Математические заметки

том 81 выпуск 1 январь 2007

УДК 512.74

ОБ ЭЛЕМЕНТАРНОМ ПРЕПЯТСТВИИ К СУЩЕСТВОВАНИЮ РАЦИОНАЛЬНЫХ ТОЧЕК

А. Н. Скоробогатов

В этой работе дифференциалы спектральной последовательности, сходящейся к группе Брауэра—Гротендика алгебраического многообразия X над произвольным полем, интерпретируются как \cup -произведение с классом так называемого "элементарного препятствия". В свою очередь, этот класс тесно связан с классом когомологий многообразия Альбанезе X степени 1. В случае, когда X — однородное пространство алгебраической группы, элементарное препятствие явно описывается в терминах естественных когомологических инвариантов X. Это сводит задачу вычисления группы Брауэра—Гротендика к вычислению некоторого спаривания в когомологиях Галуа.

Библиография: 20 названий.

Введение. Пусть X – гладкое алгебраическое многообразие над произвольным полем k характеристики 0. Когомологическая группа Брауэра–Гротендика $\operatorname{Br} X = H^2_{\operatorname{\acute{e}t}}(X,\mathbb{G}_m)$ важна в силу своей бирациональной инвариантности; если же k – числовое поле, то с элементами $\operatorname{Br} X$ связаны условия, которым удовлетворяют образы k-точек X в пространстве адельных точек X (препятствие Манина–Брауэра). Для вычисления $\operatorname{Br} X$ используется спектральная последовательность Хохшильда—Серра

$$H^{p}(k, H^{q}_{\text{\'et}}(\overline{X}, \mathbb{G}_{m})) \Rightarrow H^{p+q}_{\text{\'et}}(X, \mathbb{G}_{m}),$$
 (0.1)

где через \overline{X} обозначается многообразие над алгебраическим замыканием \bar{k} , полученное из X подъемом основного поля, а через $H^i(k,\,\cdot\,)$ – когомологии Галуа поля k. Предположим, что на \overline{X} нет обратимых, всюду регулярных функций, отличных от констант. Чтобы вычислить факторгруппу группы Брауэра Br X по модулю группы Брауэра основного поля Br k при помощи этой спектральной последовательности, нужно знать группу Пикара Pic \overline{X} , группу Брауэра Br \overline{X} вместе с действием на них группы Галуа $\Gamma = \operatorname{Gal}(\bar{k}/k)$, а также дифференциалы

$$\begin{split} d_2^{1,1} \colon H^1(k, \operatorname{Pic} \overline{X}) &\to H^3(k, \bar{k}^*), \qquad d_2^{0,2} \colon (\operatorname{Br} \overline{X})^{\Gamma} \to H^2(k, \operatorname{Pic} \overline{X}), \\ d_3^{0,2} \colon \operatorname{Ker}(d_2^{0,2}) &\to H^3(k, \bar{k}^*). \end{split}$$

Вычисление упрощается в следующих случаях:

• Br $(\overline{X})=0$ (это эквивалентно тому, что все циклы в $H^2(\overline{X},\mathbb{Q}_\ell(1))$ алгебраические, а группа $H^3(\overline{X},\mathbb{Z}_\ell(1))$ не имеет кручения ни при каких ℓ ; см. [1; п. III.8]);

- на X имеется 0-цикл степени 1, определенный над k, например, k-точка (в этом случае $d_2^{1,1}=0,$ см. далее п. 1);
- $H^3(k, \bar{k}^*) = 0$ (это так, если k числовое или локальное поле).

В литературе часто встречаются формулы для $\operatorname{Br} X$, опирающиеся на эти упрощающие предположения. Наша цель в этой работе — дать некоторый ответ на вопрос о том, что можно сказать о группе Брауэра без этих дополнительных предположений.

Мы докажем в общем случае (см. предложение 1.1), что с точностью до знака дифференциалы $d_2^{i,1}$ совпадают с \cup -произведением с классом e(X), который отличается только знаком от класса естественного 2-расширения модулей Галуа

$$1 \to \bar{k}^* \to \bar{k}(X)^* \to \operatorname{Div} \overline{X} \to \operatorname{Pic} \overline{X} \to 0.$$

Это расширение рассматривалось Ж.-Л. Кольо-Теленом и Ж.-Ж. Сансюком [2] в связи с тем, что условие e(X)=0, эквивалентное существованию Галуа-эквивариантного сечения гомоморфизма $\bar{k}^* \to \bar{k}(X)^*$, является необходимым условием для существования на X рациональных точек (а также 0-циклов степени 1, определенных над k). Класс e(X) называется "элементарным препятствием" к существованию рациональных точек на X. В случае, когда $\operatorname{Pic} \overline{X}$ не имеет кручения, обращение в нуль e(X) есть необходимое и достаточное условие для существования универсальных торсоров на X, а в общем случае из него следует существование торсоров любого данного типа (см. [2] или [3; гл. 2]). Из предложения 1.1 вытекает формула для "алгебраической" части $\operatorname{Br} X$ в терминах когомологий Галуа (следствие 1.2).

Предположим дополнительно, что X – проективное многообразие. Пусть J – многообразие Пикара X; группа \bar{k} -точек J отождествляется с компонентой ${\rm Pic}^0$ \overline{X} группы Пикара \overline{X} , параметризующей классы дивизоров, алгебраически эквивалентных нулю. Пусть A – многообразие Альбанезе X; оно двойственно J как абелево многообразие. Выбор \bar{k} -точки на X задает отображение Альбанезе $\overline{X} \to \overline{A}$, переводящее эту точку в нуль. Это отображение спускается до отображения $X \to D$, где D – некоторое главное однородное пространство со структурной группой A, определенное над k. Обозначим его класс $\delta(X) \in H^1(k,A)$. Классы e(X) и $\delta(X)$ тесно связаны между собой (см. предложение 2.1).

Пусть теперь X — кривая; тогда J=A и $J(\bar k)={\rm Pic}^0\,\overline X$ параметризует классы дивизоров степени 0, а $D(\bar k)={\rm Pic}^1\,\overline X$ — классы дивизоров степени 1 на X. Из предложения 2.1 получается формула для группы Брауэра кривой X: изоморфизм Барзотти—Вейля задает естественное спаривание

$$H^{1}(k, J) \times H^{1}(k, J) \to H^{3}(k, \bar{k}^{*}),$$

причем $(\delta(X), \delta(X)) = 0$; наш результат (теорема 2.2) состоит в том, что факторгруппа Br X по образу группы Брауэра поля Br k канонически изоморфна факторгруппе ортогонального дополнения $\delta(X)^{\perp} \subset H^1(k,J)$ по циклической подгруппе, порожденной $\delta(X)$.

