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We show that any area-preserving Cr-diffeomorphism of a 
two-dimensional surface displaying an elliptic fixed point can 
be Cr-perturbed to one exhibiting a chaotic island whose 
metric entropy is positive, for every 1 ≤ r ≤ ∞. This 
proves a conjecture of Herman stating that the identity 
map of the disk can be C∞-perturbed to a conservative 
diffeomorphism with positive metric entropy. This implies 
also that the Chirikov standard map for large and small 
parameter values can be C∞-approximated by a conservative 
diffeomorphisms displaying a positive metric entropy (a weak 
version of Sinai’s positive metric entropy conjecture). Finally, 
this sheds light onto a Herman’s question on the density of 
Cr-conservative diffeomorphisms displaying a positive metric 
entropy: we show the existence of a dense set formed by 
conservative diffeomorphisms which either are weakly stable 
(so, conjecturally, uniformly hyperbolic) or display a chaotic 
island of positive metric entropy.
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Introduction

Consider a diffeomorphism f of a two-dimensional surface M. The maximal Lyapunov 
exponent of x ∈ M is

λ(x) = lim sup
n→∞

1
n

log ‖Dfn(x)‖ . (1)

It quantifies the sensitivity to the initial conditions: if λ(x) is positive, then the forward 
orbits of most of the points from a neighborhood of x will diverge exponentially fast 
from the orbit of x.

Let f preserve a smooth area form ω on M. The metric entropy1 of f is the integral

hω(f) :=
∫
M

λ(x) ω(dx). (2)

Whenever the metric entropy of a dynamical system is positive, points in M display a 
positive Lyapunov exponent with non-zero probability.

One of the most fundamental questions in conservative dynamics is

Question 0.1. How typical are conservative dynamical systems with positive metric en-
tropy?

Note that a different notion of topological entropy is one of the basic tools in describ-
ing chaotic dynamics: positive topological entropy indicates the presence of uncountably 
many orbits with a positive maximal Lyapunov exponent [36]. However, the positivity 
of the metric entropy is a much stronger property, as it ensures positive maximal Lya-
punov exponent for a non-negligible set of initial conditions. While numerical evidence 
for a large set of initial conditions corresponding to seemingly chaotic behavior in area-
preserving maps is abundant, a rigorous proof for the positivity of metric entropy is 
available only for a small set of specially prepared examples (see Section 1). Currently 
no mathematical technique exists for answering Question 0.1 in full generality.

Several prominent conjectures are related to this question. In order to formulate them, 
let us recall the topologies involved. For 1 ≤ r ≤ ∞, let Diffr

ω(M) be the space of 

1 We employ here Pesin formula for the Kolmogorov-Sinai entropy [52].
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diffeomorphisms which keep the area form ω invariant. When r < ∞, the space Diffr
ω(M)

is endowed with the uniform Cr-topology. The space Diff∞
ω (M) is endowed with the 

projective limit topology whose base is formed by all Cr-open subsets for all finite r. Let 
us fix a metric dr compatible with the Cr-topology (the space Diffr

ω(M) with the metric 
dr is complete). The C∞-topology in Diff∞

ω (M) is defined by the following metric:

d∞(f, g) =
∞∑
r=0

1
r! min(1, dr(f, g))

(note that Diff∞
ω (M) with the metric d∞ is complete).

Consider the two-dimensional disc D := {(x, y) ∈ R2 : x2 + y2 ≤ 1}. Let id be the 
identity map of D. One of the favorite conjectures of Herman can be formulated as 
follows.

Conjecture 0.2 (Herman [33]). For every ε > 0 there exists f ∈ Diff∞
ω (D) such that 

d∞(f, id) < ε and the metric entropy of f is positive: hω(f) > 0.

It is linked to his question:

Question 0.3 (Herman [33]). Is the set of diffeomorphisms f with positive metric entropy 
hω(f) dense in Diff∞

ω (D)?

In this work we prove Herman’s Conjecture 0.2. This also could be a step towards a 
positive answer to Question 0.3. Recall that a periodic point P of f is hyperbolic if the 
eigenvalues of Dfp(P ) (where p is the period of P ) are not equal to 1 in the absolute 
value. The main result of this work is the following

Theorem A. For any surface (M, ω), if a diffeomorphism f ∈ Diff∞
ω (M) has a periodic 

point which is not hyperbolic, then there is a C∞-small (as small as we want) perturbation 
of f such that the perturbed map f̂ ∈ Diff∞

ω (M) has positive metric entropy: hω(f̂) > 0.

If f = id, then every point in M is a non-hyperbolic fixed point of f , so Theorem A
implies Herman’s conjecture immediately. Another immediate consequence employs the 
notion of the weak stability [41]. The map f ∈ Diffr

ω(M) is Cr
ω-weakly stable if all the 

periodic points of any Cr-close to f map f̂ ∈ Diffr
ω(M) are hyperbolic.

Corollary B. A diffeomorphism f ∈ Diff∞
ω (M) is either C∞

ω -weakly stable or C∞-ap-
proximated by a diffeomorphism from Diff∞

ω (M) which has positive metric entropy.

This statement suggests that the answer to Question 0.3 has to be positive. The reason 
is that the common belief among dynamicists is that any C∞-weakly stable map of a 
closed manifold is uniformly hyperbolic (see Section 1.7). If this conjecture is true, then 
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every C∞
ω -weakly stable diffeomorphism has positive metric entropy (and, moreover, no 

C∞
ω -weakly stable diffeomorphisms exist when M = D).
Another metric entropy conjecture regards the very popular Chirikov standard map 

family. This is a one-parameter family of area-preserving diffeomorphisms of T 2 defined 
for a ∈ R by

Ta(x, y) = (2x− y + a sin 2πx, x). (3)

For a ∈ (0, 2π ) this map has an elliptic fixed point at (x = 1/2, y = 1/2) (a period-p
point P of an area-preserving map f is called elliptic if the eigenvalues of Dfp(P ) are 
equal to e±iα where α ∈ (0, π), i.e. they are complex and lie on the unit circle). When a
increases, the elliptic fixed point loses stability and, at a large enough, the numerically 
obtained phase portraits display a large set where the dynamics is apparently chaotic 
(the so-called “chaotic sea” [18]). A conjecture due to Sinai can be formulated as follows 
(cf. [56] P.144):

Conjecture 0.4. There exists a set Λ ⊂ R of positive Lebesgue measure such that, for 
a ∈ Λ, the metric entropy of Ta is positive.

This conjecture is still completely open despite intense efforts, see e.g. [28]. However, 
it is shown by Duarte [20] that the map Ta has elliptic periodic points for an open and 
dense set of sufficiently large values of parameter a. Hence, our main theorem implies 
the following “approximative version” of Sinai’s Conjecture 0.4:

Corollary C. For every sufficiently large or sufficiently small a ∈ R, there exists a 
C∞-small perturbation T̂ ∈ Diff∞

ω of the map Ta such that T̂ has positive metric en-
tropy.

We note that a large set (of almost full Lebesgue measure) in a neighborhood of 
a generic elliptic point of an area-preserving Cr-diffeomorphism with r ≥ 4 consists 
of points with zero Lyapunov exponent (the points on KAM-curves [37]). Our result, 
nevertheless, shows that the Lebesgue measure of the points with positive maximal 
Lyapunov exponent in a neighborhood of any elliptic point can be positive too.

The proof of Theorem A occupies Sections 2-6 of this paper. In Section 1 we remind 
certain background information pertinent to this work.

This work was partially financed by the project BRNUH of USPC university, the 
Steklov institute, the Royal Society, the ERC project of S. Van Strien, and the EPSRC 
project by D.Turaev. The second author was supported by the grant 14-41-00044 of 
the RSF. The first author thanks M.-C. Arnaud for informing him about the Herman’s 
conjecture. The second author is grateful to L. M. Lerman who attracted his attention 
to Przytycki example. We are also grateful to M. Chaperon, S. Crovisier, B. Fayad, F. 
Przytycki, and E. Pujals for important comments.
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1. Selected results and conjectures around the positive metric entropy conjecture

The study of the instability and chaos in conservative dynamics enjoys a long tradition 
since the seminal work by Poincaré [53] on the tree-body problem.

1.1. Uniformly hyperbolic maps

An invariant compact set K of the diffeomorphism f of a manifold M is uniformly 
hyperbolic if the restriction TM|K of the tangent bundle of M to K splits into two 
Df -invariant continuous sub-bundles Es and Eu such that Es is uniformly contracted 
and Eu is uniformly expanded:

TM|K = Es ⊕Eu , ∃N ≥ 1, ‖DfN |Es‖ < 1 , ‖Df−N |Eu‖ < 1 .

Whenever K = M, the diffeomorphism f is called uniformly hyperbolic or Anosov. Note 
that the maximal Lyapunov exponent of a uniformly hyperbolic dynamical system is pos-
itive at every point. Hence, whenever the dynamics is conservative (i.e. f keeps invariant 
a volume form ω), the metric entropy is positive.

Such dynamics are very well understood. However, the existence of the splitting of TM
into two non-trivial continuous sub-bundles imposes strong restrictions on the topology 
of M. For instance, there exists no uniformly hyperbolic diffeomorphism of a closed 
two-dimensional surface different from the torus T 2.

1.2. Stochastic island

The first example of a non-uniformly hyperbolic area-preserving map of the disk was 
given by Katok [35]. His construction started with an Anosov diffeomorphism of T 2 with 
4 fixed points and a certain symmetry. Then the diffeomorphism is modified so that the 
fixed points become non-hyperbolic and sufficiently flat (while the hyperbolicity is pre-
served outside of the fixed points). After that, the torus is projected to a two-dimensional 
disc. The singularities of this projection correspond to the fixed points, and their flatness 
allows for making the resulting map of the disc a diffeomorphism. The positivity of the 
metric entropy is inherited from the original Anosov map.

This example has been pushed forward by Przytycki [54], where instead of making the 
fixed points non-hyperbolic he made a surgery to replace each of these fixed points by 
an elliptic island (in this case - a neighborhood of an elliptic fixed point filled by closed 
invariant curves) bounded by a heteroclinic link (as defined below). Przytycki’s example 
was put in a more general context by Liverani [39].

Recall that given a hyperbolic periodic point P of a diffeomorphism f , the following 
sets are immersed smooth submanifolds: the stable and, respectively, unstable manifolds
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W s(P ; f) := {x ∈ M : d(fn(x), P ) →
n→+∞

0} and

Wu(P ; f) := {x ∈ M : d(fn(x), P ) →
n→−∞

0}.

We will call a C0-embedded circle L a heteroclinic N -link if there exists N hyperbolic 
periodic points P1, . . . , PN ∈ L satisfying L ⊂ ∪i=1,...,NW s(Pi) ∪ Wu(Pi). Note that a 
heteroclinic N -link is a piecewise C∞-curve with possible break points at the periodic 
points Pi.

Przytycki construction gives an example of the stochastic island in the followings 
sense.

Definition 1.1. A stochastic island is a two-dimensional domain I bounded by finitely 
many heteroclinic links such that every point in I has positive maximal Lyapunov ex-
ponent.

In this paper (see Section 3) we build one more example of a map f ∈ Diff∞
ω (D) with a 

stochastic island (where ω is the standard area form dx ∧dy in the unit two-dimensional 
disc D). To this aim, we adapt to the conservative setting the Aubin-Pujals blow-up 
construction [5].

One of the main difficulties in the Herman’s entropy conjecture is that no other exam-
ples of conservative maps of a disc with positive metric entropy are known. All of these 
constructions are very fragile (sensitive to perturbations): for example, no Cr-generic 
finite-parameter family of area-preserving diffeomorphisms can have a parameter value 
for which a heteroclinic or homoclinic link exists; no entire diffeomorphism (including 
e.g. the standard map and any polynomial diffeomorphism) can have a heteroclinic or 
homoclinic link [60]. Still, we prove our main theorem by showing that stochastic islands 
appear near any elliptic point of an area-preserving diffeomorphism after a C∞-small 
perturbation.

1.3. Strong regularity

With the aim to extend the available examples of the non-uniformly hyperbolic be-
havior, Yoccoz launched a program called Strong Regularity in his first lecture at Collège 
de France [12]. The objective was to give a geometric-combinatorial definition of the non-
uniformly hyperbolic dynamics which would serve both the one-dimensional (strongly 
dissipative) case, like e.g. in Jakobson theorem [34] and the 2-dimensional case (e.g. 
for the positive entropy conjecture). So far there are three examples of such dynamics: 
one-dimensional quadratic maps (e.g. implying Jakobson theorem) [63], a non-uniformly 
hyperbolic horseshoe of dimension close to 6/10 [51], and Hénon-like endomorphisms [9]
(implying Benedicks-Carleson Theorem [8]).
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1.4. Isotopy to identity and renormalization

It is well-known that any symplectic diffeomorphism F : D → R2 is isotopic to identity 
[17], which implies that it can always be represented as a composition F = fn ◦ · · · ◦f1 of 
n symplectic diffeomorphisms fi, each of which is uniformly O(1/n)-close to the identity 
map. Thus, one could try to prove the Herman’s conjecture by using the Ruelle-Takens 
construction [55]: take as F in this formula an appropriate area-preserving map with a 
stochastic island, then consider n-disjoint ε-disks �iDi = ψi(D) inside D (where ψi are 
uniform affine contractions) and take a perturbation f of the identity map such that 
f(Di) = Di+1 and f |Di

is smoothly conjugate to fi, i.e., f |Di
= ψi+1 ◦ fi ◦ ψ−1

i for 
i = 1, . . . , n − 1, and f |Dn

= ψ1 ◦ fn ◦ ψ−1
n . Then, fn|D1 will be smoothly conjugate to 

F and, hence, would have positive metric entropy. However, since the conjugates ψ−1
i

expand with a rate at least ε−1, we observe that the Cr-norm of f is then � 1/(nεr). 
As the n discs Di are disjoint, it follows that nε2 ≤ 1, so f can, a priori, be � ε2−r far, 
in the Cr-norm, from the identity.

Therefore, this construction does not produce the result for r ≥ 2, although one 
can create C1-close to identity maps with positive metric entropy in this way (in fact, 
every area-preserving dynamics can be realized by iterations of C1-close to identity 
maps exactly by this procedure). In [47], Newhouse-Ruelle-Takens pushed forward the 
argument to obtain the C2-case for torus maps. Fayad [24] also proposed a trick to cover 
the C2-case for disk maps, but his method does not work in the Cr-case if r ≥ 3.

We bypass the problem by using symplectic polynomial approximations of [57] instead 
of the isotopy. In this way, one Cr-approximates any symplectic diffeomorphism F by the 
product fn ◦ · · · ◦ f1 of symplectic diffeomorphisms of a very particular form (Hénon-like 
maps). For these maps, the conjugating contractions ψi can be made very non-uniform, 
allowing for an arbitrarily good approximation of every dynamics by iterations of Cr-close 
to identity maps for all r, see [59]. The product fn ◦ · · · ◦ f1 is only an approximation 
of F , and it is still not known if every area-preserving dynamics can be exactly realized 
by iterations of Cr-close to identity maps. The main technical novelty of this paper is to 
show that some maps with stochastic islands can.

1.5. Stochastic sea and elliptic islands

The main motivation for the positive metric entropy conjecture is the amazing com-
plexity of dynamics of a typical area-preserving map. Let us stress that no conservative 
dynamics are understood with certainty, except for those which are semi-conjugate to 
a rotation [2] or to an Anosov map. The reason is that hyperbolic and non-hyperbolic 
elements are often inseparable.

Thus, it was discovered by Newhouse [48,50] that a uniformly-hyperbolic Cantor set 
can be wild, i.e., its stable and unstable manifolds can have tangencies, and these non-
transverse intersections cannot all be removed by any C2-small perturbation of the map. 
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Moreover, Newhouse showed [49] that a Cr-small perturbation of an area-preserving map 
with a wild set creates elliptic periodic orbits which accumulate to the wild hyperbolic set.

Newhouse theory was applied and further developed by Duarte. He showed in [20]
that for all a large enough the “chaotic sea” observed in the standard map (3) contains 
a wild hyperbolic set K, and for a Baire generic subset of this interval of a values the 
map has infinitely many generic elliptic periodic points, which accumulate on K. Recall 
that a generic elliptic point of period k for a map f is surrounded, in its arbitrarily 
small neighborhood, by uncountably many smooth circles (KAM-curves), invariant with 
respect to fk. The map fk restricted to such curve is smoothly conjugate to an irrational 
rotation (so the Lyapunov exponent is zero). The set occupied by the KAM curves has 
positive Lebesgue measure, and their density tends to 1 as the elliptic point is approached. 
An invariant curve bounds an invariant region that contains the elliptic point, such 
regions are called elliptic islands.

In [21,22], Duarte showed that small perturbations, within the class Diffr
ω, of any 

area-preserving surface diffeomorphism with a homoclinic tangency (the tangency of 
the stable and unstable manifolds of a saddle periodic orbit) lead to creation of a wild 
hyperbolic set and to infinitely many coexisting elliptic points (and elliptic islands). In 
turn, it was shown in [27,45] that near any elliptic point a homoclinic tangency to some 
saddle periodic orbit can be created by a Cr-small perturbation.

Altogether, this gives a quite complicated picture of generic conservative dynamics: 
within the stochastic sea there are elliptic islands, inside elliptic islands there are small 
stochastic seas, etc. By [27,29], it is impossible to describe such dynamics in full detail. 
In fact, even most general features are presently not clear: for instance, we have no idea 
if the observed stochastic sea represents a transitive invariant set, or if it has a positive 
Lebesgue measure (though, by Gorodetski [31], it may contain uniformly-hyperbolic 
subsets of Hausdorff dimension arbitrarily close to 2).

The inherent inseparability of the hyperbolic and elliptic behavior even suggests the 
following provocative question, communicated to us by Fayad.

Question 1.2. Does an open set of area-preserving C∞-diffeomorphisms exist with the 
following property: for each diffeomorphism belonging to this subset the complement to 
the union of the KAM curves has zero Lebesgue measure?

Maps with this property have zero metric entropy, so our Theorem A implies the 
negative answer to this question (a KAM curve is always a limit of non-hyperbolic 
periodic points). However, it is still possible that a generic (i.e., belonging to a countable 
intersection of open and dense subsets) non-hyperbolic map from Diff∞

ω has zero metric 
entropy.

