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One of the most basic results of the averaging theory was discovered and
proven by Anosov [1]:

If, in a slow-fast system, the fast subsystem preserves a smooth invariant
measure μ and is ergodic for almost all values of the frozen slow variables,
then the evolution of the slow variables is close to that given by the averaged
system (averaged over the measure μ in the space of fast variables) for any
finite time interval (which can be taken as long as we want) and for all
initial conditions except for a set of a small measure, provided the separation
between the slow and fast scales is sufficiently large.

It is a very general theorem, which has almost no assumptions - it uses
only smoothness and ergodicity of the measure μ. The natural application
is given by slow-fast Hamiltonian systems:

ẋ = ε Ω−1
x ∂xH(x, y, ε), ẏ = Ω−1

y ∂yH(x, y, ε),

where Ωx and Ωy are the matrices defining the standard symplectic form in
the x- and y-spaces respectively, H is the Hamiltonian function (its value is
preserved by the system), and ε is a small parameter, so the x variables are
slow and the y variables are fast. This system preserves the standard volume
form, so the Anosov theorem is applied if the y-subsystem at ε = 0 is ergodic

with respect to the Liouville measure μL
x (dy) =

δ(E −H(x, y, 0))dy∫
δ(E −H(x, y, 0))dy

at

the given value of H(x, y, 0) = E for almost every value of x (here δ stays
for the delta-function). Under the ergodicity condition, Anosov theorem
implies that given any γ > 0, ν > 0 and T > 0 there exists ε0 > 0 such that
for all ε ∈ (−ε0, ε0) we have

‖x(t)− x̂(t)‖ < γ on the interval 0 ≤ εt ≤ T
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for all initial conditions except, may be, for a set of measure less than ν,
where x̂(t) is the solution of the averaged system

ẋ = ε

∫
Ω−1

x ∂xH(x, y, 0)μL
x (dy).

It is a simple computation to show that this system can be written in the
following form:

ẋ = −εT (x) Ω−1
x ∂xS(x)

where the effective Hamiltonian S(x) = ln

∫
H(x,y,0)≤E

dy can be identified

with the Gibbs volume entropy of the y-subsystem, and the scalar time-
reparameterisation factor T (x) = (∂ES)

−1 can be viewed as the tempera-
ture [2]. Obviously, the averaged system preserves S(x). Therefore, Anosov
theorem actually establishes that the fundamental physical fact of the en-
tropy preservation at adiabatic (i.e. sufficiently slow) changes of system
parameters follows from the ergodicity of the system.

In this talk we address the question of what happens if the fast system
is not ergodic. We need to consider this question because the ergodicity
does not seem to be the prevalent feature of the Hamiltonian dynamics.
We discuss a theory which is developing in joint works with V. Gelfre-
ich, T. Pereira, V. Rom-Kedar, and K. Shah [3–9] and suggest that in the
non-ergodic case the behaviour of the slow variables is approximated by a
random process, and not a single, deterministic averaged system. Namely,
we propose the following conjecture (corroborated by an extensive set of
numerical experiments).

Conjecture. For fixed tolerance parameters γ and ν, there exists a finite
set of smooth non-negative functions ρk(x, y),

∑
k ρk ≡ 1, such that for any

T > 0 and all sufficiently small ε the evolution of the slow variables is
approximated on the time interval [0, T/ε] by the solutions of the system

ẋ = ε

∫
Ω−1

x ∂xH(x, y, 0)ρk(t)(x, y)μ
L
x (dy).

Here the index k of the “approximate ergodic component” ρk, over which
we perform the averaging at each given moment of time, is a random func-
tion obtained as a realisation of the Markov process with the x-dependent
transition probabilities

Pr [k(t) = i −→ k(t+Δt) = j] =

∫
ρj(x(t +Δt), y) ρi(x(t), y) μ

L
x(t)(dy)∫

ρi(x(t), y) μL
x(t)(dy)

.
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The conjectured Markov property is crucial here, as it implies that a
typical process of this type must equilibrate at an exponential rate. This
means an exponential convergence of any absolutely continuous initial mea-
sure on the given energy level H = E to a unique stationary one, i.e., to the
Liouville measure. Moreover, the equilibration process can be attributed
to the increase of the Gibbs volume entropy. It is not clear whether a
typical random process described above corresponds to a typical slow-fast
Hamiltonian system. However, a success in establishing the validity of this
conjecture would offer a way of explaining the equilibration in adiabatically
evolving systems of statistical mechanics as an effect of ergodicity violation.
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