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Abstract—The differentials of a certain spectral sequence converging to the Brauer–Grothendieck
group of an algebraic variety X over an arbitrary field are interpreted as the ∪-product with the class
of the so-called “elementary obstruction.” This class is closely related to the cohomology class of
the first-degree Albanese variety of X . If X is a homogeneous space of an algebraic group, then
the elementary obstruction can be described explicitly in terms of natural cohomological invariants
of X . This reduces the calculation of the Brauer–Grothendieck group to the computation of a certain
pairing in the Galois cohomology.
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INTRODUCTION

Let X be a smooth algebraic variety over a field k of characteristic 0. The cohomological Brauer–
Grothendieck group Br X = H2

ét(X,Gm) is important because of its birational invariance; moreover,
if k is a number field, then the elements of BrX give conditions satisfied by the images of the k-points
of X in the space of adelic points of X (the Manin–Brauer obstruction). The group Br X is calculated
by using the Hochschild–Serre spectral sequence

Hp(k, Hq
ét(X,Gm)) ⇒ Hp+q

ét (X,Gm), (0.1)

where X denotes the variety over an algebraic closure k̄, obtained from X by extending the base field,
and the H i(k, · ) are the Galois cohomology groups of the field k. Suppose that there are no invertible
everywhere regular nonconstant functions on X . To calculate the quotient of the Brauer group BrX
modulo the Brauer group Br k of the base field by using this spectral sequence, we need to know the
Picard group PicX, the Brauer group BrX, the action of the Galois group Γ = Gal(k̄/k) on these
groups, and the differentials

d1,1
2 : H1(k,PicX) → H3(k, k̄∗), d0,2

2 : (BrX)Γ → H2(k, PicX),

d0,2
3 : Ker(d0,2

2 ) → H3(k, k̄∗).

The calculation is simplified in the following cases:

• Br(X) = 0 (an equivalent condition is that all cycles in H2(X,Q`(1)) are algebraic, and the
groups H3(X,Z`(1)) are torsion-free for all `; see [1, Sec. III.8]);

• there is a 0-cycle of degree 1 over k (e.g., a k-point) on X (in this case, d1,1
2 = 0; see Sec. 1 of this

paper);
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98 SKOROBOGATOV

• H3(k, k̄∗) = 0 (this is so if k is a number or local field).

Formulas for BrX encountered in the literature are often obtained under these simplifying assump-
tions. The objective of this paper is to study the Brauer group without the above additional assumptions.

We prove in the general case that, up to sign, the differentials di,1
2 coincide with the ∪-product with

the class e(X), which differs only in sign from the class of the natural 2-extension of Galois modules

1 → k̄∗ → k̄(X)∗ → Div X → PicX → 0

(see Proposition 1.1). This extension was considered by Colliot-Thélène and Sansuc [2] in relation to the
necessity of the condition e(X) = 0 (which is equivalent to the existence of a Galois-equivariant section
of the homomorphism k̄∗ → k̄(X)∗) for the existence of rational points (and 0-cycles of degree 1 defined
over k) on X . The class e(X) is called the elementary obstruction to the existence of rational points
on X . If the group PicX is torsion-free, then the vanishing of e(X) is necessary and sufficient for the
existence of universal torsors on X; in the general case, it implies the existence of torsors of any given
type (see [2] or [3, Ch. 2]). Proposition 1.1 gives an expression for the “algebraic” part of Br X in terms
of the Galois cohomology (Corollary 1.2).

Suppose, in addition, that X is a projective variety. Let J be the Picard variety of X; the group of
k̄-points of J is identified with the component Pic0 X of the Picard group of X, which parameterizes the
classes of divisors algebraically equivalent to zero. Let A be the Albanese variety of X; it is dual to J

as an Abelian variety. The choice of a k̄-point on X determines the Albanese map X → A that takes
this point to zero. This map descends to a map X → D, where D is a principal homogeneous space
with structure group A over k. We denote its class by δ(X) ∈ H1(k, A). The classes e(X) and δ(X) are
closely related (see Proposition 2.1).