In [4], the complement U to the set of all essential invariant curves of a symplectic twist 
map was considered. Any connected component of U (the Birkhoff “instability zone”) is 
bounded by two invariant topological circles C1 and C2. It is shown in [4], that either Ci

is a heteroclinic link (a scenario as much improbable as exhibiting a stochastic island, 



1242 P. Berger, D. Turaev / Advances in Mathematics 349 (2019) 1234–1288
e.g., it is impossible for entire maps), or the Lyapunov exponent of any invariant measure 
supported by Ci is zero (i = 1, 2). By the results of Furman [25], the latter alternative 
implies that the convergence2 of any orbit in the instability zone to one of these curves 
Ci is at most sub-exponential. Thus, it is hard to see how a transitive invariant set with 
strictly positive maximal Lyapunov exponents can have Ci in its closure, if Ci is not a 
heteroclinic link.

The twist property is fulfilled near a generic elliptic point, hence the results of [4] hold 
true there. Therefore, it seems probable that if the Sinai conjecture is correct, then the 
positive metric entropy is achieved by sets distant from KAM curves. This seems to be 
consistent with the numerical observations [44].

1.6. Stochastic perturbation of the standard map

In higher dimension, more possibilities exist for creating examples with positive metric 
entropy. Thus, it was shown in [10] that, for large values of the parameter a, a skew prod-
uct of the standard map over an Anosov map is non-uniformly hyperbolic and displays 
non-zero Lyapunov exponents for Lebesgue almost every point. Recently, Blumenthal-
Xue-Young [14] used a similar argument for random perturbations of the standard map 
with large a and also showed the positivity of metric entropy.

1.7. Genericity results

A recent breakthrough by Irie and Asaoka [6] showed, from a cohomological argument, 
that for any closed surface (M, ω) a generic map from Diff∞

ω (M) has a dense set of pe-
riodic points. Hence, if such map is weakly-stable, then it has a dense set of hyperbolic 
periodic points. A natural conjecture is, then, the structural stability of weakly-stable 
maps from Diff∞

ω (M); this would be a counterpart of the “Lambda lemma” from holo-
morphic dynamics [11,23,40,42].

Another natural conjecture would be that the weakly-stable maps from Diffr
ω(M)

are uniformly hyperbolic, 1 ≤ r ≤ ∞. For r = 1 this result have been proven by 
Newhouse [49]. For any r ≥ 2 this question is open, as well as its dissipative counterpart 
– a conjecture by Mañé [41], which is also proven only for r = 1 [3]. Since uniformly 
hyperbolic maps from Diffr

ω(M) have positive metric entropy, this conjecture and our 
Theorem A would imply that maps with positive metric entropy are dense in Diff∞

ω (M).
Because of the meagerness of the heteroclinic links, the genericity of positive metric 

entropy does not follow from our result. In fact, one can conjecture that a Cr
ω-generic 

surface diffeomorphism is either uniformly hyperbolic, or of zero entropy. We do not have 
an opinion in this regard. In the C1-topology, this statement was a conjecture by Mañé, 
now proven by Bochi [15]; in higher regularity it is completely open.

2 By the works of Birkhoff, Mather, and Le Calvez [13,38,43], there exists an orbit whose α-limit set is in 
C1 and the ω-limit set is in C2.
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A milder version of this problem can be formulated as the following question due to 
Herman [33]:

Question 1.3. Given a surface (M, ω), is there an open subset of Diffr
ω(M) where maps 

with zero metric entropy are dense?

A candidate for such dense set could be a hypothetical set of maps from Question 1.2
(the maps for which the union of all KAM curves would have full Lebesgue measure). 
Note that by the upper semi-continuity of the maximal Lyapunov exponent, a positive 
answer to Question 1.3 would also imply the local genericity of maps with zero metric 
entropy.

1.8. Universal dynamics

In [57], the richness of chaotic dynamics in area-preserving maps was characterized 
by the concept of a universal map. Given a Cr

ω-diffeomorphism f (r = 1, . . . , ∞) of 
a two-dimensional surface (M, ω), its behavior on ever smaller spatial scales can be 
described by its renormalized iterations defined as follows. Let Q be a Cr-diffeomorphism 
into M from some disc in R2. Assume that the domain of definition of Q contains the unit 
disc D and the domain of Q−1 in M contains fn(Q(D)) for some n ≥ 0. We also assume 
that the Jacobian det (DQ) is constant in the chart (x, y) on M where the area-form ω
is standard: ω = dx ∧ dy.

Definition 1.4. The map D → R2 defined as

F̂Q,n = Q−1 ◦ fn|Q(D) ◦Q

is a renormalized iteration of f .

Note that since the Jacobian of Q is constant, all renormalized iterations of f preserve 
the standard area-form in R2.

Definition 1.5 (Universal map). A diffeomorphism f ∈ Diff∞
ω (M) is universal if the set of 

its renormalized iterations is C∞-dense among all orientation-preserving, area-preserving 
diffeomorphisms D → R2.

By this definition, the dynamics of a single universal map approximate, with arbitrar-
ily good precision, all symplectic maps of the unit disc.

In the general non-conservative context this notion was used in [58,59]. In C1 category, 
the concept of universal dynamics was independently proposed by Bonatti and Diaz [16].

The universal dynamics might sound difficult to materialize, but it is not. It is shown 
in [29] that an arbitrarily small, in C∞

ω , perturbation of any area-preserving map with 
a homoclinic tangency can create universal dynamics. Moreover, universal maps form a 
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Baire generic subset of the Newhouse domain - the open set in Diff∞
ω (M) comprised of 

maps with wild hyperbolic sets. In [27], it was shown that a C∞
ω -generic diffeomorphism 

of M with an elliptic point is universal.3
Consequently, any diffeomorphism f ∈ Diff∞

ω (M) with an elliptic point can be per-
turbed in such a way that its iterations would approximate any given area-preserving 
dynamics and, in particular, the dynamics with positive metric entropy. We stress 
that this observation is not sufficient for a proof of our Theorem A. Indeed, if f is 
a C∞

ω -diffeomorphism with an elliptic point and g is a C∞
ω -diffeomorphism of D with 

positive metric entropy, the only thing we can conclude from [27,29] is that arbitrarily 
close to f in Diff∞

ω (M) there exists a diffeomorphism whose iteration restricted to a 
certain disc is smoothly conjugate to a map G which is as close as we want to g in 
Diff∞

ω (D). However, this map G does not need to inherit the positive metric entropy 
from g. Overcoming this problem is the main technical point of this paper.

2. Proof of the main theorem

We start with constructing a map with a stochastic island with certain additional 
properties. In section 3, we give a precise description of the construction similar to those 
in [5,35,54], which produces a C∞

ω -diffeomorphism F̌ : D → D with a stochastic island 
I bounded by four heteroclinic bi-links {Ľa

i ∪ Ľb
i : 0 ≤ i ≤ 3}. Each Ľa

i ∪ Ľb
i is a 

C∞-embedded circle included in the stable and unstable manifolds of hyperbolic fixed 
points P̌i, Q̌i:

Ľa
i ∪ Ľb

i ⊂ Wu(P̌i; F̌ ) ∪W s(Q̌i; f̌) .

The island of F̌ is depicted in Fig. 1. For every F which is C1-close to F̌ , for every 
0 ≤ i ≤ 3, the hyperbolic continuations of P̌i and Q̌i are the uniquely defined hyperbolic 
F -periodic orbits close to P̌i and Q̌i.

We also show the following

Proposition 2.1. For every conservative map F which is C2-close to F̌ , let Pi and Qi be 
hyperbolic continuations of P̌i, Q̌i. If {Wu(Pi; F ) ∪ W s(Qi; F ) : 0 ≤ i ≤ 3} define four 
heteroclinic bi-links {La

i ∪ Lb
i : 0 ≤ i ≤ 3} which are C2-close to {Ľa

i ∪ Ľb
i : 0 ≤ i ≤ 3}, 

then they bound a stochastic island. In particular, the metric entropy of F is positive.

The proof is given by Corollary E of Theorem D in Section 3. It follows from a new 
and short argument which implies also some results of [5].

We will call a stochastic island robust relative link preservation if it satisfies this 
property: for every Cr-small perturbation of the map, if the stable and unstable man-
ifolds that form the heteroclinic link do not split, then they bound a stochastic island. 

3 The results in [27,29] were also proven in the space of real-analytic area-preserving maps.
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Fig. 1. Stochastic island.

Proposition 2.1 shows that the stochastic island Ǐ of the map F̌ satisfies this robustness 
property (with any r ≥ 2), and the same holds true for the islands bounded by the four 
heteroclinic bi-links {La

i ∪ Lb
i : 0 ≤ i ≤ 3} (if these links exist) of any map C2-close to 

F̌ .
In Section 4 (see Proposition 4.7), we construct a coordinate transformation φ̊ ∈

Diff∞
ω (R2) such that I̊ := φ̊(I) is a “suitable” island for F̊ := φ̊◦ F̌ ◦ φ̊−1. The suitability 

conditions are described in Definition 4.6. They include the requirement that certain 
segments of the stable and unstable manifolds of the hyperbolic fixed points P̊i := φ̊(Pi)
and Q̊i = φ̊(Qi), 0 ≤ i ≤ 3, are strictly horizontal, i.e., they lie in the lines y = const

where (x, y) are coordinates in R2. Moreover, the map F̊ near these segments has a 
particular form, which allows us to establish the following result in Section 5 (this is the 
central point of our construction):

Proposition 2.2. Given any finite r ≥ 2, for every F ∈ Diffr+8
ω (D) which is Cr+8-close 

to F̊ , there exists a Cr-small function ψ : R → R such that the map F̄ defined as

F̄ = Sψ ◦ F , where Sψ := (x, y) �→ (x, y + ψ(x)) ,

has the following property: For the hyperbolic continuations Pi and Qi of the fixed points 
P̊i and, respectively, Q̊i, the union W s(Pi; F̄ ) ∪Wu(Qi; F̄ ) defines a heteroclinic bi-link 
La
i ∪ Lb

i which is Cr-close to L̊a
i ∪ L̊b

i , for each i = 0, . . . , 3.

Remark 2.3. We notice that by Proposition 2.1, the map F̄ = Sψ ◦ F has a stochastic 
island, robust relative link preservation, and its metric entropy is positive.

With this information, we can now complete the proof of the main theorem.
Proof of Theorem A. Let f ∈ Diff∞

ω (M) have a non-hyperbolic periodic point. By an 
arbitrarily small perturbation of f one can make this point elliptic. Then, by [27], by a 
C∞

ω -small perturbation of f , one can create, in a neighborhood of the elliptic point, a 
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Fig. 2. Construction of a flat homoclinic tangency from [27]: Given an area-preserving map with an elliptic 
periodic point O, one can add a C∞-small perturbation such that the first-return map in a small neighbor-
hood of O will be integrable. A change of rotation number at O leads to the birth of a resonant garland 
where the stable and unstable manifolds of a hyperbolic q-periodic point coincide.

hyperbolic periodic cycle whose stable and unstable manifolds coincide (those define two 
heteroclinic links), see Fig. 2.

The important thing here is that by a small perturbation of the original map f , we 
create a periodic point with a flat homoclinic tangency. After that, we apply the following 
result, proven in Section 6 (see the proof after Corollary 6.3).

Proposition 2.4. Let f ∈ Diff∞
ω (M) have a hyperbolic periodic point with a flat homoclinic 

tangency. Then, there exists a C∞-dense (residual) subset F of Diff∞
ω (D, R2) such that 

for every F ∈ F , every r ≥ 2, every Cr-smooth function ψ : R → R, and every ε > 0, 
there exists a diffeomorphism f̂ ∈ Diffr

ω(M) such that
• dr(f, f̂) < ε, where dr is the Cr-distance,
• the composition Sψ ◦ F is equal to a renormalized iteration of f̂ , where Sψ(x, y) =
(x, y + ψ(x)).

This statement is an enhanced version of the “rescaling lemma” (Lemma 6) of [29].4
This proposition gives us much freedom in varying the renormalized iteration of f̂

without perturbing F (by composing with Sψ for an arbitrarily functional parameter ψ).
The renormalized iterations are described by Definition 1.4. Since a renormalized 

iteration is Cr-conjugate to an actual iteration of the map f̂ restricted to some small 
disc, it follows that by taking F and ψ exactly as in Proposition 2.2, (so that Sψ ◦F will 
have a stochastic island, see Remark 2.3), we will obtain that the map f̂ has a stochastic 
island too, robust relative link preservation.

The stochastic island for the map F̂ := Sψ ◦F is bounded by 4-bi-links, each of which 
is equal to a Cr-embedded circle. As Sψ ◦F is smoothly conjugate to f̂n for some n > 0, 
it follows that the stochastic island for the map f̂ is bounded m = 4n heteroclinic bi-links 
and is robust relative link preservation. We denote them by (La

i ∪ Lb
i )mi=1. We prove the 

following result in Section 5.5:

4 While in [29] the rescaling was done for a single round near the homoclinic tangency, here we do many 
rounds, similar to [59].
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Proposition 2.5. Given any map f̂ ∈ Diffr
ω(M) with a stochastic island I bounded by 

bi-links (La
i ∪ Lb

i )mi=1 such that each bi-link La
i ∪ Lb

i is a Cr-embedded circle, arbitrarily 
close in Cr to f̂ there exists a map f̂∞ ∈ Diff∞

ω (M) for which the bi-links persist (i.e., 
the hyperbolic continuations of the stable and unstable manifolds forming each bi-link 
(La

i , L
b
i ) comprise a heteroclinic bi-link for the map f̂∞, Cr-close to (La

i , L
b
i ) ).

The map f̂ with the stochastic island lies in the ε-neighborhood of the original map f
in Diffr

ω(M). Since the stochastic island of the map f̂ is robust relative link preservation, 
the map f̂∞ also has a stochastic island and, hence, positive metric entropy.

This shows, that arbitrarily close, in Cr for any given r, to the original map f there 
exists a map f̂∞ ∈ Diff∞

ω (M) with positive metric entropy. �
3. Stochastic island

In this Section we describe a particular example of a stochastic island (see Fig. 1). It 
is somewhat similar to the Przytycki’s development of the Katok’s construction, in the 
sense that the holes in the island are bounded by heteroclinic links. A difference with the 
Przytycki’s example is that the heteroclinic links form smooth circles in our construction. 
Similar examples were considered by Aubin-Pujals [5] in the non-conservative case.

3.1. An Anosov map of the torus

Let T 2 be the torus R2/Z2. Let S1 be the circle R/(2πZ). We endow R2 and T 2 with 
the symplectic form ω = dx ∧ dy.

Consider the following linear Anosov diffeomorphism of T 2:

FA : (x, y) �→ A(x, y) := (13x + 8y, 8x + 5y) (4)

(FA is the third iteration of the standard Anosov example (x, y) �→ (2x + y, x + y)). 
The map FA preserves the area form ω and is uniformly hyperbolic, e.g. its Lyapunov 
exponents are non-zero.

The map FA has four different fixed points Ω0 = (0, 0), Ω1 = (1
2 , 

1
2 ), Ω2 = (1

2 , −
1
2), 

Ω3 = (−1
2 , 

1
2 ). Let σ > 0 be the logarithm of the unstable eigenvalue of the matrix A: 

σ = ln(9 +4
√

5). We may put the origin of coordinates to one of the points Ωi and make 
a symplectic linear transformation of the coordinates (x, y) such that the map FA near 
Ωi will become

Ωi + (x, y) �→ Ωi + (eσx, e−σy) .

Observe that FA is the time-σ map by the flow of the system

ẋ = ∂yHi(x, y), ẏ = −∂xHi(x, y)
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associated with the Hamiltonian

Hi = xy .

Note that the transition to polar coordinates (ρ, θ) near Ωi by the rule

(x, y) = (
√

2ρ cos(θ),
√

2ρ sin(θ)) (5)

preserves the symplectic form, i.e., we have ω = dρ ∧dθ. The map FA in these coordinates 
is the time-σ map by the flow defined by the Hamiltonian function

Hi(θ, ρ) = ρ sin(2θ) . (6)

The corresponding Hamiltonian vector field is

d

dt
ρ = 2ρ cos(2θ), d

dt
θ = − sin(2θ).

We do not need an explicit expression for the map FA in the symplectic polar coordinates; 
just note that near the point Ωi this map has the form (ρ, θ) �→ (ρ̄, θ̄) where

ρ̄ = ρ p0(θ), θ̄ = q0(θ), (7)

and p0 and q0 are C∞-functions S1 → R. Since this map preserves the symplectic form 
dρ ∧ dθ, its Jacobian p0(θ)∂q0(θ) equals to 1, so p0(θ) �= 0 and ∂q0(θ) �= 0.

3.2. Stochastic island in T 2

In order to construct a chaotic island, we shall “blow up” the four points Ωi. This 
means that we will take some small δ > 0, consider the closed δ-discs Vi with the center 
at Ωi for each i = 0, 1, 2, 3, and build a C∞-diffeomorphism Ψ of T 2 \ {�0≤i≤3Vi} onto 
T 2 \ {∪iΩi}. We will do it in such a way that the map Ψ−1 ◦ FA ◦ Ψ will be smoothly 
extendable to a C∞-diffeomorphism F̂ of T 2. Then the invariant set Î = T 2 \ {�iVi}
will be a stochastic island for F̂ . Moreover, the points Ωi will be flat fixed points of F̂
and, importantly, F̂ will inherit the symmetry with respect to (−id) from the map FA

– this will be used at the next step in Section 3.4.
Let ε > 0 be such that the map FA is the time-σ map of the Hamiltonian flow 

defined by (6) in the closed ε-disc V ′
i about Ωi, i = 0, 1, 2, 3; we assume that the discs 

V ′
i are mutually disjoint. Let 0 < δ < ε and let Vi � V ′

i be the closed δ-discs about Ωi, 
i = 0, 1, 2, 3.

Let ψ :
[
δ2

2 ,
ε2

2

]
→

[
0, ε

2

2

]
be a C∞-diffeomorphism such that

ψ(ρ) = ρ− δ2
if ρ is close to δ2

and ψ(ρ) = ρ if ρ is close to ε2
. (8)
2 2 2
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Let Ψi ∈ C∞(T 2 \ int(Vi), T 2) be equal to the identity outside V ′
i and let the restriction 

of Ψi to the smaller disc Vi be given by

Ψi|Vi
: (θ, ρ) �→ (θ, ψ(ρ)) (9)

in the polar coordinates (5). The radius-δ circle ∂Vi about Ωi is sent by Ψi to Ωi. Note 
that Ψi is a diffeomorphism from T 2 \ Vi onto T 2 \ Ωi and Ψi commutes with (−id). 
Note also that in a neighborhood of ∂Vi the map Ψi preserves the form ω = dρ ∧ dθ.

