normal form.
Similarly, terms tO (‖v‖κ) beyond finite order are omitted.

We introduce polar coordinates v = reiψ . Reversing time and scaling r , if
necessary, we expand

ṙ = (Re ϕ̃(r2))r = −r3 + · · · ,
ψ̇ = Im ϕ̃(r2) = ω1 + m̂ω2r

2 + · · · .
(7.3)

For t → +∞, we obtain the asymptotics

r(t) = (2t)−1/2 + O (t−1).(7.4)

In the nonresonant case, normalization (4.21), (4.22) implies σ̃ (0) = 0. There-
fore

ż = eiα(σ1r
2 + · · · )(7.5)

for some σ1 ∈ C. Integration gives the tip motion

z(t) = z0 + eiα0

∫ t

0
eiω0s(σ1r

2(s)+ · · · ) ds.(7.6)

Inserting expansion (7.4), we obtain a convergent oscillatory integral in (7.6). Hence

z∞ := lim
t→+∞ z(t)(7.7)

exists and is finite.
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We consider the m : 1 resonant case next. Replacing v by v̄, if necessary, we
assume that ω2 > 0 in expansion (7.3). We also fix the orientation of z such that
ω0 = mω1 with m > 0, and hence with formal normal form (7.2). The tip motion
is given by

z(t) = z0 + eiα0

∫ t

0
eiω0s σ̃ (r2)rme−imψ(s)ds.(7.8)

Since σ̃ (r2)rm = 0 for r = 0 is satisfied automatically, we can assume

σ̃ (r2) = σ̃0 + · · ·(7.9)

with σ̃0 |= 0, this time. To evaluate the integral (7.8), we introduce a new time
variable

τ := −ω0t +mψ(t).(7.10)

By (7.3), (7.4), we can expand τ̇ (t) as

τ̇ = −ω0 +mψ̇ = −ω0 +mω1 + ω2r
2 + · · ·

= ω2r
2 + · · ·

= 1
2ω2t

−1 + · · ·
(7.11)

with remainder terms of order r4, t−2, for r → 0, t → +∞, respectively. Note
that τ̇ > 0, because ω2 > 0; hence τ can be viewed as a transformed time, indeed.
Also note the asymptotics

τ(t) = 1

2
ω2 log t + · · ·(7.12)

with decaying remainder of order t−1. Denoting ′ = d
dτ

we obtain

r ′ = ṙ

τ̇
= −ω−1

2 r + · · ·(7.13)

from (7.3), (7.11). This yields the expansion

r = r(τ ) = r0 exp(−ω−1
2 τ)+ · · ·(7.14)

for τ → +∞. The order of the remainder is exp(−2ω−1
2 τ). By substituting τ for

t, s in the integral expression (7.8) of the tip motion z(t), expansions (7.9)–(7.14)
imply that ∫ t

0
eiω0s σ̃ (r2)rme−imψ(s)ds

=
∫ τ(t)

0
e−iτ σ̃ (r2)rm · (τ̇ )−1dτ

=
∫ τ(t)

0
e−iτ (σ̃0 + . . . )ω−1

2 (rm−2 + · · · )dτ

= σ̃0

∫ τ(t)

0
e−iτ rm−2

0 ω−1
2 e−((m−2)/ω2)τ dτ + · · ·

(7.15)
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with exponentially convergent remainder terms of order

O
(

exp
(
− m

ω2
τ
))
.(7.16)

For drift resonance order m = 3, this implies exponential convergence to

z∞ = lim
t→+∞ z(t)(7.17)

for the tip position z(t).
For m = 2 drift resonance, we obtain

z(t) = c + iσ̃0ω
−1
2 eiα0 exp(−iτ (t))+ o(1)(7.18)

for t, τ → +∞ and some complex constant c. Thus z(t) converges to a circular
motion with logarithmic phase −τ(t) and ever decreasing angular velocity τ̇ (t) ∼
1/t ; see (7.11), (7.12).

For m = 1 drift resonance, finally, the tip motion z(t) becomes unbounded.
Indeed, up to bounded terms, we obtain

z(t) = eiα0 σ̃0r
−1
0 ω−1

2

∫ τ(t)

0
e(−i+1/ω2)τ dτ + · · ·

= eiα0
σ̃0r

−1
0 ω−1

2

(−i + 1/ω2)
e(−i+1/ω2)τ (t) + · · ·

= eiα0
σ̃0r

−1
0 ω−1

2

−i + 1/ω2
t1/2e−i(ω2/2) log t · (1 + o(1))+ · · · .

In other words, the tip moves along an exponential spiral with radius growing like
t1/2, but again with logarithmic phase −τ(t) and ever decreasing angular velocity
τ̇ (t) ∼ 1/t .