Now, suppose that X is a curve; then J = A and J(k̄) = Pic0 X parameterizes the classes of divisors
of degree 0 on X, and D(k̄) = Pic1 X parameterizes the classes of divisors of degree 1. Proposition 2.1
gives a formula for the Brauer group of the curve X . Indeed, because the Barsotti–Weil isomorphism
determines a natural pairing

H1(k, J)×H1(k, J) → H3(k, k̄∗),

and (δ(X), δ(X)) = 0, we prove that the quotient group of BrX by the image of the Brauer group Br k

of the field is canonically isomorphic to the quotient group of the orthogonal complement δ(X)⊥ ⊂
H1(k, J) modulo the cyclic subgroup generated by δ(X) (Theorem 2.2).

Similar formulas are valid in the case where X is a principal homogeneous space of a semisimple
algebraic group or a homogeneous space of a simply connected semisimple group with connected
stabilizers (see Propositions 3.1 and 3.2).

The results obtained in this paper were applied by Borovoi, Colliot-Thélène, and the author in [4],
where the equivalence of the vanishing of the elementary obstruction e(X) and the injectivity of the
natural map Br k → Br X for a local field k was proved. If X is a homogeneous space of a connected
algebraic group with connected stabilizers over a local field, then the vanishing of e(X) implies the
existence of rational points on X . In [4], analogs of these results for number fields and some other fields
were also obtained. For example, if k is a number field and X has points everywhere locally, then the
vanishing of e(X) implies the triviality of a part of Manin’s obstruction to the Hasse principle, namely, the
one related to the subgroup of locally constant classes. The converse is true if PicX is a finitely generated
torsion-free Abelian group [2]; in the general case, the question of whether these two assertions are
equivalent is, apparently, open. 1

1The positive answer to this question has recently been given by O. Wittenberg.
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ELEMENTARY OBSTRUCTION TO THE EXISTENCE OF RATIONAL POINTS 99

1. A PROPOSITION FROM HOMOLOGICAL ALGEBRA

Suppose that Y and X are Abelian categories with sufficiently many injective objects and f : Y →
X is a left exact additive functor having a left adjoint functor f∗. For E ∈ Ob(Y ) and M ∈ Ob(X ),
the spectral sequence

E2 = Extp
X (M , Rqf∗E ) ⇒ Extp+q

Y (f∗M , E ) (1.1)

is a special case of the spectral sequence of the composition of functors. Our objective is to describe the
differentials

di,j
2 : Exti

X (M , Rjf∗E ) → Exti+2
X (M , Rj−1f∗E )

in terms of the ∪-product. Consider the auxiliary spectral sequence

Extp
X (Rjf∗E , Rqf∗E ) ⇒ Extp+q

Y (f∗(Rjf∗E ), E ), (1.2)

which is a special case of (1.1) (with M = Rjf∗E ), and its differential

∂ = ∂0,j
2 : HomX (Rjf∗E , Rjf∗E ) → Ext2X (Rjf∗E , Rj−1f∗E ).

The image ∂(Idj) of the identity morphism Idj ∈ HomX (Rjf∗E , Rjf∗E ) is a distinguished element
in Ext2X (Rjf∗E , Rj−1f∗E ). The following proposition is probably well known to experts, but we were
unable to find it in the literature, so we give a complete proof here.

Proposition 1.1. For any i ≥ 0, j ≥ 1, and α ∈ Exti
X (M , Rjf∗E ),

di,j
2 (α) = (−1)iα ∪ ∂(Idj),

where ∪ is the Yoneda pairing

Exti
X (M , Rjf∗E )× Ext2X (Rjf∗E , Rj−1f∗E ) → Exti+2

X (M , Rj−1f∗E ).

Remark A. For i = 0 and j = 1, this assertion coincides with Lemma 1.A.4 from [2].