Define

Ψ = Ψi in V ′
i \ Vi for i = 0, 1, 2, 3 and Ψ = id in T 2 \ {�iV

′
i }. (10)

This map is a C∞-diffeomorphism from Î = T 2\{�iVi} onto T 2\{∪iΩi} and it commutes 
with (−id).

Denote F̂ = Ψ−1 ◦ FA ◦ Ψ. By construction, this is a C∞-diffeomorphism of Î, which 
commutes with (−id). In a small neighborhood of the circles ∂Vi the map F̂ preserves 
symplectic form dρ ∧ dθ and, by (6),(8),(9), it coincides in this neighborhood with the 
time-σ map of the flow defined by the symplectic form dρ ∧ dθ and the Hamiltonian

Ĥi = (ρ− δ2/2) sin(2θ) .

We can, therefore, smoothly extend F̂ inside Vi (i.e., to ρ ≤ δ2/2) as the time-σ map of 
the flow defined by the smoothly extended Hamiltonian Ĥi:

Ĥi = (ρ− δ2/2) sin(2θ)ξ(ρ) , (11)

where ξ is a C∞-function, equal to zero at all ρ close to zero and equal to 1 at all 
ρ ≥ δ2/2.

We summarize some relevant properties of the map F̂ in the following

Proposition 3.1. The map F̂ is a C∞-diffeomorphism of T 2 such that:

1. F̂ |T2\{�iVi} is conjugate to FA|T2\{∪iΩi} via a C∞-diffeomorphism Ψ;
2. the set Î := T 2 \ {�iVi} is invariant with respect to F̂ ;
3. F̂ preserves a smooth symplectic form ω̂;
4. F̂ commutes with (−id), and ω̂ is invariant with respect to (−id);
5. F̂ equals to the identity in a small neighborhood of the points Ωi;
6. each circle ∂Vi is a heteroclinic 4-link.

Proof. Claim 1 is given just by construction of F̂ . Claim 2 follows from it by continuity 
of F̂ : since Ωi are fixed points of FA, each disc Vi is invariant with respect to F̂ . Claim 5 
follows since Ĥi is constant near Ωi, so the corresponding vector field is identically zero 
there.



1250 P. Berger, D. Turaev / Advances in Mathematics 349 (2019) 1234–1288
Claim 3: By claim 1, the map F̂ preserves the symplectic form ω̂ = Ψ∗ω in T 2\{�iVi}. 
Since Ψ∗ω = dρ ∧ dθ = ω near ∂Vi (as it follows from (8),(9)), we can smoothly extend 
ω̂ onto the whole torus by putting ω̂ = ω in �iVi. Since F̂ |Vi

is the time-σ map by a 
Hamiltonian flow, the form ω̂ = ω inside the discs Vi is preserved by F̂ .

Claim 4 follows since both the original map FA and the conjugacy Ψ commute with 
(−id), the Hamiltonians Ĥi that defines F̂ inside the discs Vi (see (11)) are invariant 
with respect to (−id) : θ �→ θ + π, and the symplectic form ω is invariant with respect 
to (−id).

In order to prove claim 6, notice that by (11) the map F̂ near ∂Vi : {ρ = δ2/2} is the 
time-σ map of the system

d

dt
ρ = 2(ρ− δ2/2) cos(2θ), d

dt
θ = − sin(2θ). (12)

This system has 4 saddle equilibria on the circle ρ = δ2/2: θ = 0, π/2, π, 3π/2. These 
equilibria are hyperbolic fixed points of F̂ , and the invariant arcs of the circle ρ = δ2/2
between these points are formed by their stable or unstable manifolds. �
3.3. The island is robust relative link preservation

The following statement establishes that the set Î is a stochastic island for F̂ . It also 
concerns the dynamics of perturbations of F̂ . Similar results were obtained by Aubin-
Pujals in [5] for the non-conservative case. The proof is given by a new and shorter 
argument.

Theorem D. For the map F̂ , as well as for every, not necessarily conservative, diffeo-
morphism F̃ which is C2-close to F̂ and keeps the circles ∂Vi invariant (i = 0, 1, 2, 3), 
all points in Î have positive maximal Lyapunov exponent. The maps F̃ and F̂ are topo-
logically conjugate on Î; all such maps are transitive.

Proof. By (7),(8),(9), the map F̂ near ∂Vi can be written as (ρ, θ) �→ (ρ̄, θ̄) where

ρ̄ = δ2

2 + (ρ− δ2

2 )p0(θ), θ̄ = q0(θ) .

A C2-small perturbation F̃ of F̂ which keeps the circle ∂Vi invariant must send ρ = δ2

2
to ρ̄ = δ2

2 , so it has the form

ρ̄ = δ2

2 + (ρ− δ2

2 )(p0(θ) + p(θ, ρ)), θ̄ = q0(θ) + q(θ, ρ) ,

where the function p is C1-small and q is C2-small.
By reversing our surgery (10), we obtain a diffeomorphism F̃A = Ψ ◦ F̃ ◦ Ψ−1 of 

IA := T 2 \ ∪i{Ωi}, which takes the following form near Ωi (see (8),(9)):
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ρ̄ = ρ · (p0(θ) + p(θ, ρ + δ2

2 )), θ̄ = q0(θ) + q(θ, ρ + δ2

2 ) .

The following Lemma enables us to compare F̃A with FA defined in (4).

Lemma 3.2. In the Cartesian coordinates, the restrictions F̃A and FA to IA = T 2\∪i{Ωi}
are uniformly C1-close.

Proof. The transformation (ρ, θ) �→ (x, y) = (
√

2ρ cos θ, 
√

2ρ sin θ) to Cartesian coordi-
nates near Ωi has the following property

‖∂(x,y)ρ‖ ≤
√

2ρ, ‖∂(x,y)θ‖ ≤ 1√
2ρ

. (13)

Thus, the map F̃A near Ωi takes the form (x, y) �→ (x̄, ȳ) where

x̄ =
√

2ρ
√
p0 + p cos(q0 + q), ȳ =

√
2ρ

√
p0 + p sin(q0 + q).

The uniformly-hyperbolic map FA is given by

x̄ =
√

2ρ√p0 cos(q0), ȳ =
√

2ρ√p0 sin(q0)

(see (7)). Recall that p0(θ) �= 0 for all θ.
It follows that, F̃A(x, y) = FA(x, y) + ν

√
2ρ φ(ρ, θ) near Ωi where ν = ‖(p, q)‖C1 ∼

‖F̃ − F̂‖C2 is small and φ is uniformly bounded along with its first derivatives with 
respect to ρ and θ. By (13), this gives us that near the points Ωi

‖∂(x,y)(F̃A − FA)‖ = ν

∥∥∥∥∂(x,y)ρ√
2ρ

φ +
√

2ρ ∂(ρ,θ)φ ∂(x,y)(ρ, θ)
∥∥∥∥ = O(ν). �

This lemma implies the following:

Lemma 3.3. For the map F̃ , every z ∈ Î displays a positive Lyapunov exponent.

Proof. We have found that the map F̃A : IA → IA is uniformly close in C1 to the 
uniformly-hyperbolic map FA in a neighborhood of the fixed points Ωi (even though 
the derivative of F̃A may be not defined at the points Ωi). Since the 4 fixed points 
Ωi are the only singularities of the surgery transformation Ψ, the derivative of F̃A is 
uniformly close to the derivative of FA everywhere on IA, i.e., DF̃A is uniformly close 

to (x, y) �→ A(x, y) =
(

13 8
8 5

)
(x, y) (see (4)). In particular, DF̃A takes every vector 

with positive coordinates to a vector with positive coordinates and at least 4 times larger 
norm. Hence,

‖DF̃n
A(P )‖ ≥ 4n (14)
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for every point P ∈ IA.
The map F̃ : Î → Î is smoothly conjugate to F̃A = Ψ ◦ F̃ ◦ Ψ−1, so

‖DF̃n(Ψ−1(P ))‖ ≥ ‖DF̃n
A(P )‖/(‖DΨ(F̃n

A(P )‖ · ‖DΨ−1(P )‖)

for every P ∈ IA. If the point P is chosen such that the iterations F̃n(Ψ−1(P )) do not 
converge to ∪i∂Vi, then there is a sequence nj → +∞ such that the iterations F̃nj

A (P )
stay away from the points Ωi - the only singularities of the conjugacy map Ψ−1. Thus, 
both ‖DΨ(F̃nj

A (P )‖ and ‖DΨ−1(P )‖ are bounded away from zero in this case. It follows 
then from (14) that

lim sup
n→∞

1
n

log ‖DF̃n(Ψ−1(P ))‖ ≥ lim sup
nj→∞

1
nj

log ‖DF̃
nj

A (P )‖ ≥ ln 4 .

By definition, this means that the maximal Lyapunov exponent of Ψ−1(P ) for the map 
F̃ is strictly positive.

In the remaining case, if all iterations of the point Ψ−1(P ) by F̃ converge to ∪i∂Vi, 
they must converge to one of the saddle fixed points that lie in ∪i∂Vi (since every 
F̂ -pseudo-orbit which remains close to ∂Vi, is necessarily eventually close to one of the 
saddle point of Vi). In this case, the maximal Lyapunov exponent of Ψ−1(P ) equals to 
the maximal Lyapunov exponent of the saddle point, i.e., it is positive. Thus, in any 
case, every point of Î has positive maximal Lyapunov exponent for the map F̃ . �

By the uniform hyperbolicity of FA (see Lemma 3.2), using a variation of the Moser’s 
technique [46] of the proof of Anosov structural stability theorem [1], we prove:

Lemma 3.4. There exists a homeomorphism h of T 2 which conjugates FA and F̃A, and 
leaves each Ωi invariant.

This lemma implies the topological conjugacy between F̃ |Î and F̂ |Î . The transitivity 
of F̃ |Î follows from the transitivity of FA|T2\{∪iΩi} by the conjugacy. This completes the 
proof of Theorem D. �
Proof of Lemma 3.4. The map FA induces an automorphism on the Banach space Γ of 
bounded continuous vector fields γ vanishing at Ωi, i = 0, 1, 2, 3:

F 

A : γ �→ DFA ◦ γ ◦ F−1

A .

The hyperbolicity of FA (it uniformly expands in the unstable direction and uniformly 
contracts in the stable direction) implies that the linear operator id −F 


A has a bounded 
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inverse.5 By the implicit function theorem, this implies that the fixed point γ = 0 of 
F 

A is unique, and every (nonlinear) operator on Γ which is C1-close to F 


A has a unique 
fixed point close to γ = 0. In particular, the operator

γ �→ F̃A ◦ (id + γ) ◦ F−1
A − id ,

has a unique fixed point γ. By the construction, the map h = id + γ satisfies:

h ◦ FA = F̃A ◦ h .

Thus, F̃A and FA are semi-conjugate, and we have that

h ◦ Fn
A = F̃n

A ◦ h (15)

for every integer n, positive and negative.
In order to prove the topological conjugacy between FA and F̃A, it remains to show 

that the continuous map h is injective. This is done as follows: if h(P ) = h(Q), then 
h(Fn

AP ) = h(Fn
AQ) for all n ∈ Z, by (15). Since h is uniformly close to identity, it follows 

that Fn
AP is uniformly close to Fn

AQ, i.e., An(P − Q) is uniformly small for all n ∈ Z. 
By the hyperbolicity of the matrix A, this gives P = Q, as required. �
3.4. Stochastic island in the disc

It is easy to see that the result of the factorization π of the 4-punctured torus T 2 \
∪3
i=0{Ωi} over (−id) : (x, y) �→ (−x, −y) is a 4-punctured sphere. One can realize the 

smooth map π : T 2 \ ∪i{Ωi} → S2 e.g. by a Weierstrass elliptic function6; see also [35].
Each fiber of π is a pair of points (x, y) and −(x, y). Since F̂ commutes with (−id) in 

our construction, and F̂ is the identity map in a neighborhood of each of the points Ωi

(i = 0, 1, 2, 3) where π is singular, the push-forward F̌ = π◦ F̂ ◦π−1 of F̂ is a well-defined 
C∞-diffeomorphism of the sphere S2. As the symplectic form ω̂, which is preserved by 
F̂ , is invariant with respect to (−id), it follows that the push-forward of ω̂ by π is a 
smooth symplectic form ω̌ on S2 \ ∪i{Ωi}, and ω̌ is invariant by F̌ . Note that the form 
ω̌ can get singular at the points πΩi, but we can smoothen ω̌ in an arbitrary way near 
these points; since F̌ is the identity map there, it preserves any smooth area form near 
πΩi. Hence F̌ leaves invariant a smooth symplectic form ω̌.

By construction, the set Ǐ = πÎ is the stochastic island for the map F̌ (the island Î
is at a bounded distance from the singularities Ωi, so π−1 realizes a smooth conjugacy 

5 As FA is a linear map, it is easy to provide an explicit formula for id − F �
A: if (id − F �

A)γ = β, then 
γ =

∑∞
n=0 e−nσβs ◦F−n

A −
∑∞

n=1 e−nσβu ◦Fn
A , where βs and βu are the projections of β to the stable and, 

respectively, unstable directions of FA, and e±σ are the eigenvalues of FA, σ > 0.
6 or, if we realize the 4-punctured sphere as the surface {Z2 + η(X, Y ) = 1, |X| ≤ 1, |Y | ≤ 1} in 

R3, where η = (X2 + Y 2 +
√

1 − X2 − Y 2 + X4 + Y 4 − X2Y 2)/2, then π can be explicitly defined as 
π(x, y) = (X = 2|x| − 1, Y = 2|y| − 1, Z = sign(xy)

√
1 − η(X,Y )), |x| ≤ 1/2, |y| ≤ 1/2.
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between F̌ |Ǐ and F̂ |Î , which takes heteroclinic links to heteroclinic links and keeps the 
maximal Lyapunov exponent positive). Note that the 4-links ∂Vi are invariant with 
respect to (−id). The map π glues the opposite points of ∂Vi together, hence the circles 
π(∂Vi) that bound the island Ǐ are heteroclinic bi-links.

Now we will transform the stochastic island Ǐ on S2 to a stochastic island for a map 
of the plane. Let us identify S2 with the one-point compactification of R2, where πΩ0 is 
identified with ∞; this can be done e.g. by the stereographic projection π0 : (S2\πΩ0) →
R2. As F̌ is equal to the identity at a neighborhood of Ω0, after the projection to R2, the 
map F̌ will be a C∞-diffeomorphism and will be equal to the identity at a neighborhood 
of infinity. The form ω̌ will become a symplectic form on R2 and it will be preserved 
by F̌ . Let ω̌ = β(x, y)dx ∧ dy for some smooth function β �= 0. The diffeomorphism 
π1 : (x, y) �→ (X = x, Y =

∫ y

0 β(x, s)ds) of R2 onto a domain D ⊂ R2 transforms ω̌ to 
the standard symplectic form dX ∧ dY . The map F̌ takes D to D in the coordinates 
(X, Y ) and is equal to identity near the boundary ∂D, so it can be extended onto the 
whole of R2 as the identity map outside of D; it will still preserve the standard form 
dX ∧ dY . By performing an additional scaling π2 : (X, Y ) �→ (κX, κY ) we can achieve 
that F̌ = id everywhere outside the unit disc D. Thus the image by π2 ◦ π1 ◦ π0 of the 
stochastic island Ǐ on S2 will lie inside D; it is a stochastic island I for the map F̌
(because Ǐ is separated from πΩ0, so the map π2 ◦ π1 ◦ π0 is a smooth conjugacy).

We have shown the existence of a diffeomorphism F̌ ∈ Diff∞
dX∧dY (D) with a stochastic 

island I. Note that Proposition 2.1 from Section 2 is satisfied for this island, as easily 
follows from Theorem D:

Corollary E. The stochastic island I for the map F̌ ∈ Diff∞(D) is robust relative link 
preservation.

Proof. The island I is bounded by four heteroclinic bi-links Li = π2 ◦ π1 ◦ π0 ◦ π(∂Vi), 
i = 0, 1, 2, 3. For every F which is C2-close to F̌ , if F does not split the links, then it is 
C2-conjugate to a C2-diffeomorphism of D which is C2-close to F̌ and keeps the links Li

invariant. Lifting this diffeomorphism to the torus T2 by π−1 ◦π−1
0 ◦π−1

1 ◦π−1
2 , we obtain 

a diffeomorphism F̃ of T2 \ {∪i=0,1,2,3Ωi} which preserves the links ∂Vi and is C2-close 
to F̂ on Î. By Proposition D, the map F̃ has positive maximal Lyapunov exponent at 
every point of Î. Since the smooth conjugacy does not change the Lyapunov exponent, 
the map F has positive maximal Lyapunov exponent a every point of the island bounded 
by the continuations of the links Li. �
4. Geometric model for a suitable stochastic island

Now, we choose a particular coordinate system in R2 such that the map F̌ and its 
stochastic island I we just constructed will acquire certain suitability properties (as given 
by Definition 4.6; see Fig. 4).

Let F ∈ Diff∞
ω (R2) have a heteroclinic link L.
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Definition 4.1. A fundamental interval of L for the map F is a closed segment D1 ⊂ L

such that F (D1) ∩D1 is exactly one point – an endpoint both to D1 and F (D1). Given 
m ≥ 1, an m-fundamental interval Dm of L is the union Dm = ∪m−1

i=0 F i(D1) of the m
first iterates of a certain fundamental interval D1.

Let (x, y) be symplectic coordinates in R2, so ω = dx ∧ dy. Below we always fix the 
orientation in R2 such that the x-axis looks to the right and the y-axis looks up.

Definition 4.2. An m-fundamental interval Dm of a heteroclinic link L will be called 
straight if Dm is included in a straight line y = const.

It is a well-known fact (see [26]) that any m-fundamental interval Dm can be straight-
ened and the so-called time-energy coordinates can be introduced in its neighborhood, 
i.e., the map near Dm becomes a translation to a constant vector. We formulate this 
result as

Lemma 4.3. If L is a link between two hyperbolic fixed points P and Q for F ∈
Diff∞

ω (R2) and Dm ∈ L is an m-fundamental interval, then there exists a symplectic 
C∞-diffeomorphism φ from a neighborhood of Dm into R2 such that φ(Dm) is a straight 
m-fundamental interval for φ ◦ F ◦ φ−1 and, in a neighborhood of φ(Dm),

φ ◦ F ◦ φ−1 =: (x, y) �→ (x + τ, y)

for some constant τ �= 0.