Сходные формулы получаются и в случае, когда X – главное однородное пространство полупростой алгебраической группы или однородное пространство односвязной полупростой группы со связными стабилизаторами (см. предложения 3.1 и 3.2).

Результаты настоящей работы используются в статье М. В. Борового, Ж.-Л. Кольо-Телена и автора [4], где доказана эквивалентность зануления элементарного препятствия e(X) и инъективности естественного отображения $\operatorname{Br} K \to \operatorname{Br} X$, когда k

локальное поле. Если X – однородное пространство связной алгебраической группы со связными стабилизаторами над локальным полем, то из зануления e(X) следует наличие на X рациональных точек. В [4] получены также аналоги этих результатов для случая числовых и ряда других полей. Например, если k – числовое поле, а на X имеются точки всюду локально, то из зануления e(X) следует тривиальность части препятствия Манина к принципу Хассе, а именно той его части, которая связана с подгруппой локально постоянных классов. Обратное утверждение верно, если $\operatorname{Pic}\overline{X}$ – конечно порожденная абелева группа без кручения [2], но в общем случае вопрос об эквивалентности этих двух утверждений, по-видимому, открыт 1.

1. Предложение из гомологической алгебры. Пусть \mathscr{Y} и \mathscr{X} – абелевы категории с достаточным количеством инъективных объектов, и $f: \mathscr{Y} \to \mathscr{X}$ – точный слева аддитивный функтор, у которого есть левый присоединенный функтор f^* . Пусть $\mathscr{E} \in \mathrm{Ob}(\mathscr{Y})$, $\mathscr{M} \in \mathrm{Ob}(\mathscr{X})$. Спектральная последовательность

$$E_2 = \operatorname{Ext}_{\mathscr{X}}^p(\mathscr{M}, R^q f_* \mathscr{E}) \Rightarrow \operatorname{Ext}_{\mathscr{Y}}^{p+q}(f^* \mathscr{M}, \mathscr{E})$$
(1.1)

является частным случаем спектральной последовательности композиции функторов. Наша цель состоит в описании дифференциалов

$$d_2^{i,j} \colon \operatorname{Ext}^i_{\mathscr{X}}(\mathscr{M}, R^j f_* \mathscr{E}) \to \operatorname{Ext}^{i+2}_{\mathscr{X}}(\mathscr{M}, R^{j-1} f_* \mathscr{E})$$

в терминах U-произведения. Рассмотрим вспомогательную спектральную последовательность

$$\operatorname{Ext}_{\mathscr{X}}^{p}(R^{j}f_{*}\mathscr{E}, R^{q}f_{*}\mathscr{E}) \Rightarrow \operatorname{Ext}_{\mathscr{Y}}^{p+q}(f^{*}(R^{j}f_{*}\mathscr{E}), \mathscr{E}), \tag{1.2}$$

являющуюся частным случаем (1.1) при $\mathcal{M} = R^j f_* \mathcal{E}$, и ее дифференциал

$$\partial=\partial_2^{0,j}\colon\operatorname{Hom}_{\mathscr{X}}(R^jf_*\mathscr{E},R^jf_*\mathscr{E})\to\operatorname{Ext}^2_{\mathscr{X}}(R^jf_*\mathscr{E},R^{j-1}f_*\mathscr{E}).$$

Образ тождественного морфизма $\mathrm{Id}_j \in \mathrm{Hom}_{\mathscr{X}}(R^j f_* \mathscr{E}, R^j f_* \mathscr{E})$ дает выделенный элемент $\partial(\mathrm{Id}_j) \in \mathrm{Ext}^2_{\mathscr{X}}(R^j f_* \mathscr{E}, R^{j-1} f_* \mathscr{E})$. Следующее предложение, возможно, хорошо известно специалистам, но мы приведем его с полным доказательством, так как нам не удалось отыскать его в существующей литературе.

Предложение 1.1. Для любых $i\geqslant 0,\, j\geqslant 1\,$ и любого $\alpha\in \mathrm{Ext}^i_{\mathscr{X}}(\mathscr{M},R^jf_*\mathscr{E})$

$$d_2^{i,j}(\alpha) = (-1)^i \alpha \cup \partial(\mathrm{Id}_j),$$

 $rde \cup ecmb\ cnapuвaниe\ reve{M}$ онеды:

$$\operatorname{Ext}^{i}_{\mathscr{X}}(\mathscr{M}, R^{j}f_{*}\mathscr{E}) \times \operatorname{Ext}^{2}_{\mathscr{X}}(R^{j}f_{*}\mathscr{E}, R^{j-1}f_{*}\mathscr{E}) \to \operatorname{Ext}^{i+2}_{\mathscr{X}}(\mathscr{M}, R^{j-1}f_{*}\mathscr{E}).$$

Замечание. Для i = 0, j = 1 наше утверждение есть лемма 1.А.4 работы [2].

Доказательство. Сначала рассмотрим случай i=1. Пусть

$$0 \to R^j f_* \mathcal{E} \to \mathcal{N} \to \mathcal{M} \to 0 \tag{1.3}$$

– расширение, класс которого в $\operatorname{Ext}^1_{\mathscr X}(\mathscr M,R^jf_*\mathscr E)$ есть α . Обозначим через d связывающий гомоморфизм длинной точной последовательности Ext'ов от первого аргумента, задаваемой последовательностью (1.3). По определению спаривания Йонеды

 $^{^{1}}$ Положительный ответ на этот вопрос недавно получен О. Виттенбергом (О. Wittenberg).