Proof. First, suppose that i = 1. Let

0 → Rjf∗E → N → M → 0 (1.3)

be an extension whose class in Ext1X (M , Rjf∗E ) is α, and let d denote the connecting homomorphism
in the long exact sequence of Ext’s of the first argument determined by the sequence (1.3). By the
definition of the Yoneda pairing, for any ξ ∈ Ext2X(Rjf∗E , Rj−1f∗E ), we have α ∪ ξ = d(ξ). To prove
the assertion for i = 1, it suffices to show that the diagram

HomX (Rjf∗E , Rjf∗E ) ∂−−−−→ Ext2X (Rjf∗E , Rj−1f∗E )

d

y d

y

Ext1X (M , Rjf∗E )
d1,j
2−−−−→ Ext3X (M , Rj−1f∗E )

(1.4)

is anticommutative. Consider any exact sequence

0 → A → B → C → 0 (1.5)

in X . Let D+(X ) be the derived category of complexes bounded below, and let

· · · → C•[−1] → A• → B• → C• → · · ·
be the distinguished triangle in D+(X ) determined by (1.5). For any F ∈ D+(X ) and i ∈ Z, the
truncation functors determine the distinguished triangles

· · · → τ≤j−1(F ) → F → τ≥j(F ) → · · · .
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100 SKOROBOGATOV

We obtain the following natural diagram in the derived category of Abelian groups:

RHomX (A•, τ≥j(F )) −−−−→ RHomX (A•, τ≤j−1(F ))[1]

d

y d

y
RHomX (C•, τ≥j(F ))[1] −−−−→ RHomX (C•, τ≤j−1(F ))[2]

.

This diagram is anticommutative [5, Proposition 1.1.11]. In the particular case when F = τ[j−1,j](Rf∗E )
and the exact sequence (1.5) is the sequence (1.3), we obtain the anticommutative diagram

RHomX ((Rjf∗E )•, τ[j](Rf∗E )) −−−−→ RHomX ((Rjf∗E )•, τ[j−1](Rf∗E ))[1]

d

y d

y
RHomX (M •, τ[j](Rf∗E ))[1] −−−−→ RHomX (M •, τ[j−1](Rf∗E ))[2]

.

The required anticommutative diagram (1.4) is obtained by passing to the cohomology groups of de-
gree j. Indeed, the identification of objects and vertical arrows is easy, and the fact that the differentials in
the spectral sequence of the composition of functors are obtained from the connecting homomorphisms
of truncated complexes follows readily from the explicit construction of this spectral sequence based on
the Cartan–Eilenberg injective resolution (see, e.g., [6, Appendix B]).

To prove the proposition for i > 1, it suffices to decompose the i-fold extension α into a product of
simple extensions and apply the above assertion i times.

It remains to consider the case i = 0. We have α ∈ HomX (M , Rjf∗E ). Since the spectral se-
quence (1.2) is functorial in the first argument, it follows that the diagram

HomX (Rjf∗E , Rjf∗E ) ∂−−−−→ Ext2X (Rjf∗E , Rj−1f∗E )

α∗
y α∗

y

HomX (M , Rjf∗E )
d0,j
2−−−−→ Ext2X (M , Rj−1f∗E )

is commutative. This completes the proof of the proposition.

Suppose that k is a field of characteristic 0 with algebraic closure k̄, Γ = Gal(k̄/k), X is a smooth
geometrically irreducible reduced variety, X = X ×k k̄, and there are no nonconstant invertible regular
functions on X, i.e., H0(X,Gm) = k̄∗. Consider the spectral sequence

Extp
k(M , Hq(X,Gm)) ⇒ Extp+q

X (p∗M ,Gm), (1.6)

which is the sequence (1.1) in the special case where Y is the category of étale sheaves on X, X is the
category of discrete Γ-modules (coinciding with the category of étale sheaves on Spec(k)), f : Y → X
is induced by the structure morphism p : X → Spec(k), and E = Gm. Take M = Pic X . We associate
with X the canonical element

e(X) := ∂(Id) ∈ Ext2k(PicX, k̄∗)

considered above; here Id ∈ Homk(PicX, PicX) is the identity map. The class e(X) is an important
characteristic of the variety X; it has the following properties (see [3, Theorem 2.3.4]):

(1) the class−e(X) coincides with that of the natural 2-extension of Γ-modules

1 → k̄∗ → k̄(X)∗ → Div X → PicX → 0; (1.7)

(2) e(X) = 0 if and only if the natural homomorphism k̄∗ → k̄(X)∗ has a Γ-equivariant section;

(3) if there is a 0-cycle of degree 1 (e.g., a k-point) on X, then k̄∗ → k̄(X)∗ has a Galois equivariant
section, whence e(X) = 0.
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ELEMENTARY OBSTRUCTION TO THE EXISTENCE OF RATIONAL POINTS 101