Proof. Put P to the origin of coordinates and bring the map to the Birkhoff normal 
form by a symplectic C∞ coordinate transformation [17, Thm. 1]. This means that we 
introduce symplectic coordinates (x, y) near P such that the map F near P will be given 
by

(x, y) �→ (exp(q(xy)) · x, exp(−q(xy)) · y) (16)

for some function q ∈ C∞(R, R) with q(0) > 0. Note that the unstable manifold of 
P is given by y = 0 in these coordinates. By iterating F forward, we can extend the 
domain of the Birkhoff coordinates to a small neighborhood of any compact subset 
of Wu(P ). In particular, we may assume that the map F is given by (16) near the 
m-fundamental interval Dm. Observe that Dm := {(x, y) : x̃ ∈ [x0, emq(0)x0], y = 0}
in these coordinates, for some x0 �= 0 (by making, if necessary, the coordinate change 
(x, y) → −(x, y), we can always make x0 > 0).

Let h =
∫
q. Obviously, F is the time-1 map of the flow defined by the Hamiltonian 

H(x, y) = h(xy). Put X(x, y) := ln x

q(xy) and Y (x, y) = h(xy). The map (x, y) �→ (X, Y )

is a C∞
ω -coordinate change near Dm which conjugates F with (X, Y ) �→ (X + 1, Y ). �
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Fig. 3. Suitable intersection of a heteroclinic bi-link with two strips.

Note that the map (x, y) �→ (x + τ, y) is the time-τ map by the vector filed ẋ =
1, ẏ = 0 defined by the Hamiltonian H(x, y) = y. Therefore, x plays the role of time 
and the conserved quantity y can be viewed as energy, which justifies the “time-energy” 
terminology.

4.1. Making a bi-link suitable

A vertical strip V is the region {(x, y) : x ∈ [c1, c2], y ∈ R} in R2 for some c1 < c2.

Definition 4.4 (Suitable intersection of a heteroclinic bi-link with two strips). Two vertical 
strips V a and V b intersect a heteroclinic bi-link (L̊a, ̊Lb) of a dynamics F̊ in a suitable 
way if:

• the intersection of V a with L̊a is a straight 2-fundamental interval Da
2 ;

• the intersection of V b with L̊b is the disjoint union of a straight 2-fundamental 
interval D̊b

2 and a straight 4-fundamental interval D̊b
4;

• the strip V b does not intersect L̊a;
• there exists τ > 0 such that the map F̊ in restriction to a neighborhood of D̊a

2 is 
given by (x, y) �→ (x − τ, y) and, in restriction to a neighborhood of D̊b

2, it is given 
by (x, y) �→ (x + τ, y);

• there exists n ≥ 1 such that F̊n sends D̊b
2 ∪ F̊ 2(D̊b

2) to D̊b
4, and the restriction of F̊n

to a neighborhood of D̊b
2 is

F̊n : (x, y) �→ θ − (1
2x, 2y)

for some θ ∈ R2.

See Fig. 3 for an illustration.

In Lemma 4.5 below, we are going to show that any conservative diffeomorphism F
with a bi-link (La, Lb) is smoothly conjugate to a conservative diffeomorphism F̊ with 



P. Berger, D. Turaev / Advances in Mathematics 349 (2019) 1234–1288 1257
a suitable bi-link (L̊a, ̊Lb). This means that we have a lot of geometric freedom in the 
choice of the bi-link (L̊a, ̊Lb), that we shall explain.

Take any two parallel straight lines in R2: {y = y1} and {y = y2} with y2 < y1. Let 
τ > 0 and xa < xb so that xa + τ < xb − τ . Consider the two vertical strips:

V a := [xa − τ, xa + τ ] ×R and V b := [xb − τ, xb + τ ] ×R.

Consider any C∞-smooth circle ̊L in R2 equal to the union of two curves ̊La, ̊Lb satisfying:

• L̊ = L̊a ∪ L̊b and L̊a ∩ L̊b = ∂L̊a = ∂L̊b.
• L̊a ∩ V a = [xa − τ, xa + τ ] × {y1} and L̊a ∩ V b = ∅.
• L̊b ∩ V b = [xb − τ, xb + τ ] × {y1, y2}.

Now we can state:

Lemma 4.5. Let F ∈ Diff∞
ω (R2) have a heteroclinic bi-link (La, Lb). Then there exists a 

symplectic C∞-diffeomorphism φ̊ of a small neighborhood of La ∪ Lb into R2 such that:

• φ̊(La ∪ Lb) = L̊, φ̊(La) = L̊a, φ̊(Lb) = L̊b ;
• the vertical strips V a and V b intersect the bi-link (L̊a, ̊Lb) of φ̊◦F ◦ φ̊−1 in a suitable 

way (with n = 4 in Definition 4.4).

Proof. Let us take fundamental intervals Da of La and Db of Lb. Observe that:

• Da
2 := Da∪F (Da) and Db

2 := Db∪F (Db) are 2-fundamental intervals of La and Lb, 
respectively;

• Db
4 := ∪7

i=4F
i(Db) is a 4-fundamental interval of Lb.

We remark that Db
2 and Db

4 are included in the 8-fundamental interval Db
8 := ∪7

i=0F
i(Db)

of Lb.
By Lemma 4.3, there exist symplectic diffeomorphisms φa and φb acting from a neigh-

borhood of D̂a
2 := Da

2 ∪ F (Da
2) and, respectively, a neighborhood of D̂b

8 = Db
8 ∪ F (Db

8)
into R2 such that:

• φa(Da
2) = [−2, 0] × {0} and φa ◦ F ◦ (φa)−1 is the translation to (−1, 0) in a neigh-

borhood of φa(Da
2);

• φb(Db
8) = [0, 8] ×{0} and φb ◦f ◦ (φb)−1 is the translation to (1, 0) in a neighborhood 

of φb(Db
8).

Observe that φb(Db
2) = [0, 2] × {0} and φb(Db

4) = [4, 8] × {0}.
Let δ > 0 be small and denote J := [−δτ, δτ ] and J ′ := [− δτ

2 , δτ2 ]. Let

Ba
2 := (φa)−1([−2, 0] × J), Bb

2 := (φb)−1([0, 2] × J), Bb
4 := (φb)−1([4, 8] × J ′) .
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For δ > 0 small enough, the sets Bb
2, Bb

4 and Ba
2 are disjoint. Take two linear area-

preserving maps:

A2 := (x, y) �→ (τx, y
τ

) and A4 := (x, y) �→ − (τ2x,
2
τ
y) .

Notice that the maps

φ̊a
2 := A2 ◦ φa, φ̊b

2 := A2 ◦ φb, φ̊a
4 := A4 ◦ φb

send, respectively, Ba
2 , Bb

2 and Bb
4 onto translations of R := [−τ, τ ] × [−δ, δ].

Let φ̊0 be a symplectic embedding of a neighborhood of the disjoint union B0 :=
Ba

2 ∪Bb
2 ∪Bb

4 into R2 such that:

• Ba
2 , Bb

2 and Bb
4 are sent by φ̊0 onto, respectively, (see Fig. 3):

B̊a
2 := R + (xa, y1), B̊b

2 := R + (xb, y1), B̊b
4 := R + (xb, y2);

• the restriction of φ̊0 to neighborhoods of Ba
2 , Bb

2 and Bb
4 is the composition of re-

spectively φ̊a
2 , φ̊b

2 and φ̊b
4 with some translations.

Note that φ̊0 sends the fundamental intervals Da
2 , Db

2 and Db
4 onto, respectively,:

D̊a
2 := [−τ, τ ] × {0} + (xa, y1), D̊b

2 := [−τ, τ ] × {0} + (xb, y1),
D̊b

4 := [−τ, τ ] × {0} + (xb, y2),

so these images lie in the curve L̊, in the intersection with the vertical strips V a and Vb.
The map φ̊0 ◦F 4 ◦ φ̊−1

0 sends D̊b
2 into D̊b

4 and its restriction to a neighborhood of D̊b
2 is 

the composition of a translation with the linear map (x, y) �→ (−x/2, −2y), as required 
by Definition 4.4 with n = 4. Therefore, to prove the lemma, it suffices to construct a 
symplectic C∞-diffeomorphism φ̊ of a small neighborhood of B0 ∪La∪Lb into R2 which 
would send La, Lb to L̊a, ̊Lb, such that its restriction to a neighborhood of B0 would be 
equal to φ̊0.

Without the symplecticity requirement, the map φ̊ would be given by Whitney ex-
tension theorem [62]. Making the diffeomorphism φ̊ symplectic requires an extra effort, 
as it is done below.

Consider an annulus A := (R/Z) × [−η, η] for a sufficiently small η > 0. Let t ∈
R/Z and h ∈ [−η, η] be coordinates in A. By the Weinstein’s Lagrangian neighborhood 
theorem [61], if η is sufficiently small, then there exists an area-preserving diffeomorphism 
N from the annulus A to a neighborhood of the bi-link La ∪Lb, which sends the central 
circle S := {h = 0} to La ∪Lb. Similarly, there exists an area-preserving diffeomorphism 
N̊ from A to a small neighborhood of the curve L̊ = L̊a ∪ L̊b, which sends S to L̊.

Let δ > 0 be small enough, so that the sets B0 and φ̊0(B0) will be contained in N(A)
and, respectively, N̊(A). By Whitney extension theorem, there exists G ∈ Diff∞(A, A)
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such that G(S) = S and N̊ ◦ G ◦ N−1 restricted to a neighborhood U of B0 is φ̊0. In 
particular, detDG|N−1(U) = 1. The map G is orientation-preserving but it is not, a priori, 
area-preserving outside of U .

Our goal is to correct G in order to make it area-preserving. More precisely, we are 
going to construct a C∞-diffeomorphism Ψ of A such that detDΨ = detDG, Ψ(S) = S, 
and the restriction of Ψ to N−1(B0) is the identity. Then the Lemma will be proved by 
taking φ̊ := N̊ ◦G ◦ Ψ−1 ◦N−1.

Let us keep fixed the neighborhood U of B0 where G is area-preserving, and let us 
take δ > 0 small. Then B0 can be made as close as we want to Db

2 ∪ Db
4 ∪ Da

2 . Hence, 
for δ > 0 small enough, if the image by N of a vertical segment {t = const, |h| ≤ η}
intersects B0, then it lies entirely in U , i.e., detDG = 1 everywhere on this segment. 
Therefore, if we define the map

Ψ : (t, h) �→ (t,
h∫

0

detDG(t, s)ds),

then Ψ = id in the restriction to N−1(B0). It is also obvious, that Ψ = id in restriction 
to the central circle S = {h = 0}, and detDΨ = detDG. �
4.2. Making the stochastic island suitable

Consider the map F̌ ∈ Diff∞
ω with the stochastic island I. Recall that I is bounded 

by 4 heteroclinic bi-links (La
i , L

b
i ), i = 0, 1, 2, 3, each of which is a C∞-smooth circle. We 

take a convention that La
0∪Lb

0 is the outer circle, i.e., the bi-links (La
i , L

b
i ) with i = 1, 2, 3

lie inside the region bounded by La
0 ∪ Lb

0.
Below, we will construct symplectic coordinates φ̊ in R2 such that the island φ̊(I) will 

satisfy the following suitability conditions.

Definition 4.6 (Suitable intersection of 4 heteroclinic bi-link-s with 4 pairs of vertical 
strips). We say that 4 pairs of vertical strips (V a

i , V
b
i ), i = 0, 1, 2, 3, intersect bi-links 

(L̊a
j , ̊L

b
j), j = 0, 1, 2, 3 in a suitable way if the following conditions hold true.

(H1) For every 0 ≤ i ≤ 3, the intersection of V a
i � V b

i with (L̊a
i , ̊L

b
i ) is suitable in the 

sense of Definition 4.4, with n = 4.
(H2) For every j ≥ 1 and every i �= j, the strips V a

i and V b
i do not intersect the circle 

L̊a
j ∪ L̊b

j

See Fig. 4 for an illustration.

Proposition 4.7. There exist φ̊ ∈ Diff∞
ω (R2) and 4 pairs of vertical strips V a

i , V b
i , i =

0, 1, 2, 3, which intersect the heteroclinic bi-links (L̊a
j = φ̊(La

j ), ̊Lb
j = φ̊(Lb

j)), j = 0, 1, 2, 3, 
of the map F̊ = φ̊ ◦ F̌ ◦ φ̊−1 in a suitable way.
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Fig. 4. Suitable intersection of the stochastic island and 8 vertical strips.

Proof. By Lemma 4.5, for every i = 0, 1, 2, 3 there exists a pair of vertical strips V a
i , V b

i

and a symplectic C∞ diffeomorphism φ̊i of a small neighborhood of the bi-link (La
i , L

b
i )

such that the strips V a
i , V b

i intersect (L̊a
i , ̊L

b
i ) := (φ̊i(La

i ), ̊φi(Lb
i )) of the map F̊i :=

φ̊i◦F̌ ◦ φ̊−1
i in a suitable way, ensuring the fulfillment of Condition (H1) of Definition 4.6.

Note that in Lemma 4.5 there is a freedom in the choice of the curve L̊i = φ̊i(La
i ∪Lb

i ). 
So, we take L̊i such that it will bound a disc of the same area as Li = La

i ∪Lb
i does. Also, 

by choosing the constants y1, y2, x0, x1 in Lemma 4.5 in an appropriate way for each i, 
we can assure that φ̊i(Li) do not intersect for different i and φ̊1(L1) ∪ φ̊(L2) ∪ φ̊(L3) lies 
inside the disc bounded by φ̊0(L0), and the strips V a

i and V b
i are positioned where we 

wish, thus ensuring Condition (H2) of Definition 4.6.
Let Ai be a sufficiently small closed annulus around Li, i = 0, 1, 2, 3. Let us prove 

the proposition by showing the existence of a symplectic extension φ̊ of the symplectic 
maps φ̊i from a neighborhood of the annuli Ai to the whole of R2, i.e., a diffeomorphism 
φ̊ ∈ Diff∞

ω such that φ̊|Ai
= φ̊i|Ai

for all i = 0, 1, 2, 3. Since the curve L̊i bounds the 
disc of the same area as Li = La

i ∪ Lb
i does, for each i, the annuli Ai is necessarily such 

that the area of each of the connected components of R2 \ �iAi equals to the area of a 
corresponding component of R2 \ �iφ̊i(Ai). Then the existence of the sought symplectic 
extension φ̊ is a standard consequence of Dacorogna-Moser theorem [19], as given by

Corollary 4.8 (Cor. 4 [7]). Let K ⊂ R2 be a compact set, U be a neighborhood of K and let 
ψ ∈ C∞

ω (U, R2) be close to the identity. Assume that every bounded connected component 
W of R2 \ U and its corresponding one in R2 \ ψ(U) have the same area. Then there 
exists φ ∈ Diff∞

ω (R2) which is C∞-close to the identity and such that φ|K = ψ|K. �
5. Restoration of broken heteroclinic links

Let F̊ ∈ Diff∞
ω (R2) be the map constructed in the previous Section. It has a stochas-

tic island I̊ bounded by 4 smooth circles - heteroclinic bi-links (L̊a
i , ̊L

b
i ), i = 0, 1, 2, 3. 

The bi-link L̊a
0 ∪ L̊b

0 forms the outer boundary of I̊. By construction, there exist 4 pairs 
of vertical strips (V a

i , V
b
i ) which intersect (L̊a

i , ̊L
b
i ) in a suitable way in the sense of Def-
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inition 4.6. We denote V a
i = Iai × R and V b

i = Ibi × R, where Iai , Ibi are closed disjoint 
intervals in the x-axis.

In this Section we consider perturbations of the map F̊ and prove Proposition 2.2. 
Namely, we show that for every r ≥ 1, for every η > 0, for every F ∈ Diffr+8

ω which is 
sufficiently close to F̊ in Cr+8, there exists ψ ∈ Cr(R, R), supported in ∪i(Iai ∪ Ibi ) and 
with Cr-norm smaller than η, such that the map F̄ = Sψ ◦ F has 4 heteroclinic bi-links 
(La

i , L
b
i ) close to (L̊a

i , ̊L
b
i ). We recall that given a function ψ, we denote

Sψ : (x, y) �→ (x, y + ψ(x)) .

It is pretty much obvious that to prove this statement, it suffices to show

Proposition 5.1. Let r ≥ 1. Let F̊ ∈ Diffr+4
ω have a heteroclinic bi-link (L̊a, ̊Lb) which 

intersects two vertical strips V a = Ia ×R and V b = Ib ×R in a suitable way. For every 
F ∈ Diffr+4

ω which is Cr+4-close to F̊ , there exists ψ ∈ Cr(R, R) which is Cr-small and 
supported in Ia � Ib, such that the map Sψ ◦ F has a bi-link (La, Lb) close to (L̊a, ̊Lb).

Proposition 2.2 is inferred from this statement as follows.

Proof of Proposition 2.2. Let F be a Cr+8-small perturbation of F̊ . By Proposition 5.1, 
for each i = 1, 2, 3 there exists a Cr+4-small function ψi supported in Iai � Ibi such that 
the map Sψi

◦ F̊ has a bi-link (L̄a
i , L̄

b
i ) close to (L̊a

i , ̊L
b
i ). By property (H2) of the suitable 

intersection (see Definition 4.6), the vertical strips V a
i and V b

i do not intersect the bi-links 
(L̊a

j , ̊L
b
j) for j �= i, j > 0. Thus the map Sψi

is identity near the bi-links (L̊a
j , ̊L

b
j) with 

j �= i, j > 0. Therefore, the map Sψ1+ψ2+ψ3 ◦ F has 3 bi-links (La
i , L

b
i ) close to (L̊a

i , ̊L
b
i ), 

respectively.
The map Sψ1+ψ2+ψ3 ◦ F is an ω-preserving diffeomorphism and is Cr+4-close to F̊ . 