8. Relative Homoclinics and Heteroclinics

In this section, we consider (relative) homoclinic or heteroclinic trajectories
Γ ⊂ Rn to relative equilibria of SE(2)-actions, for the v-equation. Again, we
normalize time as in (4.17), such that

α̇ = ω0, ż = eiασ (λ, v), v̇ = ϕ(λ, v).(8.1)

We first observe that trajectories Γ in the v-equation, which are homoclinic or
heteroclinic to hyperbolic (relative) equilibria, give rise to bounded tip motions
z(t) which are typically heteroclinic. The associated tip shift

S (Γ ) := z+∞ − z−∞(8.2)

is finite. We then investigate the tip motion z(t) for trajectories v(t) limiting to a
homoclinic loop Γ, in forward time, and exhibit a relation to the random behavior
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of trigonometric sums. We also investigate the infinite sequence of drift resonances
which appears along a one-parameter family of relative periodic orbits which limits
onto Γ . We conclude with some comments on these phenomena for a (relative)
Bogdanov-Takens bifurcation in v.

From (4.19) we recall the tip motion

z(t) = z0 + eiα0

∫ t

0
eiω0sσ (v(s)) ds.(8.3)

As in (4.21), (4.22), we further normalize σ(v0) = 0 at any relative equilibrium
ϕ(v0) = 0.

Assume that the relative equilibrium v0 is hyperbolic, that is, ϕ′(v0) does not
possess purely imaginary eigenvalues. Then, for any orbit v(t) which limits to the
equilibrium for t → +∞, the convergence of v(t) is exponential. Correspondingly,
σ(v(t)) decays to zero exponentially, and the integral in the right-hand side of (8.3)
converges. Thus, there exists a finite limit

z∞ = z0 + eiα0

∫ ∞

0
eiω0sσ (v(s)) ds(8.4)

for the motion of the tip along this orbit. In other words, the evolution of the wave
corresponding to the given orbit v(t) limits to a stationary rotating wave with tip,
i. e., a center of rotation, at z = z∞.

Analogous considerations apply to v(t) which tend to an equilibrium for t →
−∞. In particular, for a heteroclinic orbitΓ that connects two hyperbolic equilibria
there exists the tip shift

S (Γ ) = z∞ − z−∞ =
∫ ∞

−∞
eiω0sσ (v(s)) ds.(8.5)

A heteroclinic solution v(t) induces a heteroclinic solution (g(t), v(t)) connecting
two rotating waves. Their tips are a distance S (Γ ) apart from each other. By now
it does not matter whether Γ is heteroclinic or homoclinic: if S (Γ ) |= 0, then the
tip motion z(t) is always heteroclinic.

Note that only the absolute value of the shift along a relative heteroclinic or
homoclinic orbit v(t) is defined uniquely; the direction of the shift depends on the
initial phase α0. This gives rise to an interesting phenomenon: for a v-orbitLwhich
tends to a homoclinic orbit Γ , in v-variables, the tip motion in the z-plane may be
quite irregular. Indeed, let v ∈ R2, let O be a saddle equilibrium with eigenvalues
µ− < 0 < µ+ such that µ− + µ+ < 0, and let Γ be a homoclinic orbit to O. Let
an orbit L tend to the homoclinic loop Γ ∪ O, for t → +∞. Take a small cross
section through O and let t0 = 0, t1, t2, . . . be the consecutive intersection times
of L with the cross section. Then

tk = c1ν
k + c2 +O(e−c3k)(8.6)

where ci are some fixed constants and ν = |µ−/µ+| > 1; see [OS92]. For α0 = 0
the shift of the tip that corresponds to the k-th cycle of v(t) ∈ L along Γ is given
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by the integral

Sk(L) =
∫ tk

tk−1

eiω0sσ (v(s)) ds

= eiω0(tk−1+tk)/2
∫ (tk−tk−1)/2

−(tk−tk−1)/2
eiω0sσ

(
v

(
s + tk−1 + tk

2

))
ds.

(8.7)

The latter integral converges exponentially to the tip shift integral S (Γ ) of Γ ;
see (8.4).

Since 1
2 (tk+tk−1) satisfies the same asymptotics (8.6) as tk itself, with a modified

constant c̃1, we obtain the cumulative tip shift

z(tk0+k)− z(tk0) = ∑k
j=1 S k0+j (L)

= eiω0c2S (Γ ) ·∑k
j=1 exp

(
2πi{ω̃0ν

k0+j }) + o(1)
(8.8)

for k0 → ∞ and any fixed k > 0. Here ω̃0=(2π)−1c̃1ω0, ν > 1, and {·} denotes the
fractional part. For Lebesgue almost all ω̃0, the terms in the classical trigonometric
sum (8.8) have mean value zero. Indeed, the sequence {ω̃0ν

k0+j }, j=1, 2, 3, . . . ,
is uniformly distributed in the unit interval, for any fixed ν > 1 and Lebesgue
almost all ω̃0; see [KN74, Ch. 4]. In fact, the trigonometric sum in (8.8) behaves
like a Brownian random walk for almost all ω̃0. For a recent survey see [BP96].
Specifically, consider identically distributed, independent, complex, normalized
Gaussian random variables Y1, Y2, . . . . Then the rescaled sums