Remark B. The class e(X) is functorial in the sense that if f : Y → X is a morphism of varieties
admitting no nonconstant invertible regular functions over k̄, then e(X) is obtained from e(Y ) by using
the homomorphism f∗ : PicX → PicY . Indeed, since the spectral sequence (1.6) is functorial with
respect to M and X, it follows that the diagram

Homk(PicY , PicY ) −−−−→ Ext2k(PicY , k̄∗)y
y

Homk(PicX, PicY ) −−−−→ Ext2k(PicX, k̄∗)x
∥∥∥

Homk(PicX, PicX) −−−−→ Ext2k(PicX, k̄∗)

is commutative, which implies the required assertion.
Recall that Br1 X denotes the so-called algebraic part of the Brauer group, i.e., the kernel of the

natural homomorphism Br X → Br X, and Br0 X is the image of Br k in Br X . Since Br k̄ = 0, it follows
that Br0 X is contained in Br1 X .

Corollary 1.2. The quotient group Br1 X/Br0 X is canonically isomorphic to the subgroup of
H1(k, PicX) consisting of all elements ξ for which ξ ∪ e(X) = 0.

Proof. Setting M = Z in (1.6), we obtain the spectral sequence (0.1). It remains to apply Proposi-
tion 1.1 with i = j = 1.

If e(X) = 0, then the sequence

0 → Br k → Br1 X → H1(k,PicX) → 0 (1.8)

is exact; this follows from (0.1) and Proposition 1.1.

2. THE BRAUER GROUP AND THE BARSOTTI–WEIL ISOMORPHISM

Let k-gps be the category of commutative algebraic groups over a field k. This category is Abelian; for
A,B ∈ Ob(k-gps), Exti

k-gps(A, B) can be defined as the group of equivalence classes of i-fold extensions
of A by B (a brief survey of the subject can be found in [7, Sec. I.0], [8]). If k is a perfect field, then there
is a spectral sequence [9]

Hp(k, Extq

k̄-gps
(A,B)) ⇒ Extp+q

k-gps(A,B). (2.1)

Let Φ be the exact functor from k-gps to the category of discrete Γ-modules assigning the Galois
module A(k̄) to each group A, i.e., forgetting the algebraic group structure on A(k̄).

According to the Barsotti–Weil formula, there exists a canonical isomorphism of Galois modules

Ext1k̄-gps(A,Gm) = At(k̄),

where A is an Abelian variety and At is its dual Abelian variety [10, Sec. VII.3]. Moreover,
Exti

k̄-gps
(A,Gm) = 0 for i 6= 1 [8, Proposition 12.3]. These facts and the spectral sequence (2.1) give

rise to the natural isomorphism

H1(k, At) = Ext2k-gps(A,Gm). (2.2)

Recall the construction of the Barsotti–Weil isomorphism. Let P be the linear Poincaré bundle on
At ×A. To each a ∈ At(k̄) we attach the principal homogeneous space Wa over A with structure
group Gm obtained from the restriction of P to a×A by removing the zero section. The space Wa

is endowed with the canonical structure of a commutative group scheme; thus, we obtain an extension
in k-gps (see [7, Appendix C]), namely, 1 → Gm → Wa → A → 1.

MATHEMATICAL NOTES Vol. 81 No. 1 2007



102 SKOROBOGATOV

We return to the situation considered at the end of the previous section. Let J be the Picard variety of
a smooth complete geometrically irreducible reduced variety X, and let A = J t be the Albanese variety
of X . The group of k̄-points of J is identified with the subgroup Pic0 X ⊂ PicX, which consists of all
divisors algebraically equivalent to zero. We denote the natural embedding of J(k̄) into PicX by i.

If there is a rational point on X, then one can define the Albanese map X → A which takes this
point to zero. In the general case, Weil [11] constructed a principal homogeneous space D over k with
structure group A, and a morphism Alb: X → D such that, when the base field is extended to k̄, the
morphism becomes the classical Albanese map. Let us denote the class [D] by δ(X) ∈ H1(k, A). The
following proposition describes the relationship between the classes δ(X) and e(X).