для $\xi \in \operatorname{Ext}_X^2(R^jf_*\mathscr E, R^{j-1}f_*\mathscr E)$ имеем $\alpha \cup \xi = d(\xi)$. Докажем, что следующая диаграмма антикоммутативна:

$$\operatorname{Hom}_{\mathscr{X}}(R^{j}f_{*}\mathscr{E}, R^{j}f_{*}\mathscr{E}) \xrightarrow{\partial} \operatorname{Ext}_{\mathscr{X}}^{2}(R^{j}f_{*}\mathscr{E}, R^{j-1}f_{*}\mathscr{E})$$

$$\downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad (1.4)$$

$$\operatorname{Ext}_{\mathscr{X}}^{1}(\mathscr{M}, R^{j}f_{*}\mathscr{E}) \xrightarrow{d_{2}^{1,j}} \operatorname{Ext}_{\mathscr{X}}^{3}(\mathscr{M}, R^{j-1}f_{*}\mathscr{E})$$

Отсюда следует утверждение предложения для i=1. Для доказательства рассмотрим произвольную точную последовательность в \mathscr{X} :

$$0 \to A \to B \to C \to 0. \tag{1.5}$$

Пусть $\mathscr{D}^+(\mathscr{X})$ – производная категория ограниченных снизу комплексов и

$$\cdots \to C^{\bullet}[-1] \to A^{\bullet} \to B^{\bullet} \to C^{\bullet} \to \cdots$$

— выделенный треугольник в $\mathscr{D}^+(\mathscr{X})$, задаваемый (1.5). Для любого $F \in \mathscr{D}^+(\mathscr{X})$, $i \in \mathbb{Z}$, функторы обрезания задают выделенные треугольники

$$\cdots \to \tau_{\leq i-1}(F) \to F \to \tau_{\geq i}(F) \to \cdots$$

Мы получаем следующую естественную диаграмму в производной категории абелевых групп:

Эта диаграмма антикоммутативна [5; предложение 1.1.11]. В частном случае, когда $F = \tau_{[j-1,j]}(Rf_*\mathscr{E})$, а в качестве точной последовательности (1.5) берется (1.3), получается антикоммутативная диаграмма

$$\mathbb{R} \operatorname{Hom}_{\mathscr{X}}((R^{j} f_{*} \mathscr{E})^{\bullet}, \tau_{[j]}(R f_{*} \mathscr{E})) \longrightarrow \mathbb{R} \operatorname{Hom}_{\mathscr{X}}((R^{j} f_{*} \mathscr{E})^{\bullet}, \tau_{[j-1]}(R f_{*} \mathscr{E}))[1]$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad$$

Искомая антикоммутативная диаграмма (1.4) получается отсюда переходом к группам когомологий степени j. Действительно, отождествление объектов и вертикальных стрелок не вызывает затруднений, а тот факт, что дифференциалы в спектральной последовательности композиции функторов получаются из связывающих гомоморфизмов обрезанных комплексов, легко выводится из явной конструкции этой спектральной последовательности при помощи инъективной резольвенты Картана—Эйленберга (см., например, [6; приложение B]).

Для доказательства предложения при i>1 достаточно разложить i-кратное расширение α в произведение однократных расширений и применить только что доказанное утверждение i раз.

Осталось разобрать случай i=0. Тогда $\alpha\in \operatorname{Hom}_{\mathscr{X}}(\mathscr{M},R^jf_*\mathscr{E})$. Из функториальности спектральной последовательности (1.2) по первому аргументу вытекает коммутативность диаграммы

$$\begin{array}{ccc} \operatorname{Hom}_{\mathscr{X}}(R^{j}f_{*}\mathscr{E},R^{j}f_{*}\mathscr{E}) & \stackrel{\partial}{\longrightarrow} & \operatorname{Ext}^{2}_{\mathscr{X}}(R^{j}f_{*}\mathscr{E},R^{j-1}f_{*}\mathscr{E}) \\ & & & & \alpha^{*} \Big\downarrow & & \\ & & & & & & \\ \operatorname{Hom}_{\mathscr{X}}(\mathscr{M},R^{j}f_{*}\mathscr{E}) & \stackrel{d^{0,j}_{2}}{\longrightarrow} & \operatorname{Ext}^{2}_{\mathscr{X}}(\mathscr{M},R^{j-1}f_{*}\mathscr{E}) \end{array}.$$

На этом доказательство предложения заканчивается.

Пусть k – поле характеристики 0 с алгебраическим замыканием \bar{k} , $\Gamma = \operatorname{Gal}(\bar{k}/k)$. Пусть X – гладкое геометрически неприводимое и приведенное многообразие, $\overline{X} = X \times_k \bar{k}$. Мы будем предполагать, что на \overline{X} нет обратимых регулярных функций, отличных от констант, т.е. $H^0(\overline{X}, \mathbb{G}_m) = \bar{k}^*$. Рассмотрим спектральную последовательность

$$\operatorname{Ext}_{k}^{p}(\mathscr{M}, H^{q}(\overline{X}, \mathbb{G}_{m})) \Rightarrow \operatorname{Ext}_{X}^{p+q}(p^{*}\mathscr{M}, \mathbb{G}_{m}), \tag{1.6}$$

получающуюся из (1.1) в частном случае, когда \mathscr{Y} – категория этальных пучков на X, \mathscr{X} – категория дискретных Γ -модулей (совпадающая с категорией этальных пучков на $\mathrm{Spec}(k)), \ f\colon \mathscr{Y} \to \mathscr{X}$ индуцирован структурным морфизмом $p\colon X \to \mathrm{Spec}(k), \mathscr{E} = \mathbb{G}_m$. Возьмем $\mathscr{M} = \mathrm{Pic}\,\overline{X}$. Сопоставим X канонический элемент

$$e(X) := \partial(\mathrm{Id}) \in \mathrm{Ext}_k^2(\mathrm{Pic}\,\overline{X}, \bar{k}^*),$$

где $\operatorname{Id} \in \operatorname{Hom}_k(\operatorname{Pic} \overline{X}, \operatorname{Pic} \overline{X})$ – тождественное отображение, как это было сделано выше. Класс e(X) является важной характеристикой многообразия X; напомним его основные свойства (см. [3; теорема 2.3.4]):

(1) класс -e(X) совпадает с классом естественного 2-расширения Γ -модулей

$$1 \to \bar{k}^* \to \bar{k}(X)^* \to \text{Div } \overline{X} \to \text{Pic } \overline{X} \to 0; \tag{1.7}$$

- (2) e(X)=0 тогда и только тогда, когда естественный гомоморфизм $\bar{k}^* \to \bar{k}(X)^*$ имеет Γ -эквивариантное сечение;
- (3) если на X есть 0-цикл степени 1, например, k-точка, то $\bar{k}^* \to \bar{k}(X)^*$ имеет Галуа-эквивариантное сечение, откуда e(X)=0.