Therefore, by applying Proposition 5.1 to this map and the link (L̊a
0 , ̊L

b
0), we obtain 

that there exists a Cr-small function ψ0 localized in Ia0 ∪ Ib0 such that the map Sψ0 ◦
Sψ1+ψ2+ψ3 ◦F has a bi-link (La

0 , L
b
0) close to (L̊a

0 , ̊L
b
0). Since V a

0 and V b
0 do not intersect 

the bi-links (La
i , L

b
i ) for i > 0 (by property (H2) of the suitable intersection), the map Sψ0

is identity near these bi-links, hence it does not destroy them. Thus, the map F̄ = Sψ ◦F
with ψ = ψ0 + ψ1 + ψ2 + ψ3 has all 4 bi-links (La

i , L
b
i ) as required. �

Proof of Proposition 5.1. This Proposition follows from the two lemmas below which we 
prove in Sections 5.3 and 5.4 respectively.

Lemma 5.2. Under the hypotheses of Proposition 5.1, for every F ∈ Diffk
ω which is 

Ck-close to F̊ , k ≥ 3, there exists a Ck−2-small function ψa supported in Ia and such 
that the map Sψa

◦ F has a link La close to L̊a.
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Lemma 5.3. Under the hypotheses of Proposition 5.1, for every F ∈ Diffk
ω which is 

Ck-close (k ≥ 3) to F̊ and has a link La close to L̊a, there exists a Ck−2-small function 
ψb supported in Ib and such that the map Sψb

◦ F has a link Lb close to L̊b.

Indeed, if an ω-preserving diffeomorphism F is a Cr+4-small perturbation of F , then, 
by Lemma 5.2, there exists a Cr+2-small ψa such that the map Sψa

◦ F has the link 
La. This map is ω-preserving and is Cr+2-close to F̊ . Therefore, applying Lemma 5.3
to this map, we find that there exists a Cr-small ψb supported in Ib and such that the 
map Sψb

◦ Sψa
◦ F = Sψa+ψb

◦ F has the link Lb. As the strip Ib ×R does not intersect 
La, the link La also persists for the map Sψa+ψb

◦ F̂ , which gives Proposition 5.1 with 
ψ = ψa + ψb. �
5.1. Evaluation of the link splitting

The map F̊ has two saddle fixed points P and Q on the circle L̊a ∪ L̊b. The point P
is repelling on the circle, while Q is attracting on the circle.

Let W a(P ; F̊ ) and W b(P ; F̊ ) denote the halves of the unstable manifolds of P equal 
to, respectively, L̊a \ {Q} and L̊b \ {Q}. Let W a(Q; F̊ ) and W b(Q; F̊ ) be the halves of 
the stable manifolds of Q equal to respectively L̊a \ {P} and L̊b \ {P}.

The points P and Q persist for every C1-close map F , and depend continuously on 
F . The corresponding manifolds W a(P ; F ), W b(P ; F ), W a(Q; F ) and W b(Q; F ) also 
persist, and depend continuously on F as embedded curves of the same smoothness as 
F . To avoid ambiguities, we will fix a sufficiently small neighborhood of the point Q and 
then W a(P ; F ) and W b(P ; F ) will denote the two arcs of Wu(P, F ) which connect P
with the boundary of this neighborhood and are close, respectively, to W a(P ; F̊ ) and 
W b(P ; F̊ ). Similarly, W a(Q; F ) and W b(Q; F ) are the arcs in W s(Q, F ) which connect Q
with the boundary of a small neighborhood of P and are close, respectively, to W a(Q; F̊ )
and W b(Q; F̊ ).

In general, the links are broken when the map F̊ is perturbed, so W a(P ; F ) and 
W b(P ; F ) do not need to coincide with, respectively, W a(Q; F ) and W b(Q; F ).

In the next two Sections we will show, for a given F ∈ Diffω
k (D) which is Ck-close to F̊ , 

how to find a Ck−2-function ψ such that each of the unions W a(P ; Sψ◦F ) ∪W a(Q; Sψ◦F )
and W b(P ; Sψ ◦ F ) ∪W b(Q; Sψ ◦ F ) forms a heteroclinic link between P and Q.

In this Section, we obtain formulas for the defect of coincidence between W a(P ; Sψ◦F )
and W a(Q; Sψ ◦ F ) or W b(P ; Sψ ◦ F ) and W b(Q; Sψ ◦ F ). In order to do that, we shall 
use the so-called time-energy coordinates near the fundamental interval D̊a

2 = Va∩La of 
the link La and the fundamental domain D̊b

2 ⊂ Vb ∩Lb of the link Lb. Recall that by the 
suitability conditions (see Definition 4.4) there exist τ > 0 and (xa, ya) ∈ D, (xb, yb) ∈ D

such that D̊a
2 = {x ∈ [xa − 2τ, xa]} ×{y = ya}, D̊b

2 = {x ∈ [xb, xb + 2τ ]} ×{y = yb}, and 
the map F̊ restricted to a small neighborhood Na of D̊a

2 or a small neighborhood N b of 
D̊b

2 is given by
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F̊ |Na := (x, y) �→ (x− τ, y), F̊ |Nb := (x, y) �→ (x + τ, y) . (17)

Definition 5.4. For an ω-preserving map F , which is Ck-close to F̊ , an Na time-energy 
chart φa is an ω-preserving diffeomorphism from Na ∪ F (Na) to D which is Ck−1-close 
to identity and satisfies

φa ◦ F |Na = F̊ ◦ φa|Na . (18)

An N b time-energy chart φb is an ω-preserving diffeomorphism from N b ∪ F (N b) to D
which is Ck−1-close to identity and satisfies

φb ◦ F |Nb = F̊ ◦ φb|Nb . (19)

We notice that the identity map is a time-energy chart for F̊ . The time-energy charts 
are not uniquely defined, so we will fix their choice below. In our construction the time-
energy charts will be identity near {x = xa} and {x = xb}.

Once certain time-energy coordinates are introduced in Na ∪ F (Na), the curves 
W a(P ; F ) ∩{Na ∪F (Na)} and W a(Q; F ) ∩{Na ∪F (Na)} become graphs of τ -periodic 
functions: the manifolds W a(P ; F ) and W a(Q; F ) are invariant with respect to F which 
means that in the time-energy coordinates they are invariant with respect to the trans-
lation to (−τ, 0), see (18),(17). We denote as wu

a(F, φa) and ws
a(F, φa) the τ -periodic 

functions whose graphs are the curves φa(W a(P ; F )) and φa(W a(Q; F )), respectively.

Definition 5.5. The link-splitting function Ma(F, φa) associated to (Na, F, φa) is the 
τ -periodic function equal to wu

a(F, φa) − ws
a(F, φa) at x ∈ [xa − τ, xa].

Similarly, let ws
b(F, φb) and wu

b (F, φb) be the τ -periodic functions whose graphs are 
the curves φb(W b(Q; F ) and φb(W b(P ; F )).

Definition 5.6. The link-splitting function M b(F, φb) associated to (N b, F, φb) is the 
τ -periodic function equal to wu

b (F, φb) − ws
b(F, φb) at x ∈ [xb, xb + τ ].

By the definition, the link La or Lb is restored when the function Ma or, respectively, 
M b is identically zero.

We start with constructing a Ck−1-smooth time-energy chart for the map F .

Lemma 5.7. There exists a small neighborhood Na of D̊a
2 and a small neighborhood N b

of D̊b
2 such that for every ω-preserving diffeomorphism F which is Ck-close to F̊ , k ≥ 3, 

there exists Ck−1-smooth time-energy chart φa and φb, which depend continuously on F
and equal to identity if F = F̊ .

Proof. We will show the proof only for the existence of φa. The proof for φb is identical 
up to the exchange of index a to b and (−τ) to τ .
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Let ρ ∈ C∞(R, [0, 1]) be zero everywhere near x = xa and 1 everywhere near x = xa−
τ . Let φ0(x, y) := (x, y)(1 −ρ(x)) +ρ(x)F̊ ◦F−1(x, y). The map φ0 is a Ck-diffeomorphism 
from a small neighborhood of {x ∈ [xa− τ, xa], y = ya} into D, it is Ck-close to identity 
and equals to the identity near (xa, ya) and to F̊ ◦ F−1 near (xa − τ, ya).

Thus, φ0 satisfies

φ0 ◦ F ◦ φ−1
0 (x, y) = (x− τ, y) .

in a neighborhood of (xa, ya) (see (17)). Take a small neighborhood of Da and de-
fine there φa(x, y) = φ0(x, σ(x, y)) where the Ck−1-function σ satisfies σ(x, ya) = ya
and ∂yσ = detDφ−1

0 (x, σ). By construction, detDφa ≡ 1, i.e., it is an ω-preserving 
Ck−1-diffeomorphism and, since φ0 is Ck-close to the identity, φa is Ck−1-close to the 
identity. Since detDφ0 = 1 everywhere near (xa, ya) and (xa− τ, ya), we have that σ ≡ y

near these points, so φa ≡ φ0 there. In particular,

φa ◦ F = F̊ ◦ φa

near (xa, ya).
It follows that we obtain the required time-energy chart if we extend φa to a small 

neighborhood of D̊a
2 ∪ F̊ D̊a

2 by the rule

φa =:
{

F̊ ◦ φa ◦ F−1 if x ∈ [xa − 2τ, xa − τ ],
F̊ 2 ◦ φa ◦ F−2 if x ≤ xa − 2τ .

�

Now, take some sufficiently small δ > 0. Consider any map F close enough to F̊ and 
let φa,b be the Ck−1 time-energy charts for F , defined in Lemma 5.7. Given any close to 
zero smooth function ψ(x) supported inside [xa − 2τ + δ, xa − δ], we consider the map

F̄ := Sψ ◦ F (20)

and define for it the time-energy chart φa
ψ in the open set Na ∪ F (Na) such that

φa
ψ =

{
φa ◦ F ◦ F̄−1 = φa ◦ S−ψ if x ≥ xa − τ,

φa ◦ F 2 ◦ F̄−2 if x ≤ xa − τ.
(21)

Recall that ψ vanishes for x close to xa and for x close to xa − 2τ . Furthermore, if x is 
close to xa−τ , then the x-coordinate of F̄−1(x, y) is close to xa. Thus, on a neighborhood 
of F̄−1(x, y), it holds F ◦ F̄−1 = id and so

φa ◦ F 2 ◦ F̄−2(x, y) = φa ◦ F ◦ F̄−1(x, y) = φa ◦ S−ψ(x, y) .

Hence φa
ψ has no discontinuities at x = xa−τ and the following required conjugacy holds 

true:
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φa
ψ ◦ F̄ |Na = F̊ ◦ φa

ψ|Na . (22)

Similarly, for any close to zero smooth function ψ(x) which is supported inside [xb +
δ, xb + 2τ − δ], for the map F̄ given by (20), we define the time-energy chart φb

ψ in 
N b ∪ F (N b) by the rule

φb
ψ =

{
φb ◦ F ◦ F̄−1 = φb ◦ S−ψ if x ≤ xb + τ,

φb ◦ F 2 ◦ F̄−2 if x ≥ xb + τ,
(23)

such that the identity

φb
ψ ◦ F̄ |Nb = F̊ ◦ φb

ψ|Nb (24)

holds.
With this choice of the time-energy charts, for small ψ we have the link-splitting 

function Ma(Sψ ◦F, φa
ψ) (if ψ is supported inside [xa−2τ, xa]) or M b(Sψ ◦F, φb

ψ) (if ψ is 
supported inside [xb, xb +2τ ]). This defines the operators Ma : ψ → Ma(Sψ ◦F, φa

ψ) and 
Mb : ψ → M b(Sψ ◦ F, φb

ψ) acting from the space of smooth functions supported inside 
[xa − 2τ, xa] or, respectively, inside [xb, xb + 2τ ], to the space of τ -periodic functions of 
the same smoothness.

5.2. Regularity of the graph transform operator

The regularity of the operators Ma and Mb depends on the smoothness class of ψ. 
We choose it to be Ck−2. For δ > 0 small, for every x ∈ R we denote by Ck−2

0 ([x − 2τ +
δ, x − δ], R) the Banach space of real Ck−2-functions supported inside [x − 2τ + δ, x − δ], 
endowed with the Ck−2-norm. We have the crucial result:

Proposition 5.8. The operators

Ma : ψ ∈ Ck−2
0 ([xa − 2τ + δ, xa − δ],R) �→ Ma(Sψ ◦ F, φa

ψ) ∈ Ck−2(R)

Mb : ψ ∈ Ck−2
0 ([xb + δ, xa + 2τ − δ],R) �→ M b(Sψ ◦ F, φb

ψ) ∈ Ck−2(R)

are of class C1 in a small neighborhood of zero, and depend continuously on the map F .

Proposition 5.8 follows immediately from the two following lemmas:

Lemma 5.9. The functions wu
a(Sψ ◦ F, φa

ψ) and wu
b (Sψ ◦ F, φb

ψ) are independent of ψ, 
and depend continuously on F :

wu
a(Sψ ◦ F, φa

ψ) = wu
a(F, φb) and wu

b (Sψ ◦ F, φb
ψ) = wu

b (F, φb) .
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Lemma 5.10. The following operators are of class C1 and depends continuously on F :

ψ ∈ Ck−2
0 ([xa − 2τ + δ, xa − δ],R) �→ ws

a(Sψ ◦ F, φa
ψ) ∈ Ck−2(R) ,

ψ ∈ Ck−2
0 ([xb + δ, xb + 2τ − δ],R) �→ ws

b(Sψ ◦ F, φb
ψ) ∈ Ck−2(R) .

Lemma 5.10 was rather unexpected: the proof works because Sψ induces a graph 
transform which is a translation (which is a smooth operator).

Proof of Lemma 5.9. Let ψ be supported inside [xa−2τ +δ, xa−δ]. Denote F̄ := Sψ ◦F . 
The graph of the function wu

a is the curve φa
ψ(W a(P ; F̄ )) ∩[xa−τ, xa] ×R. It follows from 

our choice of the chart φa
ψ (see the first line of (21)) that this curve is the image by φa◦F

of an arc of the curve �ua = F̄−1(W a(P ; F̄ ) ∩[xa−τ, xa] ×R), which is an arc of W a(P ; F̄ )
lying at x ≥ xa. The set W a(P ; F̄ ) ∩ {x ≥ xa} is a part of the unstable manifold of P
which depends only on the dynamics at {x ≥ xa}. Since ψ is zero at x ≥ xa, the map 
Sψ is identity there, hence F̄ |{x≥xa} equals F |{x≥xa}, and W a(P ; F̄ ) ∩ {x ≥ xa} equals 
W a(P ; F ) ∩{x ≥ xa}, in particular the curve �ua does not depend on ψ, i.e. it is the same 
for F and F̄ .

Thus,

φa
ψ(W a(P ; F̄ ))|x∈[xa−τ,xa] = (φa ◦ S−ψ) ◦ (Sψ ◦ F )(�ua) = φa ◦ F (�ua)

= φa(W a(P ;F ))|x∈[xa−τ,xa] ,

so wu
a (F̄ , φa

ψ) = wu
a(F, φa) is the same for all small ψ.

Exactly in the same way, just by changing the index a to b and the interval [xa−τ, xa]
to [xb, xb+τ ], we obtain that when ψ is supported inside [xb+δ, xb+2τ−δ] the function 
wu

b (F̄ , φb
ψ) is independent of ψ. �

Proof of Lemma 5.10. For c ∈ {a, b}, let us show that ws
c(F̄ , φc

ψ) is a C1 function of 
ψ ∈ Ck−2(R), with F̄ := Sψ ◦ F . Again, we start with the case c = a and ψ supported 
inside [xa − 2τ + δ, xa − δ] and derive the expression for ws

a(F̄ , φa
ψ) in this case.

The graph of ws
a(F̄ , φa

ψ) is the curve φa
ψ �̄

a
s where �̄as is the piece of W a(Q; F̄ ) in the 

intersection with (φa
ψ)−1([xa − τ, xa] × R). The curve W s(Q; F̄ ) (a halve of the stable 

manifold of Q) is obtained by iterations of its small, adjoining to Q part by the map 
F̄−1. The maps F̄−1 and F−1 coincide at x ≤ xa − 2τ + δ, and both are close to the 
map F̊−1 which takes the line {x = xa − 2τ + δ} ∩Na into x = xa − τ + δ, so the piece 
of W s(Q; F̄ ) between Q and x = xa − τ + δ/2 does not move as ψ varies, i.e., it is the 
same as for the map F .

This means that for all small ψ, the image by F̄ of the curve �̄sa lies inside the piece 
of W s(Q; F ) to the left of x = xa − τ + δ/2, i.e., F̄ �̄sa ⊂ F�sa, where the ψ-independent 
curve �sa is a piece of W s(Q; F ) in the intersection with {x ∈ [xa − τ − δ/2, xa + δ/2]}. 
So
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φa
ψ(W a(Q; F̄ ))∩{x ∈ [xa−τ, xa]} ⊂ φa

ψ ◦F̄−1◦F �sa = φa◦S−ψ ◦F−1◦S−ψ ◦F �sa , (25)

as given by (21),(20).

Formula (25) states that the graph of ws
a(F̄ , φa

ψ) is the image of the ψ-independent 
curve �sa by the map φa ◦ S−ψ ◦ F−1 ◦ S−ψ ◦ F . Thus, the regularity of the map 
ψ �→ ws

a(F̄ , φa
ψ) is determined by the regularity of the corresponding graph transform

operators.
The following defines the graph-transform operator F# associated with a smooth map 

F .

Fact 5.11 (See Thm 2.2.5. P. 145 [32]). Consider a curve L = {(x, y) : y = w(x)} in 
an (x, y)-plane, where w is a Cs-smooth function defined on some closed interval, and a 
Cn-smooth map F : (x, y) �→ (p(x, y), q(x, y)) (n ≥ s) defined in a neighborhood U of L. 
Then, under the condition ∂xp(x, y) + ∂yp(x, y)Dw(x) �= 0 everywhere in U , the image 
FL is a curve of the form y = w̃(x) where w̃ ∈ Cs. Moreover the operator F# which 
takes the Cs-function w to the Cs-function w̃ is of regularity class Cn−s.

Since φa(�sa) is the graph of ws
a(F, φa), we have from (25) that

ws
a(F̄ , φa

ψ) = (φa)# ◦ (S−ψ)# ◦ (F−1)# ◦ (S−ψ)# ◦ (F ◦ (φa)−1)# ws
a(F, φa) . (26)

Since φa and F are at least of class Ck−1, the graph-transform operators (φa)#, (F−1)#, 
and (F ◦ (φa)−1)# have regularity at least C1 when act from Ck−2-smooth functions to 
Ck−2-smooth functions. We cannot use the same fact for the graph transform operator 
induced by S−ψ since the latter map is only of class Ck−2. However, the map S−ψ is 
given by (x, y) �→ (x, y−ψ(x)), so the associated graph transform operator (S−ψ)# sends 
a function w to w−ψ. Thus, it is linear in both w in ψ, i.e., it is of class C∞ with respect 
to both w and ψ (irrespective of their class of smoothness).