Proposition 2.1. Suppose that X is a smooth complete geometrically irreducible reduced variety
over a field k of characteristic 0, J is the Picard variety of X, and A = J t is the Albanese variety
of X. Then −i∗(e(X)) ∈ Ext2k(J(k̄), k̄∗) is obtained from δ(X) ∈ H1(k, A) = Ext2k-gps(J,Gm) by
applying the forgetful functor Φ.

Proof. Let Div0 X denote the group of divisors algebraically equivalent to zero. The element−i∗(e(X))
is the class of the extension

1 → k̄∗ → k̄(X)∗ → Div0 X → J(k̄) → 0, (2.3)

which is obtained from (1.7) by means of the homomorphism i : J(k̄) → PicX . The corresponding 2-
extension for D has the form

1 → k̄∗ → k̄(D)∗ → Div0 D → J(k̄) → 0,

because the Γ-module Pic0 D is canonically isomorphic to Pic0 X .

Fix a point P ∈ D(k̄) in the image of the morphism Alb and let φ : Γ → A(k̄) be a 1-cocycle such
that, for any g ∈ Γ, the point g(P ) is obtained by translating P by φ(g). By definition, δ(X) ∈ H1(k,A)
is the class of φ. Let us identify D with A, taking P for the zero of the group law. We denote the orbit
of P under the action of the Galois group by P. Let OP be the local ring of D in P, and let Div0(D)P

denote the group of divisors algebraically equivalent to zero whose supports are disjoint from P. There
is a natural 2-extension of Γ-modules

1 → k̄∗ → (OP ⊗k k̄)∗ → Div0(D)P → J(k̄) → 0. (2.4)

The morphism Alb defines a natural Γ-equivariant map from (2.4) to (2.3); therefore, these extensions
represent the same class in Ext1k(J(k̄), k̄∗).

Let k(P ) be the residue field of the point P . Passing to the quotient group of (OP ⊗k k̄)∗ modulo the
subgroup of rational functions on D which are regular and take the value 1 at each point of P, we obtain
an extension

1 → k̄∗ → (k(P )⊗k k̄)∗ → CP → J(k̄) → 0,

which is equivalent to (2.4) and can be taken as the definition of the group CP. We claim that this
extension comes from some 2-extension of commutative algebraic groups over k of the form

1 → Gm → Rk(P )/k(Gm) → ? → J → 0,

where Rk(P )/k denotes the Weil descent of the base field. To prove this, it suffices to show that the
extension

1 → (k(P )⊗k k̄)∗/k̄∗ → CP → J(k̄) → 0 (2.5)

is obtained from the extension of J by the k-torus T = Rk(P )/k(Gm)/Gm in the category k-gps.
Moreover, if we show that this is so over k̄, then the general case will follow by applying the Galois
descent. Finally, according to [10, Ch. VII, Sec. 1.4], it is sufficient to prove that (2.5) is determined by a
rational symmetric set of factors, i.e., by a 2-cocycle of J(k̄) with coefficients in (k̄∗)|P|/k̄∗ determined
by rational functions on J . Over k̄, we can work with A instead of D.
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ELEMENTARY OBSTRUCTION TO THE EXISTENCE OF RATIONAL POINTS 103

Let D be the Poincaré divisor on A× J . According to the theorem of the square and the “see-saw
principle,” there exists a rational function f on A× J × J whose divisor is equal to

(f) = s−1
23 (D)− p−1

12 (D)− p−1
13 (D),

where s23 denotes the sum of the second and third coordinates and p12 and p13 are the projections
A× J × J → A× J . A rational section s of the homomorphism CP → J(k̄) in (2.5) can be obtained
by assigning the intersection of D with A× x to each point x ∈ J(k̄). The corresponding set of factors
is determined in [10]:

δ(s)(x, y) := s(x + y)− s(x)− s(y).

In the case under consideration, this divisor coincides with the divisor of the restriction of f to A× x× y
up to divisors of functions taking equal nonzero values at all points conjugate to P . Thus, δ(s)(x, y) is
equal to the value of f at these points up to a common factor from k̄∗. The set of factors thus obtained is
rational, because it is determined by a rational function. Thus, we have proved that (2.5) comes from an
extension

1 → Gm → Rk(p)/k(Gm) → JP → J → 0 (2.6)

of commutative algebraic groups over k for some commutative algebraic group JP.