Замечание. Класс e(X) функториален в следующем смысле: если $f\colon Y\to X$ — морфизм многообразий, не имеющих непостоянных обратимых регулярных функций над $\bar k$, то e(X) получается из e(Y) при помощи гомоморфизма $f^*\colon \operatorname{Pic} \overline X\to \operatorname{Pic} \overline Y$. Действительно, из функториальности спектральной последовательности (1.6) по $\mathscr M$ и по X вытекает коммутативность нижеприведенной диаграммы, откуда и следует это утверждение:

$$\operatorname{Hom}_k(\operatorname{Pic} \overline{Y}, \operatorname{Pic} \overline{Y}) \longrightarrow \operatorname{Ext}_k^2(\operatorname{Pic} \overline{Y}, \bar{k}^*)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\operatorname{Hom}_k(\operatorname{Pic} \overline{X}, \operatorname{Pic} \overline{Y}) \longrightarrow \operatorname{Ext}_k^2(\operatorname{Pic} \overline{X}, \bar{k}^*) .$$

$$\uparrow \qquad \qquad \parallel$$

$$\operatorname{Hom}_k(\operatorname{Pic} \overline{X}, \operatorname{Pic} \overline{X}) \longrightarrow \operatorname{Ext}_k^2(\operatorname{Pic} \overline{X}, \bar{k}^*)$$

Напомним, что через $\operatorname{Br}_1 X$ обозначается так называемая "алгебраическая" часть группы Брауэра, т.е. ядро естественного гомоморфизма $\operatorname{Br} X \to \operatorname{Br} \overline{X}$, а через $\operatorname{Br}_0 X$ – образ $\operatorname{Br} k$ в $\operatorname{Br} X$. Поскольку $\operatorname{Br} \bar{k} = 0$, то $\operatorname{Br}_0 X$ лежит в $\operatorname{Br}_1 X$.

Следствие 1.2. Факторгруппа $\operatorname{Br}_1 X/\operatorname{Br}_0 X$ канонически изоморфна подгруппе $H^1(k,\operatorname{Pic} \overline{X}),$ состоящей из элементов ξ таких, что $\xi \cup e(X) = 0$.

Доказательство. Если в (1.6) положить $\mathcal{M} = \mathbb{Z}$, то получим спектральную последовательность (0.1). Остается применить предложение 1.1 в случае i = j = 1.

Если e(X)=0, то из (0.1) и предложения 1.1 следует точность последовательности

$$0 \to \operatorname{Br} k \to \operatorname{Br}_1 X \to H^1(k, \operatorname{Pic} \overline{X}) \to 0. \tag{1.8}$$

2. Группа Брауэра и изоморфизм Барзотти—Вейля. Пусть k-gps – категория коммутативных алгебраических групп над полем k. Эта категория абелева, и для $A,B \in \mathrm{Ob}(k\text{-gps})$ можно определить $\mathrm{Ext}_{k\text{-gps}}^i(A,B)$ как группу классов эквивалентности i-кратных расширений A при помощи B (см. краткий обзор в [7; п. I.0], [8]). Если k — совершенное поле, имеется спектральная последовательность [9]

$$H^p(k, \operatorname{Ext}_{\bar{k}-\operatorname{gps}}^q(A, B)) \Rightarrow \operatorname{Ext}_{k-\operatorname{gps}}^{p+q}(A, B).$$
 (2.1)

Пусть Φ — точный функтор из k-gps в категорию дискретных Γ -модулей, сопоставляющий группе A модуль Γ алуа $A(\bar{k})$, т.е. "забывающий" структуру алгебраической группы на $A(\bar{k})$.

Формула Барзотти–Вейля утверждает наличие канонического изоморфизма модулей Галуа

$$\operatorname{Ext}_{\bar{k}\text{-gps}}^{1}(A,\mathbb{G}_{m}) = A^{t}(\bar{k}),$$

где A — абелево многообразие, а A^t — двойственное к нему абелево многообразие [10; п. VII.3]. Кроме того, $\operatorname{Ext}^i_{\overline{k}\text{-gps}}(A,\mathbb{G}_m)=0$ для $i\neq 1$ [8; предложение 12.3]. С учетом этих фактов из спектральной последовательности (2.1) вытекает наличие естественного изоморфизма

$$H^{1}(k, A^{t}) = \operatorname{Ext}_{k-\operatorname{gds}}^{2}(A, \mathbb{G}_{m}). \tag{2.2}$$

Напомним конструкцию изоморфизма Барзотти–Вейля. Пусть \mathscr{P} – линейное расслоение Пуанкаре на $A^t \times A$. Сопоставим $a \in A^t(\bar{k})$ главное однородное пространство W_a над A со структурной группой \mathbb{G}_m , получающееся из ограничения \mathscr{P} на $a \times A$ удалением нулевого сечения. W_a канонически наделяется структурой коммутативной групповой схемы, так что мы имеем расширение в k-gps (см. [7; приложение C]): $1 \to \mathbb{G}_m \to W_a \to A \to 1$.

Вернемся к ситуации, рассматривавшейся в конце предыдущего раздела. Пусть J – многообразие Пикара гладкого полного геометрически неприводимого и приведенного многообразия X, $A = J^t$ – многообразие Альбанезе X. Группа \bar{k} -точек J отождествляется с подгруппой $\mathrm{Pic}^0\,\overline{X} \subset \mathrm{Pic}\,\overline{X}$, состоящей из дивизоров, алгебраически эквивалентных нулю. Обозначим через i естественное вложение $J(\bar{k})$ в $\mathrm{Pic}\,\overline{X}$.

Если на X имеется рациональная точка, то определено отображение Альбанезе $X \to A$, переводящее ее в нуль. В общем случае А. Вейль [11] построил определенные над k главное однородное пространство D со структурной группой A и морфизм

Alb: $X \to D$ такие, что при подъеме основного поля до \bar{k} этот морфизм становится классическим отображением Альбанезе. Обозначим $\delta(X) \in H^1(k,A)$ класс [D]. Следующее предложение показывает, как связаны между собой классы $\delta(X)$ и e(X).

ПРЕДЛОЖЕНИЕ 2.1. Пусть X – гладкое полное геометрически неприводимое и приведенное многообразие над полем k характеристики 0, J – многообразие Пикара X, а $A=J^t$ – многообразие Альбанезе X. Тогда $-i^*(e(X))\in \operatorname{Ext}_k^2(J(\bar k),\bar k^*)$ получается из $\delta(X)\in H^1(k,A)=\operatorname{Ext}_{k-\operatorname{gps}}^2(J,\mathbb G_m)$ применением забывающего функтора Φ .