Altogether, this implies that the map ψ �→ ws
a(F̄ , φa

ψ) given by (26) is of class C1.

Now, let us handle the case c = b.
We need to derive the expression for ws

b(F̄ , φb
ψ). The graph of this function is the curve 

φb
ψ �̄

s
b where �̄sb is the piece of W b(Q; F̄ ) in the intersection with (φb

ψ)−1({x ∈ [xb, xb+τ ]}). 
The curve W b(Q; F̄ ) is close to W b(Q; F̊ ). Recall that W b(Q, F̊ ) coincides with W b(P, F̊ )
and forms a heteroclinic link L̊b. It intersects the vertical strip Vb = {x ∈ [xb, xb + 2τ ]}
twice, along two straight line segments D̊b

2 = [xb, xb +2τ ] ×{y = yb} and D̊b
4 = F̊ 4(D̊b

2) ∪
F̊ 6(D̊b

2) = [xb, xb + 2τ ] × {y = y′b} for some y′b < yb. The piece of W b(Q, F̊ ) between Q
and the left end of D̊b

4 lies entirely in the region x ≤ xb, i.e., to the left of the vertical 
strip Vb. Also, the map F̊ in a small neighborhood of D̊b

4 is given by

F̊ : (x, y) �→ (x− τ/2, y) (27)

(as implied by the link suitability Definition 4.4). It follows that the curve W b(Q, F̄ )
intersects the straight line x = xb at a point Zb with the y-coordinate close to yb such that 
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the piece of W b(Q, F̄ ) between Q and F̄ 7Zb lies entirely in the region x < xb+τ/2 +δ/2. 
Since ψ is supported inside [xb + δ, xb + 2τ − δ], it follows that F = F̄ near this piece 
of W b(Q, F̄ ). Therefore, the piece of W b(Q, F̄ ) between Q and x = xb + τ/2 + δ/2 is 
unmoved as ψ varies, so it coincides with the corresponding piece of W b(Q, F ).

This piece contains the point F̄ 7Zb, hence it contains the curve F̄ 7�̄bs for all small ψ. 
It follows that there exists a ψ-independent curve �sb so that F̄ 7�̄sb ⊂ F 7�sb and �sb is a 
piece of W s(Q; F ) in the intersection with {x ∈ [xb − δ/2, xb + τ + δ/2]}. So

φb
ψ(W b(Q; F̄ ))|x∈[xb,xb+τ ] ⊂ φb

ψ ◦ F̄−7 ◦ F 7 �sb = φb ◦ S−ψ ◦ (F̄−1 ◦ S−ψ)7 ◦ F 7 �sb , (28)

see (23),(20).
Since φb(�sb) is the graph of ws

b(F, φb), we have from (28) that

ws
b(F̄ , φb

ψ) = (φb)# ◦ (S−ψ)# ◦ ((F−1)# ◦ (S−ψ)#)7 ◦ (F 7 ◦ (φb)−1)# ws
b(F, φb) . (29)

Like we did it for the function ws
a given by (26), we obtain that the map ψ �→ ws

b(F̄ , φb
ψ)

defined by (29) is of class C1. �
The continuity of the operators Ma and Mb with respect to F allows us to obtain 

enough information about them by computing them for F = F̊ , which we do in the two 
following lemmas.

Lemma 5.12. When F = F̊ :

Ma(ψ)(x) = ψ(x) + ψ(x− τ) for x ∈ [xa − τ, xa]. (30)

Proof. For F = F̊ , the link La exists and the fundamental interval Da is straight, so the 
curves W a(P ; F̊ ) and W a(Q; F̊ ) coincide for x ∈ [xa − τ, xa] and lie in the straight line 
y = ya. The map φa for F̊ is identity, so we have wu

a(F̊ , φa) = ws
a(F̊ , φa) = ya. The map 

F̊ is the translation to (−τ, 0) (see (17)). Plugging this information into (26) gives (30)
immediately. �
Lemma 5.13. When F = F̊ ,

Mb(ψ)(x) = ψ(x) + ψ(x + τ) − 1
2 (ψ(3xb+τ−x

2 ) + ψ(3xb+2τ−x
2 ) + ψ(3xb+3τ−x

2 )
+ ψ(3xb+4τ−x

2 ))
(31)

for x ∈ [xb, xb + τ ].

Proof. When F = F̊ , we have φb = id, so

Mb : ψ �→ wu
b (F̊ , id) − (S−ψ)# ◦ ((F̊−1)# ◦ (S−ψ)#)7 ◦ (F̊ 7)# ws

b(F̊ , id) (32)
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(see (29)). Recall that W b(Q, F̊ ) coincides with W b(P, F̊ ) and intersects the vertical strip 
Vb on two straight line segments, D̊b

2 = [xb, xb + 2τ ] ×{y = yb} and D̊b
4 = [xb, xb + 2τ ] ×

{y = y′b}, so

wu
b (F̊ , id) = ws

b(F̊ , id) ≡ yb at x ∈ [xb, xb + τ ]. (33)

Also, the map F̊ 7 from a small neighborhood of [xb, xb + τ ] × {y = yb} to a small 
neighborhood of [xb, xb + τ ] × {y = y′b} acts as

F̊ 7 : (x, y) �→ (−x

2 + 3xb

2 + τ

2 ,−2y + 2yb + y′b)

(see Definition 4.4). Therefore,

(F̊ 7)# ws
b(F̊ , id) ≡ y′b at x ∈ [xb, xb + τ/2] ,

and

w7(x) := (S−ψ)#(F̊ 7)# ws
b(F̊ , id)(x) = y′b − ψ(x) at x ∈ [xb, xb + τ/2] .

Next, by (27), we obtain

w6(x) := (S−ψ)# ◦ (F̊−1)#w7(x) = y′b − ψ(x− τ/2) − ψ(x) at x ∈ [xb + τ/2, xb + τ ] .

Repeating the same procedure two more times, we obtain

w4(x) := ((S−ψ)# ◦ (F̊−1)#)3w7(x) = y′b − ψ(x− 3
2τ) − ψ(x− τ) − ψ(x− τ

2 ) − ψ(x) at

x ∈ [xb + 3
2τ, xb + 2τ ] .

The map F̊−1 takes the rectangle K := [xb + 3τ/2, xb + 2τ ] × [y′b − ε, y′b + ε] (for 
some small ε) to the right of the strip Vb, and its next image F̊−2K also lies to the 
right of Vb. We recall that the function ψ vanishes there and S−ψ = id. Therefore, 
F−1 ◦ (S−ψ ◦ F−1)2 = F−3 on K. As the curve {y = w4(x)} lies in K for small ψ, this 
implies that

(F−1 ◦ (S−ψ ◦ F−1)2)#w4 = (F−3)#w4 .

By the link suitability conditions (Definition 4.4), the map F−3 takes K into a small 
neighborhood of D̊b

2 and is given by

F̊−3 : (x, y) �→ (−2x + 3xb + 5τ,− y

2 + y′b
2 + yb).

This gives
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((S−ψ ◦ F−1)6)#w7(x) = yb + 1
2 (ψ(3xb+2τ−x

2 ) + ψ(3xb+3τ−x
2 ) + ψ(3xb+4τ−x

2 )
+ψ(3xb+5τ−x

2 )) − ψ(x) at x ∈ [xb + τ, xb + 2τ ] .

Since F̊−1 is the translation to (−τ, 0) near F̊ (Db
2), we finally obtain that

((S−ψ ◦ F−1)7)#w7(x) = yb + 1
2 (ψ(3xb+τ−x

2 ) + ψ(3xb+2τ−x
2 ) + ψ(3xb+3τ−x

2 )
+ψ(3xb+4τ−x

2 )) − ψ(x + τ) − ψ(x) at x ∈ [xb + τ, xb + 2τ ] ,

which implies (31) by (32),(33). �
5.3. Proof of Lemma 5.2: restoring the link La

In order to prove Lemma 5.2, we show that for every ω-preserving F which is Ck-close 
to F̊ there exists a Ck−2-smooth function ψ, supported in x ∈ (xa − 2τ, xa), such that

Ma(Sψ ◦ F, φa
ψ) ≡ 0 , (34)

where the Ck−2-smooth time-energy chart φa
ψ for the map Sψ ◦ F is defined by (21). 

We will solve this equation for ψ by reducing it to a fixed point problem for a certain 
contracting operator.

First, we restrict the class of perturbation functions ψ; namely, we will take them in 
the form

ψ(x) = ρ(x)ψ̃(x) ,

where ψ̃ is a τ -periodic function, and ρ ∈ C∞(R, [0, 1]) has support in [xa − 2τ, xa] and 
satisfies ρ(x) + ρ(x − τ) = 1 for every x ∈ [xa − τ, xa]. Then the operator

Ma
ρ : ψ̃ �→ Ma(ρψ̃) ,

which provides a correspondence between ψ̃ and the link-splitting function for the map 
Sρψ̃ ◦ F , takes a small ball around zero in the space Ck−2(R/(τZ), R) of τ -periodic 
functions into the same space.

By Lemma 5.8, the operator Ma
ρ is of class C1 on Ck−2(R/(τZ), R). For F = F̊ , we 

have Ma
ρ = id. Indeed, by (30),

Ma
ρ(ψ̃)(x) = ρ(x)ψ̃(x) + ρ(x− τ)ψ̃(x− τ) = [ρ(x) + ρ(x− τ)]ψ̃(x) = ψ̃(x) .

Due to a continuous dependence on F , the operator

ψ̃ �→ ψ̃ −Ma
ρ(ψ̃)

is a contraction in a neighborhood of zero in Ck−2(R/(τZ), R) for all F ∈ Diffk
ω(D) which 

are Ck-close to F̊ . Therefore, it has a unique fixed point ψ̃ near zero in Ck−2(R/(τZ), R), 
for each such F .
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The operator Ma
ρ vanishes at this fixed point. By construction, the corresponding 

function ψ = ρψ̃ solves equation (34), i.e., the link-splitting function is identically zero 
for the map F̄ = Sψ ◦ F , meaning that the link La persists for this map. Lemma 5.2 is 
proven. �
5.4. Proof of Lemma 5.3: restoring the link Lb

In order to prove Lemma 5.3, we show that for every ω-preserving F which is Ck-close 
to F̊ , if the link La persists for the map F , then there exists a Ck−2-smooth function ψ, 
supported in x ∈ (xb, xb + 2τ), such that

M b(Sψ ◦ F, φb
ψ) ≡ 0 , (35)

where the Ck−2 time-energy chart φb
ψ for the map F̄ = Sψ ◦ F is defined by (23).

In order to resolve equation (35), we will use the following property of the link-splitting 
function M b.

Lemma 5.14. If the link La is persistent for the map F , then the link-splitting function 
M b(Sψ ◦ F, φb

ψ) has zero mean for every ψ supported by (xb, xb + 2τ):

xb+τ∫
xb

M(F̄ , φb
ψ)dx = 0 .

Proof. We may always assume that the map φb
ψ is the restriction to Na of an area-

preserving diffeomorphism or R2 (the possibility of the symplectic extension of an 
area-preserving diffeomorphism from a disc to the whole R2 is a standard fact; see e.g. 
Corollary 4 in [7]).

Let the points Zu ∈ W b(P, F̄ ) ∩ N b and Zs ∈ W b(Q, F̄ ) ∩ N b have the same 
x-coordinate xb, i.e., Zu = (xb, wu(F̄ , φb

ψ)(xb)), Zs = (xb, ws(F̄ , φb
ψ)(xb)). As the map F̄

is the translation to (τ, 0) in the time-energy coordinates in N b, the points F̄Zs and F̄Zu

have the same x-coordinate xb + τ , and the image of the vertical segment connecting Zs

and Zu is the vertical segment connecting F̄Zs and F̄Zu.
Since the support of ψ lies in (xb, xb + 2τ), the maps F and F̄ coincide in a neigh-

borhood of La, so the link La is not split for all ψ under consideration. Thus, we may 
consider a region D bounded by the link La, the piece of W b(P, F̄ ) between Zu and 
P , the piece of W b(Q, F̄ ) between Q and Zs, and the vertical segment that connects 
Zs and Zu. The region F̄D has the same area as D. It is bounded by the link La, the 
piece of W b(P, F̄ ) between F̄Zu and P , the piece of W b(Q, F̄ ) between Q and F̄Zs, 
and the vertical segment that connects F̄Zs and F̄Zu. The equality of the areas means 
that the area of the region between the curves W b(P, F̄ ) : {y = wu(F̄ , φb

ψ)(x)} and 
W b(Q, F̄ ) : {y = ws(F̄ , φb

ψ)(x)} at x ∈ [xb, xb + τ ] is zero (see Fig. 5). This means that 



1272 P. Berger, D. Turaev / Advances in Mathematics 349 (2019) 1234–1288
Fig. 5. The integral of the function M(F̄ , φ) = wu
b (F̄ , φ) − ws

b(F̄ , φ) is null.

∫ xb+τ

xb
(wu(F̄ , φb

ψ) −ws(F̄ , φb
ψ))dx = 0, which proves the lemma (see Definition 5.6 of the 

link-splitting function). �
Now, like in the previous Section, we restrict the class of perturbation functions ψ:

ψ(x) = ρ(x)ψ̃(x) ,

where ψ̃ is a τ -periodic function with the zero mean, and ρ ∈ C∞(R, [0, 1]) has support 
in [xb + δ, xb + 2τ − δ] for δ > 0 small, and satisfies ρ(x) + ρ(x + τ) = 1 for every 
x ∈ [xb, xb + τ ]. Then, if the link La persists for the map F , the operator

Mb
ρ : ψ̃ �→ Mb(ρψ̃) ,

takes a small ball around zero in the space Ck−2
0 (R/(τZ), R) of τ -periodic functions with 

the zero mean into the same space (by Lemma 5.14).
By Lemma 5.8, the operator Mb

ρ is of class C1 on Ck−2
0 (R/(τZ), R). It follows easily 

from (31) that if F = F̊ , then

Mb
ρ(ψ̃)(x) = ψ̃(x) − 1

2 (ψ̃(3xb + τ − x

2 ) + ψ̃(3xb + 2τ − x

2 )). (36)

Note that the space Ck−2
0 (R/(τZ), R) is a Banach space when endowed with the 

following norm:

‖ψ‖Ck−2
0

= max
1≤i≤k−2

‖Diψ1 −Diφ2‖C0 . (37)

This norm includes evaluation of the derivatives only (still it is a well-defined norm - if 
two functions with the zero mean have the same derivative, they coincide).

By (31) and by the continuous dependence of Mb on F (see Lemma 5.8), the operator 
id −Mb

ρ is C1-close to the linear operator ψ̃ �→ ψ̄ where

ψ̄(x) = 1
2 (ψ̃(3xb + τ − x

2 ) + ψ̃(3xb + 2τ − x

2 )).

We have
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Diψ̄(x) = (−1)i

2i+1 (Diψ̃(3xb + τ − x

2 ) + Diψ̃(3xb + 2τ − x

2 )),

so this operator is, obviously, a contraction in the norm (37). Therefore, id − Mb
ρ is 

a contraction on Ck−2
0 (R/(τZ), R) for all F which are Ck-close to F̊ , provided F is 

area-preserving and the link La persists for F .
Thus, id −Mb

ρ has a fixed point ψ̃. The corresponding function ψ = ρψ̃ solves equation 
(35); Lemma 5.3 is proven. �
5.5. Proof of Proposition 2.5

The previous results allow for construction of Cr-maps with stochastic islands for any 
finite r. Below we prove Proposition 2.5 which deals with the C∞ case. Let f̂ ∈ Diffr

ω(M)
have a stochastic island I bounded by bi-links (La

i ∪ Lb
i )mi=1 so that each bi-link Ci :=

La
i ∪ Lb

i is a Cr-smooth circle (without break points). Let us show that arbitrarily close 
in Cr to f̂ there exists a map f̂∞ ∈ Diff∞

ω (M) for which the bi-links persist.
Choose a map f ∈ Diff∞

ω (R2) which is sufficiently close in Cr to f̂ ; such exists by 
Zehnder smoothing theorem [64, Thm. 1]. The bi-links do not need to persist for f . To 
restore them, the idea is to smoothen the circles Ci to Cr-close circles C̃i which are of 
class C∞. Then we will perform a local surgery to construct f̂∞ of class C∞

ω which is 
Cr-close to f and such that f̂∞(�iC̃i) = �iC̃i. By local maximality of the hyperbolic 
continuation (P̃i, Q̃i)i of saddle points (Pi, Qi)i defining the bi-links (La

i ∪ Lb
i )mi=1, it 

follows that each P̃i, Q̃i belongs to C̃i. Moreover, as the unique invariant curves which 
contain P̃i or Q̃i are their local stable and unstable manifolds, we obtain that the circles 
C̃I are heteroclinic bi-links, i.e., the bi-links are persistent for f̂∞.

Consequently, we need only to prove the following

Lemma 5.15. There exists a collection of C∞-circles C̃i which are Cr-close to Ci, and a 
map f̂∞ of class C∞

ω which is Cr-close to f , such that f̂∞(�iC̃i) = �iC̃i.

Proof. Choose ε > 0 small enough. Let (xi(t), yi(t))t∈S1 , where (dxi

dt )2 + (dyi

dt )2 �= 0, 
be a parameterization of a closed C∞-curve, which is sufficiently close to Ci in the 
Cr-topology. Consider the map (t, h) �→ (x, y) defined as

x = xi(t) − z(t, h)dyi(t)
dt

, y = yi(t) + z(t, h)dxi(t)
dt

,

where z(t, 0) = 0 and

∂hz =
(

(dxi

dt
)2 + (dyi

dt
)2 + z(d

2xi

dt2
dyi
dt

− d2yi
dt2

dxi

dt
)
)−1

.

It is easy to check that det(∂t,h(x, y)) ≡ 1, so this map is a symplectic C∞-diffeomorphism 
from S1 × {|h| ≤ ε} onto a small neighborhood Vi of Ci in R2 (we think of (x, y) as the 
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Cartesian coordinates in R2). Thus, (t, h) are symplectic coordinates in Vi and the curve 
Ci is given by an equation h = σi(t) where σi is Cr-small.