Remark 1. If X is a curve, then JP is the generalized Jacobian of X determined by the modulus P
(see [10, Sec. I.1]).

The extension (2.6) can be decomposed into a Yoneda product α ∪ β, where α is an extension of tori

1 → Gm → Rk(P )/k(Gm) → T → 1

and β is the extension of commutative algebraic groups

1 → T → JP → J → 0

constructed above. Over k̄, the torus Rk(P )/k(Gm) decomposes into a product of copies of Gm; the
number of copies is equal to that of conjugate points g(P ), where g ∈ Γ. Let πg(P ) denote the projectors
onto the corresponding components; these maps determine sections of α in the category of commutative
k̄-groups. The Milne spectral sequence (2.1) yields a canonical map

H1(k, Homk̄-gps(T,Gm)) → Ext1k-gps(T,Gm)

(in fact, this is an isomorphism); the cocycle determining α has the form

g 7−→ ψ(g) = πg(P )/πP ∈ Homk̄-gps(T,Gm).

It follows that (2.6) is obtained by means of a similar map

H1(k, Ext1k̄-gps(J,Gm)) → Ext2k-gps(J,Gm)

from the cocycle which takes g ∈ Γ to the extension induced by β by means of the homomorphism
πg(P )/πP . It is easy to find a set of factors for this extension of J by Gm,k̄. Taking s for a rational section
and repeating the above calculations, we see that it has the form

f(g(P ), x, y)/f(P, x, y) ∈ k̄(J × J)∗.

According to the remark to Theorem 6 in [10, Sec. VII.3], the set of factors for the extension obtained by
means of the Barsotti–Weil isomorphism from

δ(X)(g) = g(P )− P ∈ A(k̄)

has the same form. This completes the proof of the proposition.
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104 SKOROBOGATOV

Remark 2. If X is a curve of genus 0, then it admits a Γ-invariant class of first-degree divisors; therefore,
it is natural to assume that δ(X) = 0. However, e(X) ∈ Ext2k(Z, k̄∗) = BrX is the class of X as a
Severi–Brauer variety, and e(X) = 0 if and only if X ' P1

k. Similar examples exist for curves of larger
genus. For example, let X be a curve of genus 2 which is a cyclic covering of degree 3 of a conic C ramified
at four points such that C has no k-points. Then e(X) 6= 0. Indeed, otherwise, the homomorphism
k̄∗ → k̄(X)∗ has a section, and therefore the corresponding homomorphism for C has a section as well,
which contradicts the condition e(C) 6= 0. At the same time, X has a Γ-invariant class of divisors of
degree 1 (the preimage of the k̄-point of C minus the canonical class of X). Thus, in the general case,
δ(X) = 0 does not imply e(X) = 0. However, if X is a curve of genus 1, then the condition δ(X) = 0 is
equivalent to the set X(k) being nonempty and, therefore, implies e(X) = 0.

Remark 3. Let X be any smooth projective variety, and let J be its Picard variety. If e(X) = 0, then
there exist torsors of any given type on X (see, e.g., [3, p. 31]). Let Y → X be a torsor whose type is
the homomorphism J [n](k̄) → PicX . Then Y = X ×D B, where B → D is a torsor of type J [n](k̄) →
PicJ . According to [3, Proposition 3.3.4 (b)], the existence of B is equivalent to the divisibility of the
class [D] ∈ H1(k, A) by n. Hence δ(X) = [D] is a divisible element of the group H1(k, A). Thus, if
H1(k, A) contains no divisible elements different from zero, then e(X) = 0 implies δ(X) = 0. The field
of real numbers does have this property, while the field of p-adic numbers does not. Nevertheless, even
for this field (as well as for the more general field of fractions of an excellent Henselian discrete valuation
ring with finite residue field), the vanishing of e(X) implies that of δ(X) [12] (see also [4]). However,
for some other fields, such as the Laurent series field C((t)), this is not so; O. Wittenberg has recently
shown that e(X) = 0 for any variety over a field of cohomological dimension 1.