Доказательство. Обозначим через $\mathrm{Div}^0 \, \overline{X}$ группу дивизоров, алгебраически эквивалентных нулю. Элемент $-i^*(e(X))$ является классом расширения

$$1 \to \bar{k}^* \to \bar{k}(X)^* \to \operatorname{Div}^0 \overline{X} \to J(\bar{k}) \to 0, \tag{2.3}$$

получающегося из (1.7) посредством гомоморфизма $i\colon J(\bar k)\to {\rm Pic}\,\overline X$. Соответствующее 2-расширение для D имеет вид

$$1 \to \bar{k}^* \to \bar{k}(D)^* \to \operatorname{Div}^0 \overline{D} \to J(\bar{k}) \to 0,$$

так как Γ -модуль $\operatorname{Pic}^0 \overline{D}$ канонически изоморфен $\operatorname{Pic}^0 \overline{X}$.

Выберем раз и навсегда точку $P \in D(\bar{k})$, лежащую в образе морфизма Alb, и пусть $\phi \colon \Gamma \to A(\bar{k})$ – 1-коцикл такой, что для любого $g \in \Gamma$ точка g(P) получается сдвигом P на $\phi(g)$. По определению, $\delta(X) \in H^1(k,A)$ является классом ϕ . Отождествим \overline{D} с \overline{A} , выбрав P в качестве нуля группового закона. Обозначим $\mathfrak P$ орбиту P при действии группы Галуа. Пусть $\mathscr O_{\mathfrak P}$ – локальное кольцо D в $\mathfrak P$. Обозначим Div $^0(\overline{D})_{\mathfrak P}$ группу дивизоров, алгебраически эквивалентных нулю, носители которых не пересекаются с $\mathfrak P$. Имеется естественное 2-расширение Γ -модулей

$$1 \to \bar{k}^* \to (\mathscr{O}_{\mathfrak{P}} \otimes_k \bar{k})^* \to \mathrm{Div}^0(\overline{D})_{\mathfrak{P}} \to J(\bar{k}) \to 0. \tag{2.4}$$

Морфизм Alb задает естественное Γ -эквивариантное отображение расширений (2.4) на (2.3), поэтому они представляют один и тот же класс в $\operatorname{Ext}_k^1(J(\bar{k}), \bar{k}^*)$.

Пусть k(P) – поле вычетов точки P. Перейдя к факторгруппе $(\mathscr{O}_{\mathfrak{P}} \otimes_k \bar{k})^*$ по подгруппе рациональных функций на D, регулярных и принимающих значение 1 в каждой из точек \mathfrak{P} , получим эквивалентное (2.4) расширение

$$1 \to \bar{k}^* \to (k(P) \otimes_k \bar{k})^* \to C_{\mathfrak{P}} \to J(\bar{k}) \to 0,$$

служащее определением $C_{\mathfrak{P}}$. Мы утверждаем, что оно происходит из некоторого 2-расширения коммутативных алгебраических групп над k:

$$1 \to \mathbb{G}_m \to R_{k(P)/k}(\mathbb{G}_m) \to ? \to J \to 0,$$

где $R_{k(P)/k}$ обозначает спуск основного поля по Вейлю. Для этого достаточно показать, что расширение

$$1 \to (k(P) \otimes_k \bar{k})^* / \bar{k}^* \to C_{\mathfrak{P}} \to J(\bar{k}) \to 0 \tag{2.5}$$

получается из расширения J при помощи k-тора $T = R_{k(P)/k}(\mathbb{G}_m)/\mathbb{G}_m$ в категории k-gps. Этот факт достаточно проверить над \bar{k} , откуда наше утверждение вытекает применением спуска Галуа. Согласно [10; гл. VII, п. 1.4] достаточно убедиться

в том, что (2.5) задается рациональной симметрической системой факторов, т.е. 2-коциклом $J(\bar{k})$ с коэффициентами в $(\bar{k}^*)^{|\mathfrak{P}|}/\bar{k}^*$, задаваемым рациональными функциями на J. Над \bar{k} мы можем работать непосредственно с A вместо D.

Пусть \mathscr{D} — дивизор Пуанкаре на $A \times J$. По теореме о квадрате и "принципу качелей" на $A \times J \times J$ существует рациональная функция f, дивизор которой равен

$$(f) = s_{23}^{-1}(\mathscr{D}) - p_{12}^{-1}(\mathscr{D}) - p_{13}^{-1}(\mathscr{D}),$$

где s_{23} задается суммированием второй и третьей координат, а p_{12} и p_{13} – проекции $A \times J \times J \to A \times J$. Рациональное сечение s гомоморфизма $C_{\mathfrak{P}} \to J(\bar{k})$ в (2.5) можно задать сопоставив точке $x \in J(\bar{k})$ пересечение \mathscr{D} с $A \times x$. Соответствующая система факторов задается формулой [10]:

$$\delta(s)(x,y) := s(x+y) - s(x) - s(y).$$

В нашем случае этот дивизор есть дивизор функции f, ограниченной на $A \times x \times y$, рассматриваемый с точностью до дивизоров функций, принимающих равные ненулевые значения во всех точках, сопряженных с P. Таким образом, $\delta(s)(x,y)$ есть значение f в этих точках с точностью до общего множителя из \bar{k}^* . Полученная система факторов рациональна, так как задается рациональной функцией. Итак доказано, что (2.5) происходит из расширения коммутативных алгебраических групп нал k

$$1 \to \mathbb{G}_m \to R_{k(p)/k}(\mathbb{G}_m) \to J_{\mathfrak{P}} \to J \to 0 \tag{2.6}$$

для некоторой коммутативной алгебраической группы $J_{\mathfrak{P}}$.

Замечание 1. Если X – кривая, то $J_{\mathfrak{P}}$ – обобщенный якобиан X, задаваемый модулем \mathfrak{P} (см. [10; п. I.1]).