Let C̃i be a curve h = σ̃i(t) where σi is a C∞-function, which is sufficiently close to 
σi in Cr. By adding a small constant to σ̃i, if necessary, we can ensure that the disc 
bounded by the curve C̃i in R2 has the same area as the disc bounded by the curve Ci. 
We do this for all i = 1, . . . , m. Recall that the collection of curves Ci is invariant with 
respect to the map f̂ and every curve Ci is invariant with respect to some iteration of 
f̂ . So, there is j such that Ci = f̂(Cj), and Cj is the image of Ci by some iteration of f̂ . 
In particular, Cj and Ci bound discs of equal area in R2. Therefore, the curves C̃i and 
C̃j also bound discs of the same area.

Since C̃j is close to Cj and C̃i is close to Ci = f̂(Cj), we can always assume that 
the symplectic C∞-diffeomorphism f (that Cr-approximates the map f̂) is chosen such 
that the closed curve f(C̃j) lies in Vi and has an equation h = σ̊i(t) with some Cr-small 
function σ̊i. The discs bounded by the curves C̃i and f(C̃j) in R2 have the same area, 
so the area between the curves C̃i and f(C̃j) is zero, which means that

∫
S1

(σ̃i(t) − σ̊i(t))dt = 0.

Therefore, on S1 there exists a (Cr+1-small) function Φi(t) such that

d

dt
Φi(t) = σ̃i(t) − σ̊i(t).

Now, we define a symplectic diffeomorphism φi : Vi → Vi by a generating function 
S(t, ̄h) = th̄−Φi(t)ξ(h̄), where ξ is a C∞-function which vanishes identically for |h̄| ≥ ε

and equals identically to 1 on the range of values of the function σ̃i. Namely, we define 
φi : (t, h) �→ (t̄, ̄t) implicitly by the rule t̄ = ∂h̄S, h = ∂tS, or

t̄ = t− Φi(t)
dξ(h̄)
dh̄

, h = h̄− (σ̃i(t) − σ̊i(t))ξ(h̄). (38)

These formulas indeed define a single-valued map, Cr-close to identity, because σ̃i(t) −
σ̊i(t) is Cr-small. By construction, the map φi equals to identity at the boundary of Vi

(at |h| = ε), so φi is indeed a diffeomorphism of Vi; it is also immediate that it preserves 
the symplectic form dt ∧ dh.

It remains to note that φi sends the curve f(C̃j) : h̄ = σ̊i(t̄) to the curve C̃i : h = σ̃i(t)
(since ξ is identically 1 everywhere in the range of σ̃i, it follows from (38) that t̄ = t, 
h − σ̊i(t) = h̄ − σ̃i(t̄) for every point (t̄, ̄h) ∈ C̃i). Thus, if we perform this construction 
for all i and define a Cr-close to identity symplectic C∞-diffeomorphism ψ : R2 → R2

as φi inside Vi and identity outside �iVi, then the map f̂∞ = ψ ◦ f will send the set of 
the C∞-smooth curves C̃i into itself, as required. �
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6. Rescaling Lemma

We recall that given U ⊂ R2, the set Diff∞
ω (U, R2) denotes the set of symplectic 

diffeomorphisms φ from U onto their image. We endow this space with the complete 
metric:

dC∞(φ, φ̃) =
∑
r

2−r min(1, ‖φ− φ̃‖Cr) .

Consider a symplectic C∞-diffeomorphism f of R2 which has a saddle periodic point 
O. Assume that there exists a homoclinic band, i.e., the intersection of the stable and 
unstable manifolds of O contains a closed interval J of non-zero length. We assume 
that J is sufficiently small (if not, take its sufficiently small subinterval), so that J lies 
entirely inside a fundamental domain, implying that fm(J) ∩ J = ∅ for all m �= 0. By 
considering, if necessary, an iterate of J , we also assume that J lies close to O in a local 
stable manifold of O.

Given a function ψ ∈ Cr(R), we define a symplectic Hénon-like map Hψ as

Hψ(x, y) = (y,−x + ψ(y)). (39)

The following statement enables to produce a perturbation of the dynamics display-
ing a renormalization arbitrarily close to any composition of Hénon-like maps. It is an 
improved and more developed7 version of the rescaling lemma from [29]. We recall that 
D denotes the closed unit disk of R2.

Rescaling Lemma 6.1. For every odd N ∈ N, for every r ≥ 1, for all L, δ > 0, and for 
every neighborhood UJ of J , there exist:

• an integer n > 1,
• symplectic diffeomorphisms Φ1, . . . , ΦN ∈ Diff∞

ω (R2) which are δ-close to the iden-
tity.

• a C∞-diffeomorphism Q : R2 → R2 with constant Jacobian satisfying Q(D) ⊂ UJ ,

such that for any functions ψ1, . . . , ψN ∈ Cr(R) whose Cr-norms are bounded by L, there 
exists a symplectic Cr-diffeomorphism f̂ which coincides with f on the complement of 
UJ and satisfies:

‖f̂ − f‖Cr < δ, (40)
Q−1 ◦ f̂n ◦Q|D = HψN

◦ ΦN ◦ · · · ◦Hψ1 ◦ Φ1|D , (41)

where Hψi
are the symplectic Hénon-like maps defined by (39). Moreover:

7 The current formulation includes many rounds near a homoclinic tangency; see also Remark 6.2.
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f̂m ◦Q(D) ∩Q(D) = ∅ for al m = 1, . . . , n− 1. (42)

Remark 6.2. It is important for us that the maps Φi in formula (41) are independent of 
the choice of the functions ψ1, . . . , ψN .

Corollary 6.3. Let r ≥ 1. Take any symplectic C∞-diffeomorphism F : D → R2. For any 
δ > 0, L > 0, and a neighborhood UJ of J , there exist:

• a C∞-diffeomorphism Q : R2 → R2 with constant Jacobian satisfying Q(D) ⊂ UJ ,
• a symplectic diffeomorphism F̂ : D → R2 which is δ-close to F in the C∞-metric,

such that for every function ψ ∈ Cr(R) with Cr-norm bounded by L, there exists a 
symplectic diffeomorphism f̂ , which is δ-close to f in the Cr-norm, coincides with f on 
the complement of UJ , and its renormalization at the disc Q(D) for some n ≥ 1 satisfies:

Q−1 ◦ f̂n ◦Q|D = Sψ ◦ F̂ , with Sψ : (x, y) �→ (x, y + ψ(x)), (43)

f̂m ◦Q(D) ∩Q(D) = ∅ for all m = 1, . . . , n− 1. (44)

Proof. By Theorem 2 of [57], every symplectic C∞-diffeomorphism of any two-
dimensional disc to R2 can be arbitrarily well approximated by a composition of an 
even number of Hénon-like maps of the form (39). In particular, for every δ > 0, for the 
given C∞-diffeomorphism F there exists an even number N ′ of functions ψ1, . . . , ψN ′

such that

dC∞(H−1
0 ◦ F,HψN′ ◦ · · · ◦Hψ1) <

δ

2 ,

where H0(x, y) = (y, −x) is the Hénon-like map associated to the zero function ψ in 
(39). Since H0 is just a linear rotation, it follows that

dC∞(F,H0 ◦HψN′ ◦ · · · ◦Hψ1) <
δ

2 , (45)

Note that the map Sψ defined in (43) satisfies Hψ = Sψ ◦H0. Since N ′ + 1 is odd, we 
can apply the Rescaling Lemma with N = N ′ + 1 and with the sequence of functions 
ψ1, . . . , ψN ′ and ψN ′+1 ≡ ψ. This gives us the perturbation f̂ to f such that (41) is 
fulfilled:

Q−1◦f̂n◦Q|D = HψN′+1◦ΦN ′+1◦· · ·◦Hψ1◦Φ1|D = Sψ◦H0◦ΦN ′+1◦· · ·◦Hψ1◦Φ1|D, (46)

for some n > 1. We recall that the Rescaling Lemma asserts that f̂ coincides with f on 
the complement of a small neighborhood UJ of J and that Q is a diffeomorphism with 
constant Jacobian such that Q(D) ⊂ UJ . By (46), we notice that (43) is satisfied with:
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F̂ = H0 ◦ ΦN ′+1 ◦HψN′ · · · ◦Hψ1 ◦ Φ1|D.

Since the maps Φi can be made as close to identity as we want, we can make

dC∞(F̂ ,H0 ◦HψN′ ◦ · · · ◦Hψ1) <
δ

2 ,

which implies, by (45), that F̂ lies in the δ-small C∞-neighborhood of F . Since the maps 
Φi are independent of the choice of ψ, it follows that F̂ is independent of the function ψ
either. Note that (44) follows from (42). �
Proof of Proposition 2.4. Take any L > 0, ε > 0, and any integer r > 0. Consider the 
set Fr,ε,L of maps F̂ ∈ Diff∞

ω (D, R2) such that for every function ψ ∈ Cr(R) whose 
Cr-norm is bounded by L, in the ε-neighborhood of f in Cr there exists a symplectic dif-
feomorphism f̂ for which some renormalized iteration equals to Sψ ◦ F̂ . By Corollary 6.3, 
the set Fr,ε,L is dense in Diff∞

ω (D, R2).

Claim 6.4. The set Fr,ε,L is open in Diff∞
ω (D, R2).

Proof. This is inferred from (44) by the following observation. Let F̂ satisfies (43) for 
some ψ, Q, and f̂ :

f̂ |Q(D) = f̂−(n−1) ◦Q ◦ Sψ ◦ F̂ ◦Q−1|Q(D).

Then, for any map F̃ close to F̂ , we take a map f̃ such that it equals to f̂ outside a 
small neighborhood of Q(D) and

f̃ |Q(D) = f̂−(n−1) ◦Q ◦ Sψ ◦ F̃ ◦Q−1|Q(D).

If F̃ is close enough to F̂ , then f̃ is close to f̂ too. So, by (44), the discs f̃m ◦Q(D) stay 
at a sufficient distance from Q(D) for all m = 1, . . . , n − 1, which means that f̃ ≡ f̂ in 
the disc f̃m ◦Q(D) for all m = 1, . . . , n − 1. By construction, this gives us

Q−1 ◦ f̃n ◦Q|D = Sψ ◦ F̃ ,

i.e., F̃ is a renormalized iteration of f̃ . As the map f̃ can be taken as close as we want 
to f̂ if F̃ is close enough to F̂ , we also have that dC∞(f̃ , f) < ε. Thus, every F̂ which is 
close enough to F̂ lies in Fr,ε,L. �

Now, we define the topologically generic set F ∈ Diff∞
ω (D, R2) from Proposition 2.4

as

F =
⋂

(r,m,L)∈N3

Fr, 1
m ,L. �
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In the following, we complete the proof of the main theorem by proving the Rescaling 
Lemma.

6.1. Local behavior near a nonlinear saddle

Denote as T0 the restriction of fs to a sufficiently small neighborhood of O. One 
can introduce symplectic C∞-coordinates (x, y) such that the local stable and unstable 
manifolds W s

loc(O) and Wu
loc(O) get straightened (i.e., they acquire equations y = 0 and 

x = 0, respectively) and the restrictions of T0 onto W s
loc(O) and Wu

loc(O) become linear 
(see Section 2.1 in [29]). This means that the map T0 : (x, y) �→ (x̄, ȳ) takes the following 
form

x̄ = λx + p(x, y)x, ȳ = λ−1y + q(x, y)y, (47)

where 0 < |λ| < 1 and

p(x, 0) = 0, q(0, y) = 0. (48)

Since T0 is symplectic, det(DT0) ≡ 1, so

(λ + ∂x(p(x, y)x))(λ−1 + ∂y(q(x, y)y)) − ∂yp(x, y)∂xq(x, y)xy ≡ 1,

and it is a trivial exercise to check that this identity and (48) imply

p(0, y) = 0, q(x, 0) = 0. (49)

Identities (48), (49) are important, because they imply nice uniform estimates for 
arbitrarily long iterations of T0. Namely, the following result holds true:

Lemma 6.5 (Lem. 7 in [30]). Let (47)-(49) hold. There exist α > 0 and a sequence of 
functions ξk, ηk from U0 := [−α, α]2 into R1, such that for all k large enough, we have 
for all (x, y), (x̃, ỹ) ∈ U0:

T k
0 (x, y) = (x̃, ỹ) ⇐⇒

[
x̃ = λkx + ξk(x, ỹ), y = λkỹ + ηk(x, ỹ)

]
. (50)

Moreover, the functions λ−kξk and λ−kηk are C∞-small when k is large:

∀ρ ≥ 1, ‖ξk, ηk‖Cρ = o(λk) as k → +∞ . (51)

This lemma means that arbitrarily long iterations of T0 are well approximated by the 
iterations of its linearization.

We will look for the perturbed map f̂ in the form f̂ = g ◦ f where g is a close to 
identity symplectic diffeomorphism. In our construction (g−id) will be supported outside 
of f(U0), so formulas (50) will stay valid for the perturbed map f̂ = g ◦ f with the same 
ξk, ηk, and λ.
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6.2. Formulas for the iterations near the homoclinic band

Recall that the homoclinic band J is assumed to be small enough, so that J∩fm(J) =
∅ for every m �= 0. This also implies that there exists an iteration J+ of J that lies in 
W s

loc(O) := (−α, α) ×{0} and an iteration J− that lies in Wu
loc(O) := {0} × (−α, α) such 

that f m̄(J−) = J+ for some m̄ > 0 and f j(J−) ∩ U0 = ∅ for j = 1, . . . , m̄− 1. We take 
α sufficiently small, so m̄ is sufficiently large, in particular m̄ > s (where s is the period 
of O). Let U+ ⊂ U0 and U− ⊂ U0 be sufficiently small neighborhoods of J+ and J−. As 
f−1(J+) lies outside U0, it follows that U+ ∩ f(U0) = ∅; similarly, f−1(U0) ∩ U− = ∅. 
Note also that

f j(U−) ∩ U0 = ∅ for j = 1, . . . , m̄− 1. (52)

As m̄ > s, we also have that

U+ ∩ T0(U0) = ∅. (53)

Denote

T1 := f m̄|U− .

Choose N different points M−
i := (0, y−i ) ∈ J− and put M+

i := (x+
i , 0) := T1M

−
i . 

The perturbation g = f̂ ◦f will be supported in a small neighborhood of the points M+
i . 

Thus, f̂ will coincide with f outside of U+. We could from the very beginning choose J
lying in W s

loc(O) sufficiently close to O, i.e., assume that J+ = J , Then the neighborhood 
UJ in the formulation of the Rescaling Lemma is the neighborhood U+, so the claim of 
the lemma that f̂ coincides with f in the complement of UJ will be fulfilled.

As J− ⊂ {0} × (−α, α) is sent to J+ ⊂ (−α, α) × {0}, the map T1 : (x̃, ỹ) �→ (x, y)
near the point M−

i = (0, y−i ) can be written in the form

x = x+
i + bi(ỹ− y−i )+ϕ1 i(x̃, ỹ− y−i ), y = (ci +di(ỹ− y−i )+ϕ2 i(x̃, ỹ− y−i )) x̃, (54)

where the C∞-functions ϕ1 i and ϕ2 i satisfy

ϕ1 i(0) = 0, ∂yϕ1 i(0) = 0, ϕ2 i(0) = 0, ∂yϕ2 i(0) = 0. (55)

Obviously, this implies that

ϕj i(x̃, ỹ − y−i ) = O(|x̃|) + o(|ỹ − y−i |),

∂yϕj i(x̃, ỹ − y−i ) = o(1)(x̃,ỹ−y−
i )→0 , j = 1, 2.

(56)

Note also that the area-preservation property of T1 implies that the coefficients bi, ci
in (54) satisfy
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Fig. 6. Rescaling coordinates.

bici = −det(DT1(M−
i )) = −1. (57)

6.3. Scaling transformation

We will further assume that the indices i are defined modulo N , i.e. hereafter i +1 ≡ 1
if i = N and i − 1 ≡ N if i = 1. We will need a sequence of positive real numbers Ri, 
i = 1, . . . N , that satisfy

R1 = 1, Ri+1 = −ci+1biRi−1. (58)

Such sequence indeed exists when N is odd: we define Ri by (58) inductively: R1, R3,
... , RN , R2, ... , RN−1, until we arrive to RN+1 = (−1)N

∏N
i=1 ci

∏N
i=1 bi and notice that 

the constraint RN+1 = R1 is satisfied by virtue of (57).
We now perform affine rescaling of the coordinates (x, y) near the points M+

i and (x̃, ỹ)
near the points M−

i . First, we chose a decreasing sequence (μk)k of scaling constants 
μk ∈ (0, 1) which converges to 0 sub-exponentially. In particular, for every ρ ≥ 1, it 
holds:

μk → 0 and λk · μ−ρ
k → 0 when k → ∞ . (59)

Next, we take a sufficiently large integer k and define coordinate transformations

Qik : (Xi, Yi) �→ (x, y) and Q̃ik : (X̃i, Ỹi) �→ (x̃, ỹ) ,

by the following rule:

x = x+
i + biRi−1μkXi, y = λk(y−i+1 + γi k + RiμkYi), (60)



P. Berger, D. Turaev / Advances in Mathematics 349 (2019) 1234–1288 1281
x̃ = λk(x+
i−1 + βi k + bi−1Ri−2μkX̃i), ỹ = y−i + Ri−1μkỸi, (61)

where the constant terms γi k and βi k are given by

βi k = ξk(x+
i−1, y

−
i )λ−k, γi k = ηk(x+

i , y
−
i+1)λ

−k. (62)

It is obvious that given any real number L̂, if k is large enough, then the map Qik sends 
the disc D̂ := {X2 + Y 2 ≤ L̂2} into a small neighborhood of M+

i , whereas the map Q̃ik

sends D̂ into a small neighborhood of M−
i . Indeed, γi k → 0 and βi k → 0 as k → +∞, 

by virtue of (51), and λk → 0, μk → 0 by (59). Therefore, when k → ∞, for any (Xi, Yi)
and (X̃i, Ỹi) in D̂, when k → ∞, the following limits holds true: (x, y) → (x+

i , 0) = M+
i

in (60) and (x̃, ỹ) → (0, y−i ) = M−
i in (61).

Note that the map Q1k will be the map Q in the statement of the Rescaling Lemma.