Remark 4. Finally, suppose that X is a curve over a number field having a 0-cycle of degree 1 over each
completion of the field k. Then δ(X) = 0 implies e(X) = 0. Indeed, each Γ-invariant element in PicX

of degree 1 determines a decomposition of PicX into the sum J(k̄)⊕ Z. Therefore,

Ext2k(PicX, k̄∗) ' Ext2k(J(k̄), k̄∗)⊕ Br k,

and e(X) ∈ Br k. The presence of 0-cycles of degree 1 everywhere locally on X and Hasse’s reciprocity
law imply e(X) = 0.

Under the assumption that the Tate–Shafarevich group of the Abelian variety J is finite, the converse
implication is valid for any smooth projective variety X over a number field having points everywhere
locally. In this case, according to Theorem 2.12 from [4], e(X) = 0 implies that any adelic point on X
(and, therefore, on D) is orthogonal in the sense of the Brauer–Manin pairing to the subgroup Б(D) ⊂
BrD consisting of locally constant classes. By a theorem of Yu. I. Manin (see [3, Theorem 6.2.3]), this
implies that δ(X) is contained in the kernel of the Cassels–Tate pairing. If Ш(J) is finite, then this
pairing is nondegenerate, and hence D ∼= J , i.e., δ(X) = 0.

Let A be an Abelian variety over a perfect field k, and let J = At be the dual Abelian variety. The
canonical pairing

( , ) : H1(k, J)×H1(k, A) → H3(k, k̄∗) (2.7)

is induced by the composition of the isomorphism (2.2) and the homomorphism

H1(k,A) → Ext2k-gps(J,Gm) → Ext2k(J(k̄), k̄∗)

forgetting the algebraic group structure from the pairing determined by the Yoneda product

∪ : H1(k, J)× Ext2k(J(k̄), k̄∗) → H3(k, k̄∗)

in the Galois cohomology. Let J (respectively, A) be the Picard (respectively, Albanese) variety of a
smooth complete geometrically irreducible reduced variety X over the field k. Proposition 2.1 and the
functoriality of the last pairing imply that, for any y ∈ H1(k, J), we have

(y, δ(X)) = −y ∪ i∗(e(X)) = −i∗(y) ∪ e(X). (2.8)
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Theorem 2.2. Let X be a smooth complete geometrically irreducible reduced curve over a field k
of characteristic 0. Then Br X/Br0 X is canonically isomorphic to the quotient group of the
orthogonal complement to δ(X) in H1(k, J) with respect to the pairing (2.7) modulo the cyclic
subgroup generated by δ(X).

Proof. By a theorem of Tsen, we have BrX = 0; therefore, BrX = Br1 X . For a curve, we have J = A.
It is well known and easy to prove that the exact sequence of Γ-modules

0 → J(k̄) → PicX → Z→ 0

represents the class δ(X) ∈ H1(k, J) = Ext1k(Z, J(k̄)). Hence i∗(δ(X)) = 0, and (2.8) implies
(δ(X), δ(X)) = 0. The same exact sequence also implies that H1(k,PicX) is the quotient group
of H1(k, J) modulo the subgroup generated by δ(X). Now, the required assertion follows from
Corollary 1.2 and Proposition 2.1.

3. HOMOGENEOUS SPACES
Let G be a semisimple group over a field k of characteristic 0. The variety of G is geometrically

irreducible and reduced, and there are no nonconstant regular invertible functions on G (by Rosenlicht’s
lemma, such functions are characters of G up to multiplication by a constant). Let G̃ be the universal
covering of G. It is well known that G̃ is the central extension of G by some finite Abelian group µ,
which is called the fundamental group of G. In [13], to such an extension was attached a natural map
d : H1(k,G) → H2(k, µ) of pointed sets.

Proposition 3.1. Let X be a principal homogeneous space of a semisimple group G over k, and
let [X] be its class in H1(k,G). Then BrX/Br0 X coincides with the set of elements of H1(k, µ̂)
orthogonal to d([X]) with respect to the pairing

H1(k, µ̂)×H2(k, µ) → H3(k, k̄∗),

where µ̂ = Hom(µ, k̄∗) is the commutative k-group dual to µ.