Расширение (2.6) можно разложить в произведение Йонеды $\alpha \cup \beta$, где α – расширение торов

$$1 \to \mathbb{G}_m \to R_{k(P)/k}(\mathbb{G}_m) \to T \to 1,$$

а β – только что построенное расширение коммутативных алгебраических групп

$$1 \to T \to J_{\mathfrak{B}} \to J \to 0.$$

Над \bar{k} тор $R_{k(P)/k}(\mathbb{G}_m)$ распадается в произведение экземпляров \mathbb{G}_m по числу сопряженных точек $g(P), g \in \Gamma$. Пусть $\pi_{g(P)}$ обозначает проекции на соответствующие компоненты; эти отображения задают сечения α в категории коммутативных \bar{k} -групп. Спектральная последовательность Милна (2.1) дает следующее каноническое отображение (являющееся на самом деле изоморфизмом):

$$H^1(k, \operatorname{Hom}_{\bar{k}\operatorname{-gps}}(T, \mathbb{G}_m)) \to \operatorname{Ext}^1_{k\operatorname{-gps}}(T, \mathbb{G}_m),$$

причем коцикл, задающий α , имеет вид

$$g \longmapsto \psi(g) = \pi_{g(P)}/\pi_P \in \operatorname{Hom}_{\bar{k}\text{-}\mathrm{gps}}(T, \mathbb{G}_m).$$

Отсюда следует, что (2.6) получается аналогичным отображением

$$H^1(k,\operatorname{Ext}^1_{\bar{k}\operatorname{-gps}}(J,\mathbb{G}_m))\to\operatorname{Ext}^2_{k\operatorname{-gps}}(J,\mathbb{G}_m)$$

из коцикла, сопоставляющего $g\in \Gamma$ расширение, индуцированное β при помощи гомоморфизма $\pi_{g(P)}/\pi_P$. Нетрудно найти систему факторов этого расширения \overline{J} при помощи $\mathbb{G}_{m,\bar{k}}$. Взяв s в качестве рационального сечения и повторяя приведенные выше вычисления, получаем, что она имеет вид $f(g(P),x,y)/f(P,x,y)\in \bar{k}(\overline{J}\times\overline{J})^*$. Однако согласно замечанию к теореме 6 [10; п. VII.3] тот же вид имеет и система факторов расширения, которое получается посредством изоморфизма Барзотти—Вейля из $\delta(X)(g)=g(P)-P\in A(\bar{k})$. Предложение доказано.

Замечание 2. Если X – кривая рода 0, то на X имеется Γ -инвариантный класс дивизоров степени 1, поэтому естественно считать, что $\delta(X)=0$. Однако $e(X)\in \operatorname{Ext}^2_k(\mathbb{Z},\bar{k}^*)=\operatorname{Br} X$ есть класс X как многообразия Севери–Брауэра. При этом e(X)=0 тогда и только тогда, когда $X\simeq \mathbb{P}^1_k$. Аналогичные примеры существуют и для кривых рода больше 1. Пусть, например, X – кривая рода 2, являющаяся циклическим накрытием степени 3 коники C без k-точек, разветвленным в 4 точках. Тогда $e(X)\neq 0$. Действительно, в противном случае гомоморфизм $\bar{k}^*\to \bar{k}(X)^*$ имеет сечение, но тогда имеет сечение и соответствующий гомоморфизм для C, а это противоречит тому, что $e(C)\neq 0$. В то же время X обладает Γ -инвариантным классом дивизоров степени 1 (прообраз \bar{k} -точки C минус канонический класс X). Таким образом, в общем случае $\delta(X)=0$ не влечет e(X)=0. Однако, если X – кривая рода 1, то условие $\delta(X)=0$ эквивалентно непустоте множества X(k), и поэтому влечет e(X)=0.

Замечание 3. Пусть X — произвольное гладкое проективное многообразие, а J — его многообразие Пикара. Если e(X)=0, то на X существуют торсоры любого данного типа (см., например, $[3; \operatorname{c. 31}]$). Пусть $Y\to X$ — торсор, типом которого является гомоморфизм $J[n](\bar k)\to \operatorname{Pic}\overline X$. Тогда $Y=X\times_D B$, где $B\to D$ — торсор типа $J[n](\bar k)\to \operatorname{Pic}\overline J$. Согласно [3; предложение 3.3.4 (b)] существование B эквивалентно делимости класса $[D]\in H^1(k,A)$ на n. Поэтому $\delta(X)=[D]$ — делимый элемент группы $H^1(k,A)$. Таким образом, если $H^1(k,A)$ не содержит делимых элементов, отличных от нуля, то e(X)=0 влечет $\delta(X)=0$. Этим свойством обладает поле вещественных чисел, но не обладает поле p-адических чисел. Однако и здесь (как и в более общем случае поля частных гензелева кольца дискретного нормирования с конечным полем вычетов) из зануления e(X) следует зануление $\delta(X)$ (см. [12], а также [4]). Однако для некоторых других полей, например, для поля рядов Лорана $\mathbb{C}((t))$ это уже неверно: как показал недавно О. Виттенберг, e(X)=0 для любого многообразия над полем когомологической размерности 1.

Замечание 4. Пусть, наконец, X — кривая над числовым полем, имеющая 0-цикл степени 1 над каждым пополнением поля k. Тогда $\delta(X)=0$ влечет e(X)=0. Действительно, выбор Γ -инвариантного элемента $\operatorname{Pic} \overline{X}$ степени 1 представляет $\operatorname{Pic} \overline{X}$ в виде прямой суммы $J(\bar{k}) \oplus \mathbb{Z}$. Отсюда

$$\operatorname{Ext}_k^2(\operatorname{Pic} \overline{X}, \bar{k}^*) \simeq \operatorname{Ext}_k^2(J(\bar{k}), \bar{k}^*) \oplus \operatorname{Br} k,$$

причем $e(X) \in \operatorname{Br} k$. Из наличия на X 0-циклов степени 1 всюду локально и из закона взаимности Хассе следует, что e(X) = 0.

В предположении гипотезы о конечности группы Тейта–Шафаревича абелева многообразия J обратная импликация верна для любого гладкого проективного

многообразия X над числовым полем, имеющего точки всюду локально. В этом случае согласно теореме 2.12 работы [4] из e(X)=0 вытекает, что любая адельная точка на X, а значит и на D, ортогональна в смысле спаривания Брауэра–Манина подгруппе $\mathrm{B}(D)\subset\mathrm{Br}\,D$, состоящей из локально постоянных классов. По теореме Ю.И. Манина (см. [3]; теорема [4] отсюда следует, что [4] лежит в ядре спаривания Касселса–Тейта. Если $\mathrm{III}(J)$ конечна, то это спаривание невырождено, поэтому [4] [4] т.е. [4] [4] конечна, то это спаривание невырождено, поэтому [4]

Пусть A – абелево многообразие над совершенным полем k, и $J=A^t$ – двойственное абелево многообразие. Каноническое спаривание

$$(,): H^1(k,J) \times H^1(k,A) \to H^3(k,\bar{k}^*)$$
 (2.7)

индуцируется композицией изоморфизма (2.2) и гомоморфизма, забывающего структуру алгебраической группы,

$$H^1(k,A) \to \operatorname{Ext}^2_{k-\operatorname{gps}}(J,\mathbb{G}_m) \to \operatorname{Ext}^2_k(J(\bar{k}),\bar{k}^*),$$