Y (k)(t) := k−1/2
[kt]∑
j=1

Yj(8.9)

converge to normalized Brownian motion in the complex plane, almost surely, for
subsequences k → ∞ which grow fast enough; see for example [Bre68, Ch. 13.4].
Moreover, for any ν > 1 we have approximation of the trigonometric sums (8.8)
by the Gaussian sums (8.9):

∣∣∣∣
k∑

j=1

exp(2πi{ω̃0ν
k0+j })−

k∑
j=1

Yj

∣∣∣∣ 5 O (k5/12+γ ),(8.10)

for any γ > 0, as k → ∞; see [PS75] and the survey [BP96]. Here ω̃0 is considered
as a uniformly distributed random variable in the unit interval and Yj = Yj (ω̃0, ω̃1).
In particular, the spiral tip moves away from the origin according to the loglog law

limk→+∞ (
√
k log log k)−1

∣∣∣∣
k∑

j=1

exp(2πi{ω̃0ν
k0+j })

∣∣∣∣ = 1(8.11)

of Brownian motion, for any v > 1 and almost all ω̃0. For specific sample paths
see Fig. 8.1. Note that k = 104 iterates usually require astronomical waiting times
νk and, accordingly, very high-precision calculations to produce the associated
“random” walks.
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Fig. 8.1. Sample paths of Brownian tip motions.

We now consider a planar relative homoclinic Γ, with the above eigenvalue
configuration, but embedded in a generic one-paramter family

v̇ = ϕ(λ, v).(8.12)

Specifically, we assume that the stable and unstable separatrix of the equilibrium
v0 = O cross each other with nonvanishing speed, as λ ∈ R increases through
λ0 = 0. Then a unique, stable, relative periodic orbit L appears, for λ on one side
of λ0 = 0, say for small λ > 0. The minimal period T of L grows to infinity,
monotonically, for λ ↘ 0, and the frequency ω1 = 2π/T tends to zero. Therefore,
an infinite sequence of m : 1 drift resonances, m → ±∞, occurs at parameters
λ = λm ↘ 0 determined by

mω1(λ) = ω0 at λ = λm.(8.13)

To actually encounter drift resonances, we need the drift velocities |σ−m(λ)| to be
nonzero; see (5.5). Here the Fourier coefficient σ−m of σ(v(λm, t)) of the periodic
orbit v(λm, t) ∈ L is given by

σ−m = 1

Tm

∫ Tm

0
eiω0sσ (v(λm, s))ds.(8.14)
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For λm ↘ 0, the integral in fact converges to the tip shift S (Γ ) of the homoclinic
Γ . This follows from estimates on the essentially linear behavior of the periodic
trajectories near the origin; see [OS92]. In particular, we have the estimate

σ−m = 1

Tm
(S (Γ )+ o(1)),(8.15)

for |m| → ∞. In summary, a nondegenerate homoclinic orbit Γ at λ = 0 with
nonzero tip shift S (Γ ) is accompanied by an infinite sequence of m : 1 drift
resonances, |m| → ∞, at parameter values λm → 0.

Homoclinic loops as above appear, for example, in the Bogdanov-Takens bifur-
cation corresponding to an equilibrium state with double zero eigenvalue. This is a
codimension-two bifurcation with two parameters, λ = (λ1, λ2). There is a curve,
emanating from the origin in the parameter plane, which corresponds to homoclinic
loops. Generically one can expect an infinite sequence of drift resonances to occur
near this curve; see [GLM97]. However, as our normal form results of Section 3
show, for the case of zero eigenvalues µ there is a formal integral in the original
variables (eiα̃, z̃, v):

e−iα̃ z̃ = −S0(λ, v)(8.16)

where S0 is a formal series. See the discussion in (3.20)–(3.22), (6.11), (6.13),
(6.14). In particular, the tip motion z̃(t) corresponding to a bounded motion in the
v-plane (‖v, λ‖ 5 ε)must remain bounded for a long time, which grows to infinity
faster than any power of ε−1 for ε → 0. Thus, a drift velocity corresponding to a
(relative) periodic orbit in the v-plane must be smaller than any power of the size of
the neighborhood of the origin containing that periodic orbit. Equivalently, it must
be smaller than any power of ‖λ‖. Similarly, the homoclinic tip shifts S (Γ ) are
small beyond any finite order in ‖λ‖. This means that polynomial expressions are
capable of accurately reflecting neither the homoclinic tip shifts, nor the velocities
of resonant drifts, near a relative Bogdanov-Takens bifurcation.

We repeat that these perhaps surprising statements are valid in the original
variables (eiα̃, z̃, v). Normal forms, i. e., appropriate choices of Palais coordinates
or Palais slices, are no more than a tool in deriving such insights — after all. We
hope that this tool will be useful beyond SE(2) and Euclidean groups.
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