Proof. According to [14], we have BrG = 0; therefore, Br X = Br1 X . The Galois module PicX is
canonically isomorphic to µ̂ (see, e.g., [3, Sec. 3.2]). Therefore, the class e(X) belongs to Ext2k(µ̂, k̄∗) =
H2(k, µ). A result of Giraud [15, Sec. V.3.2.9] and Proposition 2.3.11 from [3] imply that e(X) = d([X])
(see [3, p. 54] for more details). Now, the required assertion follows from Corollary 1.2.

Suppose that G is a simply connected group, i.e., G = G̃, and X is a homogeneous space of G over k,
not necessarily principal but such that the stabilizer H of some k̄-point of X is connected. To X one
canonically associates the Galois cohomology set H2(k,H) containing a distinguished subset of neutral
elements (see [16] or [17] for details). Springer defined a class ηX ∈ H2(k, H), which is neutral if and
only if X can be lifted to a principal homogeneous space of G [16] (see also [3, Sec. 9.2]). It is well known
that X determines a canonical k-torus T such that T is the maximal toric quotient of H (see [17] or [18]).
Let t denote the natural map of sets H2(k, H) → H2(k, T ) (cf. [17, Sec. 1.7]), and let T̂ be the character
module of the torus T .

Proposition 3.2. Suppose that X is a homogeneous space of a simply connected semisimple
group over k, and there is a k̄-point with connected stabilizer on X. Then Br1 X/Br0 X coincides
with the set of elements of H1(k, T̂ ) orthogonal to t(ηX) ∈ H2(k, T ) with respect to the pairing

H1(k, T̂ )×H2(k, T ) → H3(k, k̄∗). (3.1)

Proof. In the proof of Theorem 9.5.1 in [3], a canonical isomorphism of the Γ-modules PicX and T̂ was
constructed (see the formula on p. 176; it uses the simply-connectedness of G). Thus, e(X) belongs
to Ext2k(T̂ , k̄∗) = H2(k, T ). It was also proved in [3, p. 177] that e(X) = t(ηX). It remains to apply
Corollary 1.2.
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It is likely that the assumption that G is simply connected can be dispensed with at the expense
of some complications; namely, instead of T̂ , we must consider the hypercohomology of the natural
complex of Γ-modules Ĝ → T̂ (cf. [19]).

Recall that if M is a discrete Γ-module, then Шi
ω(k, M) ⊂ H i(k,M) is defined as the intersection of

the kernels of the restriction homomorphisms to all procyclic closed subgroups of Γ.

Corollary 3.3. With the assumptions and the notation of Proposition 3.2, suppose that Xc is a
smooth complete compactification of X. Then BrXc/ Br0 X coincides with the set of elements of
the subgroup Ш1

ω(k, T̂ ) ⊂ H1(k, T̂ ) which are orthogonal to t(ηX) with respect to the pairing (3.1).

Proof. Bogomolov proved that Br Xc = 0 [20]; so Br Xc = Br1 Xc. The embedding X ↪→ Xc defines a
natural map of the corresponding spectral sequences of the form (0.1). The restriction homomorphism
r : PicXc → PicX = T̂ is surjective, because Xc is smooth. Its kernel is freely generated by the classes
of divisors on Xc in the complement to X, because there are no nonconstant invertible regular functions
on X . We obtain a short exact sequence of Γ-modules

0 → DivXc\X Xc → PicXc → T̂ → 0; (3.2)

moreover, the Γ-module DivXc\X Xc is permutation, i.e., it has a Γ-invariant basis. According to a

recent result of Colliot-Thélène and Kunyavskii [18], the Γ-module PicXc is flasque, i.e.,

H1(Γ′, HomZ(PicXc,Z)) = 0

for any closed subgroup Γ′ ⊂ Γ. It is well known and easy to prove that, in this situation, the homo-
morphism r induces an isomorphism between H1(k, PicXc) and the subgroup Ш1

ω(k, T̂ ). The same
homomorphism defines the commutative diagram of pairings

H1(k, PicX)×Ext2k(PicX, k̄∗) −−−−→ H3(k, k̄∗)x
y

∥∥∥
H1(k, PicXc)×Ext2k(PicXc, k̄

∗) −−−−→ H3(k, k̄∗)

.

Now, the required assertion follows from the functoriality of e(X) (see the remark in Sec. 1).

This corollary strengthens somewhat Theorem A (iii) of [18] in the case when G has no toric part.
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