из спаривания, задаваемого произведением Йонеды в когомологиях Галуа:

$$\cup : H^1(k,J) \times \operatorname{Ext}_k^2(J(\bar{k}),\bar{k}^*) \to H^3(k,\bar{k}^*).$$

Пусть J (соответственно, A) – многообразие Пикара (соответственно, многообразие Альбанезе) гладкого полного геометрически неприводимого и приведенного многообразия X над полем k. Из предложения 2.1 и функториальности последнего спаривания следует, что для любого $y \in H^1(k,J)$ имеем

$$(y, \delta(X)) = -y \cup i^*(e(X)) = -i_*(y) \cup e(X). \tag{2.8}$$

ТЕОРЕМА 2.2. Пусть X – гладкая полная геометрически неприводимая и приведенная кривая над полем k характеристики 0. Тогда $\operatorname{Br} X/\operatorname{Br}_0 X$ канонически изоморфна факторгруппе ортогонального дополнения κ $\delta(X)$ в $H^1(k,J)$ относительно спаривания (2.7) по модулю циклической подгруппы, порожденной $\delta(X)$.

Доказательство. Напомним, что $\operatorname{Br} \overline{X}=0$ по теореме Тзена, поэтому $\operatorname{Br} X=\operatorname{Br}_1 X$. В случае кривой J=A. Хорошо известно и легко проверяется, что точная последовательность Γ -модулей

$$0 \to J(\bar{k}) \to \operatorname{Pic} \overline{X} \to \mathbb{Z} \to 0$$

представляет класс $\delta(X) \in H^1(k,J) = \operatorname{Ext}^1_k(\mathbb{Z},J(\bar{k}))$. Отсюда $i_*(\delta(X)) = 0$ и из формулы (2.8) следует $(\delta(X),\delta(X)) = 0$. Из той же точной последовательности получаем, что $H^1(k,\operatorname{Pic}\overline{X})$ есть факторгруппа $H^1(k,J)$ по подгруппе, порожденной $\delta(X)$. Утверждение теоремы теперь вытекает из следствия 1.2 и предложения 2.1.

3. Однородные пространства. Пусть G – полупростая группа над полем k характеристики 0. Многообразие G геометрически неприводимо и приведено, причем на \overline{G} нет регулярных обратимых функций, отличных от констант (по лемме Розенлихта такие функции с точностью до умножения на константу являются характерами \overline{G}). Пусть \widetilde{G} – универсальная накрывающая G. Как хорошо известно, \widetilde{G} является центральным расширением G при помощи некоторой конечной абелевой группы μ , называемой фундаментальной группой G. Согласно [13] с таким расширением связано естественное отображение пунктированных множеств d: $H^1(k,G) \to H^2(k,\mu)$.

ПРЕДЛОЖЕНИЕ 3.1. Пусть X – главное однородное пространство полупростой группы G, определенное над k, u [X] – его класс в $H^1(k,G)$. Тогда $\operatorname{Br} X/\operatorname{Br}_0 X$ есть множество элементов $H^1(k,\hat{\mu})$, ортогональных d([X]) относительно спаривания

$$H^{1}(k,\hat{\mu}) \times H^{2}(k,\mu) \to H^{3}(k,\bar{k}^{*}),$$

 $\epsilon \partial e \; \hat{\mu} = \operatorname{Hom}(\mu, \bar{k}^*) \; - \; \kappa$ оммутативная k-группа, двойственная $\kappa \; \mu$.

Доказательство. Согласно [14] имеем $\operatorname{Br} \overline{G}=0$, поэтому $\operatorname{Br} X=\operatorname{Br}_1 X$. Модуль Галуа $\operatorname{Pic} \overline{X}$ канонически изоморфен $\hat{\mu}$ (см., например, [3; п. 3.2]). Поэтому класс e(X) лежит в $\operatorname{Ext}_k^2(\hat{\mu},\bar{k}^*)=H^2(k,\mu)$. Из результата Ж. Жиро [15; п. V.3.2.9] и предложения 2.3.11 [3] следует, что e(X)=d([X]) (подробнее см. [3; с. 54]). Теперь предложение вытекает из следствия 1.2.

Теперь предположим, что G — односвязная группа, т.е. $G=\widetilde{G}$, и пусть X — однородное пространство G, определенное над k, не обязательно главное, но такое, что стабилизатор \overline{H} некоторой \overline{k} -точки X связен. Однородному пространству X канонически сопоставляется множество когомологий Галуа $H^2(k,\overline{H})$, содержащее выделенное подмножество нейтральных элементов (подробности см. в [16] или [17]). Т. Спрингер определил класс $\eta_X \in H^2(k,\overline{H})$, который нейтрален в том и только в том случае, когда X поднимается до главного однородного пространства G [16] (см. также [3; п. 9.2]). Известно, что X определяет канонический k-тор T такой, что \overline{T} — максимальный торический фактор \overline{H} (см. [17] или [18]). Обозначим через t естественное отображение множеств $H^2(k,\overline{H}) \to H^2(k,T)$ (ср. [17; п. 1.7]). Пусть \widehat{T} — модуль характеров тора T.

ПРЕДЛОЖЕНИЕ 3.2. Пусть X – однородное пространство односвязной полупростой группы, определенное над k, причем на X имеется \bar{k} -точка, стабилизатор которой связен. Тогда $\operatorname{Br}_1 X/\operatorname{Br}_0 X$ есть множество элементов $H^1(k,\widehat{T})$, ортогональных $t(\eta_X) \in H^2(k,T)$ относительно спаривания

$$H^{1}(k,\widehat{T}) \times H^{2}(k,T) \to H^{3}(k,\bar{k}^{*}).$$
 (3.1)

Доказательство. В ходе доказательства теоремы 9.5.1 в [3] строится канонический изоморфизм Γ -модулей $\operatorname{Pic} \overline{X} = \widehat{T}$ (формула на с. 176; здесь используется односвязность G). Поэтому e(X) лежит в $\operatorname{Ext}_k^2(\widehat{T}, \bar{k}^*) = H^2(k,T)$. Там же доказывается, что $e(X) = t(\eta_X)$ [3; с. 177]. Остается воспользоваться следствием 1.2.

По-видимому, предположение об односвязности G можно отбросить ценой некоторого усложнения. В этом случае вместо \widehat{T} следует рассматривать гиперкогомологии естественного комплекса Γ -модулей $\widehat{G} \to \widehat{T}$ (ср. [19]).