Next, we are going to derive formulas (see (64),(77)) for the maps Q−1
i+1,kT1Q̃i+1,k and 

Q̃−1
i+1,kT

k
0 Qik for the original map f and the perturbed map f̂ . As the composition:

(Q−1
N+1,kT1Q̃N+1,k)(Q̃−1

N+1,kT
k
0 QNk) ◦ · · · (Q−1

i+1,kT1Q̃i+1,k)(Q̃−1
i+1,kT

k
0 Qik) ◦ · · · ◦

(Q−1
2,kT1Q̃2,k)(Q̃−1

2,kT
k
0 Q1k)

equals to Q−1
1k ◦ f̂n ◦ Q1k for n = N(ks + m̄), we will obtain formula (41) in this way 

and, thus, prove the Rescaling Lemma.

6.4. Renormalized iterations of the unperturbed map

We start with the map Q̃−1
i+1,kT

k
0 Qi, i.e., the map T k

0 in the rescaled coordinates.

Lemma 6.6. Take any L̂ > 0 and let D̂ be the disc {X2 + Y 2 ≤ L̂2} in R2. For every 
sufficiently large k there exist two real functions ξ̂ik, η̂ik on D̂, which vanish at zero and 
satisfy for every ρ ≥ 1:

‖ξ̃ik, η̃ik‖Cρ = o(1)k→+∞, (63)

such that for every (Xi, Yi) ∈ D̂ the points T j
0Qik(Xi, Yi) lie in U0 for all j = 1, . . . k, 

and (X̃i+1, Ỹi+1) = Q̃−1
i+1,kT

k
0 Qik is given by

X̃i+1 = Xi + ξ̃ik(Xi, Yi),
Ỹi+1 = Yi + η̃ik(Xi, Yi).

(64)

Proof. We will use the notation (xi, yi) = Qik(Xi, Yi) and (x̃i+1, ỹi+1) = Q̃i+1,k(Xi+1,

Yi+1) = T k
0 (xi, yi). By (50), (60) and (61), the first k iterations of (xi, yi) by T0 lie in U0

if and only if:
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⎧⎪⎨
⎪⎩

x̃i+1 = λkxi + ξk(xi, ỹi+1), yi = λkỹi+1 + ηk(xi, ỹi+1),
xi = x+

i + biRi−1μkXi, yi = λk(y−i+1 + γi k + RiμkYi),
x̃i+1 = λk(x+

i + βi+1 k + biRi−1μkX̃i+1), ỹi+1 = y−i+1 + RiμkỸi+1.

(65)

Thus,

λk(βi+1 k + biRi−1μkX̃i+1) = λkbiRi−1μkXi + ξk(x+
i + biRi−1μkXi, y

−
i+1 + RiμkỸi+1),

λk(γi k + RiμkYi) = λkRiμkỸi+1 + ηk(x+
i + biRi−1μkXi, y

−
i+1 + RiμkỸi+1).

(66)

Using the definition of βi+1 k and γi k, given in (62), we can see from formula (66) that 
the zero value of (Xi, Yi) corresponds to the zero value of (X̃i+1, Ỹi+1). So, we can rewrite 
(66) as

μkX̃i+1 = μkXi + ξ′ik(μkXi, μkỸi+1), μkYi = μkỸi+1 + η′ik(μkXi, μkỸi+1),

where, as follows from (51) and (59), the functions ξ′ik, η′ik uniformly tend to zero in the 
C∞-topology as k → +∞; moreover, they vanish when (Xi, Ỹi+1) = 0. So, we have that

X̃i+1 = Xi + ξ̃′ik(Xi, Ỹi+1), Yi = Ỹi+1 + η̃′ik(Xi, Ỹi+1), (67)

where the functions ξ̃′ik(·) = μ−1
k ξ̃′ik(μk·) and η̃′ik(·) = μ−1

k η̃′ik(μk·) are C∞-small, and 
these functions vanish at zero. By the implicit function theorem, the second equation of 
(67) defines Ỹi+1 as a vanishing at zero function of (Xi, Yi) which is uniformly smooth. 
Therefore, formula (67) gives us the result of the lemma (i.e., relations (63) and (64)) 
with ξ̃ik(Xi, Yi) := ξ̃′ik(Xi, Ỹi+1) and η̃ik(Xi, Yi) := −η̃′ik(Xi, Ỹi+1). �

As the next step, we consider the map Q−1
i+1,kT1Q̃i+1,k (the map T1 in the rescaled 

coordinates) for the unperturbed map f .

Lemma 6.7. There are two real functions φ̃1ik, φ̃2ik on the disc D̂ := {X̃2 + Ỹ 2 ≤ L̂2}
satisfying:

φ̃1ik
C∞
−→0 and φ̃2ik

C∞
−→0 as k → ∞, (68)

such that for every (X̃i+1, Ỹi+1) ∈ D̂ sent to (Xi+1, Yi+1) by Q−1
i+1,kT1Q̃i+1,k we have

Xi+1 = Ỹi+1 + φ̃1ik(X̃i+1, Ỹi+1), Yi+1 = Cikμ
−1
k +AiỸi+1 − X̃i+1 + φ̃2ik(X̃i+1, Ỹi+1),

(69)
where the constants8 Cik = [ci+1(x+

i +βi+1 k) − y−i+2 − γi+1 k]/Ri+1 and Ai = di+1(x+
i +

βi+1,k)Ri/Ri+1 are uniformly bounded for all k.

8 See (54) and (60) for the definition of the coefficients in these formulas.
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Proof. By definition, Qi+1,k(Xi+1, Yi+1) = T1Q̃i+1,k(X̃i+1, Ỹi+1). Let (xi+1, yi+1) :=
Qi+1,k(Xi+1, Yi+1) and (x̃i+1, ỹi+1) = Q̃i+1,k(Xi+1, Yi+1). By (54), (60), and (61)
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

xi+1 = x+
i+1 + bi+1(ỹi+1 − y−i+1) + ϕ1 i+1(x̃i+1, ỹi+1 − y−i+1),

yi+1 = x̃i+1(ci+1 + di+1(ỹi+1 − y−i+1) + ϕ2 i+1(x̃i+1, ỹi+1 − y−i+1)),
xi+1 = x+

i+1 + bi+1RiμkXi+1, yi+1 = λk(y−i+2 + γi+1 k + Ri+1μkYi+1) ,
x̃i+1 = λk(x+

i + βi+1 k + biRi−1μkX̃i+1), ỹi+1 = y−i+1 + RiμkỸi+1 .

We replace xi+1 and yi+1 in the first and second lines by their expressions from the third 
line, and then eliminate the term x+

i+1 which now appears on both sides of the first line. 
This gives us
⎧⎪⎨
⎪⎩

bi+1RiμkXi+1 = bi+1(ỹi+1 − y−i+1) + ϕ1 i+1(x̃i+1, ỹi+1 − y−i+1),
λk(y−i+2 + γi+1 k + Ri+1μkYi+1) = x̃i+1(ci+1 + di+1(ỹi+1 − y−i+1) + ϕ2 i+1(x̃i+1, ỹi+1 − y−i+1)),

x̃i+1 = λk(x+
i + βi+1 k + biRi−1μkX̃i+1), ỹi+1 − y−i+1 = RiμkỸi+1 .

We can now isolate the terms Xi+1 and Yi+1, and replace ỹi+1 − y−i+1 by its expression 
RiμkỸi+1 from the last line:

⎧⎪⎨
⎪⎩

Xi+1 = Ỹi+1 + 1
bi+1Riμk

ϕ1 i+1(x̃i+1, RiμkỸi+1),

Yi+1 = −y−
i+2+γi+1 k

Ri+1μk
+ x̃i+1

λkRi+1μk
(ci+1 + di+1RiμkỸi+1 + ϕ2 i+1(x̃i+1, RiμkỸi+1)),

x̃i+1 = λk(x+
i + βi+1 k + biRi−1μkX̃i+1) .

Replacing x̃i+1 in the first and second line by the right-hand side of the third line, we 
obtain

Xi+1 = Ỹi+1 + φ̃1ik(X̃i+1, Ỹi+1),

Yi+1 = Cikμ
−1
k + AiỸi+1 + ci+1biRi−1

Ri+1
X̃i+1 + φ̃2ik(X̃i+1, Ỹi+1) ,

(70)

where the coefficients Cik and Ai are as defined in the statement of the lemma, and

φ̃1ik(X̃i+1, Ỹi+1) = 1
bi+1Ri

ϕ̃1ik(X̃i+1, Ỹi+1), (71)

lφ̃2ik(X̃i+1, Ỹi+1) = x+
i + βi+1 k + biRi−1μkX̃i+1

Ri+1
ϕ̃2ik(X̃i+1, Ỹi+1)

+ biRi−1X̃i+1

Ri+1
di+1RiμkỸi+1,

(72)

where

ϕ̃jik(X̃i+1, Ỹi+1) = μ−1
k ϕj i+1(λk(x+

i + βi+1 k + biRi−1μkX̃i+1), RiμkỸi+1), j = 1, 2.

(73)
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Since the coefficient ci+1biRi−1
Ri+1

in the second equation of (70) equals to −1 by (58), 
formula (70) gives us the lemma (cf. formula (69)), once we show that the functions φ̃jik

defined by (71),(72) satisfy (68). To do this, we just need to notice that for every given 
ρ, the Cρ-norms of the functions ϕ̃ijk defined by (73) tend to zero as k → +∞. Indeed, 
since the C∞-functions ϕj i+1 are independent of k, all their derivatives up to the order 
ρ are uniformly bounded. Therefore, the derivatives ∂ρϕ̃jik

(∂X̃i+1)ρ−σ(∂Ỹi+1)σ
are estimated as 

O(λ(ρ−σ)kμσ−1
k ). Hence, by (59), all the derivatives of order 2 and higher tend to zero 

as k → +∞, as well as the first derivative with respect to X̃i+1. From (56)-(59), we also 
have that ϕ̃jik = o(1)k→+∞ and ∂Ỹi+1

ϕ̃jik = o(1)k→+∞, and the required C∞-smallness 
of the functions ϕ̃ijk follows. �
6.5. Construction of the perturbation g

The perturbation we will now add to the map f does not change the map T0 (because 
the perturbed map f̂ equals to g ◦ f where g will be supported in U+ which does not 
intersect f(U0), so the difference f̂−f is supported outside of U0). Therefore, Lemma 6.6
and its formula (64) for Q̃−1

i+1,kT
k
0 Qik remains the same when f is replaced by the per-

turbed map f̂ . The map T1 will be affected by the perturbation, hence Lemma 6.7 and 
its formula (69) for the map Q−1

i+1,kT1Q̃i+1,k will be modified. In order to construct the 
perturbation map g, we take the functions ψ1, . . . , ψN from the statement of the lemma 
and define

ψ̂i+1 : x �→ − λkCikRi+1 − λkAiRi+1

bi+1Ri
(x− x+

i+1)

+ λkμkRi+1ψi(μ−1
k (x− x+

i+1)/(bi+1Ri)),
(74)

where the constants Cik, Ai are the same as in (69). As condition (59) implies that 
|λ|k = o(μr

k), we have

‖ψ̂i+1‖Cr = o(μk) → 0 as k → +∞.

Recall that we use the notation (x, y) for the non-rescaled coordinates near the set 
{M+

i ; 1 ≤ i ≤ N} = {(x+
i , 0); 1 ≤ i ≤ N} ⊂ Wu

loc(O). Take ε > 0 and define neighbor-
hoods Vi and V ′

i ⊂ Vi of the homoclinic points M+
i :

Vi := [−ε, ε]2 + M+
i = [−ε + x+

i , ε + x+
i ] × [−ε, ε] V ′

i := [−ε/2, ε/2]2 + M+
i .

We assume that ε is small enough, so the discs Vi all lie in U+ and are mutually disjoint. 
Denote V ′ = �iV

′
i and V = �iVi, so V ′ ⊂ V . We choose k large enough, so Qik(D̂) ⊂ V ′

i , 
where D̂, the domain of the rescaling coordinates, is the disc from the formulation of 
Lemmas 6.6 and 6.7. Below we define the perturbation map g such that the support of 
g − id lies in V .
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Let Ψ ∈ C∞(�i[−ε + x+
i , ε + x+

i ], R) be such that its derivative DΨ, in restriction to 
[−ε + x+

i , ε + x+
i ], satisfies DΨ = ψ̂i. Let ρ ∈ C∞(R, [0, 1]) be the bump function equal 

to 1 identically in V ′ and equal to 0 identically outside of V . Let the perturbation map 
g be equal to the time-1 map for the differential equation

ẋ = −Ψ(x)∂yρ(x, y), ẏ = DΨ(x)ρ(x, y) + Ψ(x)∂xρ(x, y).

This is a Hamiltonian system in R2 (with the Hamiltonian −Ψ(x)ρ(x, y)), so g is a 
symplectic diffeomorphism. Since ‖ψ̂i‖Cr → 0 as k → +∞, it follows that ‖g − id‖Cr

can be made smaller than any given constant δ if k is taken sufficiently large. Note also 
that the support of g− id lies in V ⊂ U+. All this is in agreement with the statement of 
Rescaling Lemma.

By construction, the restriction of g to V ′
i is given by

g|V ′
i

: (x, y) �→ (x, y + ψ̂i(x)). (75)

Plugging this into (54), we find that for the perturbed map f̂ = g ◦ f the transition map 
T1 = f̂m = g ◦ fm from a neighborhood of M−

i+1 to a neighborhood of M+
i+1 is given by

x = x+
i+1 + bi+1(ỹ − y−i+1) + ϕ1 i+1(x̃, ỹ − y−i+1),

y = ψ̂i+1(x) + x̃(ci+1 + di+1(ỹ − y−i+1) + ϕ2 i+1(x̃, ỹ − y−i+1)),
(76)

with the same functions (ϕ1 i+1, ϕ2 i+1) and coefficients x+
i+1, y

−
i+1, bi+1, ci+1, di+1 as 

for the unperturbed map f , and with the single additional term ψ̂i+1(x) in the second 
equation. Therefore, because the rescaling map Qi+1,k is affine, the only correction to 
the map Q−1

i+1,kT1Q̃i+1,k due to this perturbation will be the additional term

DQ−1
i+1,k ◦ (0, ψ̂i+1) ◦Qi+1,k(Xi+1, Yi+1) = (0, λ−kμ−1

k R−1
i+1ψ̂i+1(x+

i+1 + bi+1RiμkXi+1))

in the right-hand side of the respective equations in (69) (we use here the rescaling 
formula (60) with i replaced by i + 1; DQ denotes the linear part of the affine map Q). 
By (74), this formula can be rewritten as

DQ−1
i+1,k ◦ (0, ψ̂i+1) ◦Qi+1,k(Xi+1, Yi+1) = (0, −μ−1

k Cik −AiXi+1 + ψi(Xi+1)),

so the equation (69) for the map Q−1
i+1,kT1Q̃i+1,k changes to

Xi+1 = Ỹi+1 + φ̃1ik(X̃i+1, Ỹi+1),
Yi+1 = −X̃i+1 + ψi(Xi+1) + φ̃2ik(X̃i+1, Ỹi+1) −Aiφ̃1ik(X̃i+1, Ỹi+1).

(77)

By this formula and formula (64) from Lemma 6.6, the map T1T
k
0 = f̂ m̄+sk = g◦f m̄+sk

from a small neighborhood of M+
i to a small neighborhood of M+

i+1 is written, in the 
rescaled coordinates, as
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Xi+1 = Yi + φ1ik(Xi, Yi), Yi+1 = −Xi + ψi(Xi+1) + φ2ik(Xi, Yi), (78)

where

φ1ik = η̂ik+φ̃1ik◦(id+(ξik, ηik)), φ2ik = −ξ̂ik+(φ̃2ik−Aiφ̃1ik)◦(id+(ξik, ηik)). (79)

By (63),(68), the functions φ1ik, φ2ik tend to zero uniformly in C∞ on any compact as 
k → +∞. Importantly, the functions (φ1ik, φ2ik)i do not depend on the choice of the 
perturbation functions (ψi)i.

Formula (78), in fact, completes the proof of the Rescaling Lemma. Indeed, it can be 
rewritten as

(Xi+1, Yi+1) = Hψi
◦ Φi(Xi, Yi),

where

Φi(Xi, Yi) = (Xi − φ2ik(Xi, Yi), Yi + φik(Xi, Yi)).

Thus, the map (T1T
k
0 )N from a small neighborhood of M+

1 takes indeed the required 
form (41) in the coordinates (X, Y ) = Q−1

1k (x, y). In order to prove relation (44) (with 
Q = Q1k and n = N(ks + m̄)), note that the functions ψi are uniformly bounded by the 
constant L, and the functions φjik are small, so for any given constant Li the image of 
the disc {X2

i +Y 2
i ≤ L2

i } by the map (78) lies inside the disc {X2
i+1+Y 2

i+1 ≤ L2
i+1} where 

Li+1 = Li+L +1. Therefore, the images of the unit disc D by the first N iterations of (78)
lie in the disc D̂ from Lemmas 6.6 and 6.7 if its radius L̂ satisfies L̂ > N(L +1). In other 
words, f̂ i(ks+m̄)◦Q1k(D) ⊂ Qi+1,k(D̂) ⊂ Vi+1 ⊂ U0 for all i = 0, . . . , N−1. Since the discs 
Vi are mutually disjoint, we have that f̂ i(ks+m̄)◦Q1k(D) ∩Q1k(D) for all i = 0, . . . , N−1. 
The images f̂m ◦Q1k(D) with m �= i(ks + m̄) cannot intersect Q1k(D) too, because they 
lie outside of U+ by construction. Indeed, by Lemma 6.6, f̂ lsQik(D̂) = T l

0Qik(D̂) ⊂
U0 ∩ T0U0 for l = 1, . . . , k – this implies that f̂ jQik(D̂) ∩ U+ = ∅ for 1 ≤ j ≤ ks (see 
(53)), and f̂ksQik(D̂) ⊂ U− – this implies that f̂ks+jQik(D̂) ∩U+ = ∅ for j = 1, . . . , m −1
(see (52)). Thus, relation (44) is fulfilled for all m = 1, . . . , N(ks + m̄) − 1, as required.

References

[1] D.V. Anosov, Geodesic flows on closed Riemannian manifolds of negative curvature, Tr. Mat. Inst. 
Steklova 90 (1967) 209.

[2] D.V. Anosov, A.B. Katok, New examples in smooth ergodic theory. Ergodic diffeomorphisms, Tr. 
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