Напомним, что если M — дискретный Γ -модуль, то $\coprod_{\omega}^{i}(k,M)\subset H^{i}(k,M)$ определяется как пересечение ядер гомоморфизмов ограничения на все проциклические замкнутые подгруппы Γ .

Следствие 3.3. В условиях и обозначениях предложения 3.2 пусть X_c – гладкая полная компактификация X. Тогда $\operatorname{Br} X_c/\operatorname{Br}_0 X$ есть множество элементов подгруппы $\operatorname{III}^1_\omega(k,\widehat{T}) \subset H^1(k,\widehat{T})$, ортогональных $t(\eta_X)$ относительно спаривания (3.1). Доказательство. Как доказал Ф. А. Богомолов [20], Вг $\overline{X_c}=0$, откуда Вг $X_c=$ Вг $_1X_c$. Вложение $X\hookrightarrow X_c$ задает естественное отображение соответствующих спектральных последовательностей (0.1). Гомоморфизм ограничения $r\colon \operatorname{Pic}\overline{X_c}\to \operatorname{Pic}\overline{X}=\widehat{T}$ сюръективен в силу гладкости X_c . Его ядро свободно порождается классами дивизоров $\overline{X_c}$, лежащими в дополнении к \overline{X} , так как на \overline{X} нет непостоянных обратимых регулярных функций. Мы получаем короткую точную последовательность Γ -модулей

$$0 \to \operatorname{Div}_{\overline{X_c} \setminus \overline{X}} \overline{X_c} \to \operatorname{Pic} \overline{X_c} \to \widehat{T} \to 0, \tag{3.2}$$

причем Γ -модуль $\mathrm{Div}_{\overline{X_c}\setminus \overline{X}}$ $\overline{X_c}$ пермутационный, т.е. обладает Γ -инвариантным базисом. Согласно недавнему результату Ж.-Л. Кольо-Телена и Б. Э. Кунявского [18] Γ -модуль Pic $\overline{X_c}$ вялый (flasque), т.е.

$$H^1(\Gamma', \operatorname{Hom}_{\mathbb{Z}}(\operatorname{Pic}\overline{X_c}, \mathbb{Z})) = 0$$

для любой замкнутой подгруппы $\Gamma'\subset \Gamma$. Как хорошо известно и легко доказывается, отсюда вытекает, что гомоморфизм r индуцирует изоморфизм $H^1(k,\operatorname{Pic}\overline{X_c})$ с подгруппой $\operatorname{III}^1_\omega(k,\widehat{T})$. Тот же гомоморфизм задает коммутативную диаграмму спариваний

Теперь утверждение вытекает из функториальности e(X) (см. замечание в п. 1).

Это следствие несколько усиливает утверждение теоремы A (iii) статьи [18] в случае, когда G не имеет торической части.

Автор благодарен Ж.-Л. Кольо-Телену, А.М. Левину и С. Ленгу за полезные беседы, а также Институту Макса Планка (Бонн) за гостеприимство.

СПИСОК ЦИТИРОВАННОЙ ЛИТЕРАТУРЫ

- [1] A. Grothendieck, "Le groupe de Brauer. I, II, III", Dix exposés sur la cohomologie des schémas, eds. A. Grothendieck, N.H. Kuipers, North-Holland & Masson, Amsterdam—Paris, 1968, 46–66, 67–87, 88–188.
- [2] J-L. Colliot-Thélène, J.-J. Sansuc, "La descente sur les variétés rationnelles. II", Duke Math. J., 54:2 (1987), 375–492.
- [3] A. Skorobogatov, Torsors and Rational Points, Cambridge Tracts in Math., 144, Cambridge University Press, Cambridge, 2001.
- [4] M. Borovoi, J.-L. Colliot-Thélène, A. N. Skorobogatov, "The elementary obstruction and homogeneous spaces", *Preprint*, 2006.
- [5] A. A. Beilinson, J. Bernstein, P. Deligne, "Faisceaux pervers", Analysis and topology on singular spaces, I (Luminy, 1981), Astérisque, 100, Soc. Math. France, Paris, 1982, 5–171.
- [6] A. N. Skorobogatov, "Beyond the Manin obstruction", Invent. Math., 135:2 (1999), 399–424.
- [7] J.S. Milne, Arithmetic Duality Theorems, Perspectives in Math., 1, Academic Press, Boston, MA, 1986.
- [8] F. Oort, Commutative Group Schemes, Lecture Notes in Math., 15, Springer-Verlag, Berlin-New York, 1966.

- [9] J.S. Milne, "The homological dimension of commutative group schemes over a perfect field", J. Algebra, 16 (1970), 436–441.
- [10] Ж. Серр, Алгебраические группы и поля классов, Мир, М., 1968.
- [11] A. Weil, "On algebraic groups and homogeneous spaces", Amer. J. Math., 77 (1955), 493–512.
- [12] J. van Hamel, "Lichtenbaum-Tate duality for varieties over p-adic fields", J. Reine Angew. Math., 575 (2004), 101–134.
- [13] Ж.-П. Серр, Когомологии Галуа, Мир, М., 1968.
- [14] B. Iversen, "Brauer group of a linear algebraic group", J. Algebra, 42:2 (1976), 295–301.
- [15] J. Giraud, Cohomologie non abélienne, Springer-Verlag, Berlin-New York, 1971.
- [16] T. Springer, "Nonabelian H² in Galois cohomology", Algebraic groups and discontinuous subgroups, Proc. Symp. Pure Math., 9, eds. A. Borel, G. D. Mostow, Amer. Math. Soc., Providence, RI, 1966, 164–182.
- [17] M. V. Borovoi, "Abelianization of the second nonabelian Galois cohomology", Duke Math. J., 72:1 (1993), 217–239.
- [18] J.-L. Colliot-Thélène, B. È. Kunyavskiĭ, "Groupe de Picard et groupe de Brauer des compactifications lisses d'espaces homogènes", J. Algebraic Geom., 15:4 (2006), 733–752.
- [19] M. Borovoi, "A cohomological obstruction to the Hasse principle for homogeneous spaces", Math. Ann., 314:3 (1999), 491–504.
- [20] Ф. А. Богомолов, "Группа Брауэра полей инвариантов алгебраических групп", Матем. сб., 180:2 (1989), 279–293.

А. Н. Скоробогатов

Институт проблем передачи информации РАН, Imperial College London, England E-mail: a.skorobogatov@imperial.ac.uk

Поступило 21.10.2005 Исправленный вариант 04.07.2006