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Abstract Let X be a projective variety over a number field. Completing earlier work
of D. Harari, C. Demarche and M. Stoll, we prove that the obstruction to the Hasse
principle and weak approximation on X given by descent on torsors under linear alge-
braic groups is equivalent to the Brauer–Manin obstruction applied to étale covers
of X .

1 Introduction

Let k be a number field, and let X be a smooth projective variety over k. The embedding
of k into the ring of adèles Ak makes the set of k-points X (k) a subset of X (Ak) =∏

v X (kv), where the product is taken over all completions of k. Any torsor f : Y → X
under a linear k-group G gives rise to a subset of X (Ak) containing X (k), namely,

X (Ak)
f =

⋃

[σ ]∈H1(k,G)

f σ (Y σ (Ak)),

where f σ : Y σ → X is the twist of f : Y → X by the 1-cocycle σ . The set X (Ak)
f

consists of the adelic points (Pv) on X such that the collection of classes of kv-torsors
f −1(Pv) comes from a k-torsor under G, see [10, Def. 4.2], or [14, Def. 5.3.1]. Let
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502 A. Skorobogatov

X (Ak)
desc =

⋂
X (Ak)

f ,

where f : Y → X ranges over all torsors under all linear k-groups. In his paper [15]
Stoll introduced a similar set

X (Ak)
f−cov =

⋂
X (Ak)

f ,

where f : Y → X ranges over all torsors under all finite k-groups. He proved that this
set is well behaved with respect to torsors under finite groups, namely, if f : Y → X
is a torsor under a finite k-group F , then

X (Ak)
f−cov =

⋃

[σ ]∈H1(k,F)

f σ
(

Y σ (Ak)
f−cov

)
, (1)

see [15, Prop. 5.17]. In this note we use Stoll’s method to obtain a similar formula for
X (Ak)

desc.

Theorem 1.1 Let X be a smooth, projective and geometrically integral variety over
a number field k. Let f : Y → X be a torsor under a finite k-group scheme F. Then

X (Ak)
desc =

⋃

[σ ]∈H1(k,F)

f σ
(

Y σ (Ak)
desc

)
. (2)

It is well known that a similar property does not hold for the Brauer–Manin set
X (Ak)

Br ; indeed, ∪ f σ (Y σ (Ak)
Br ) can be strictly smaller than X (Ak)

Br . This idea
is used in the author’s counterexample to the Hasse principle not explained by the
Brauer–Manin obstruction ([13] or [14, Ch. 8], see also [1, Sect. 4]). In [13, Sect. 3]
the author pointed out that this counterexample is explained by the Brauer–Manin
obstruction applied to an étale covering of X that is an X -torsor under a finite abelian
k-group. Following [12] define

X (Ak)
ét,Br =

⋂

f

⋃

[σ ]∈H1(k,F)

f σ
(

Y σ (Ak)
Br

)
,

where f : Y → X ranges over all torsors under all finite k-groups. In [12] Poonen
constructed a threefold X over any number field (in fact, over any global field of
characteristic not equal to 2) such that X (k) = ∅ but X (Ak)

ét,Br �= ∅. He asked if
such a counterexample to the Hasse principle can be explained by the descent obstruc-
tion, that is, whether the set X (Ak)

desc is empty or not. More generally, he asked [12,
Question 3.1] whether one always has the inclusion

X (Ak)
ét,Br ⊂ X (Ak)

desc. (3)

This was proved by Demarche [7] using the results of Harari [9] and Borovoi [3]. As
a corollary of our Theorem 1.1 we prove the opposite inclusion.
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Corollary 1.2 Let X be a smooth, projective and geometrically integral variety over
a number field k. Then X (Ak)

desc ⊂ X (Ak)
ét,Br .

Combining this with Demarche’s result we see that the two sets are in fact the same:

X (Ak)
desc = X (Ak)

ét,Br .

Theorem 1.1 and Corollary 1.2 are proved in Sect. 2. In Sect. 3 we deduce some easy
consequences of these results for the closure of the set of rational points in the adelic
points on surfaces of Kodaira dimension zero. The author is grateful to C. Demarche,
D. Harari and B. Poonen for a useful discussion. I thank the referee for his careful
reading of the paper and many helpful suggestions.

2 Proof of the main theorem

Let k be a field with separable closure k, and let � = Gal(k/k). In this paper a variety
over k means a separated k-scheme of finite type, and a k-group means a smooth
k-group scheme of finite type. A k-group is linear if its underlying variety is affine.
Unless stated otherwise, the structure groups of all torsors in this paper are linear
k-groups.

If G is a k-group, we denote by Z1(k, G) the set of continuous 1-cocycles of the
profinite group � with coefficients in the discrete group G(k). We agree on the fol-
lowing terminology: if Y → X is a torsor under G, then a twist of Y/X always means
the twist of Y by a 1-cocycle from Z1(k, G). Note that this twist is a torsor under the
twisted form of G given by the same cocycle with respect to the action of G on itself
by conjugations.

Definition 2.1 Given X -torsors Y and Z under k-groups G and H , respectively, we
define an X-torsor morphism Y → Z as an X -morphism compatible with a homo-
morphism G → H .

An X -torsor morphism f : Y → Z is surjective if f is a surjective morphism; equiv-
alently, if the corresponding homomorphism φ : G → H is surjective. In this case
Y → Z is a torsor under Ker φ.

The beginning of the proof of the theorem follows Stoll’s proof of his Prop. 5.17
verbatim. His arguments can be summarized as follows.

Lemma 2.2 (Stoll) Let X be a proper variety over a number field k, and let Y/X be
a torsor. For any (Pv) ∈ X (Ak)

desc there exists a twist Y ′/X of the torsor Y/X with
the following property:
for any surjective X-torsor morphism Z → Y ′ there exists a twist Z ′/Y ′ of the torsor
Z/Y ′ such that (Pv) lies in the image of Z ′(Ak).

Proof By [10, Prop. 4.4], or [14, Prop. 5.3.2] (based on the Borel–Serre theorem),
there are only finitely many twists of a given torsor which contain adelic points. The
finite combinatorics in the first part of the proof of Prop. 5.17 of [15] does not rely on
the finiteness of the group schemes involved, and hence can be applied in our more
general situation. �	
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Let Y be an étale X -scheme, and let Z be an affine Y -scheme. Recall that the
Weil restriction RY/X (Z) is an affine X -scheme representing the contravariant func-
tor S 
→ HomY (S ×X Y, Z) from the category of X -schemes to the category of sets.
The existence of RY/X (Z) is proved in [4, Thm. 7.6.4].

Proposition 2.3 Let k be a field, and let X be a variety over k. Let Y → X be a torsor
under a finite étale k-group, and let Z → Y be a torsor. Then there exists a torsor
V → X and a surjective X-torsor morphism h : V → Y such that V , considered as
a Y -torsor via h, admits a surjective Y -torsor morphism to Z.

Proof Define V = RY/X (Z)×X Y , and let h : V → Y be the projection to the second
factor. Let F be the finite étale k-group which is the structure group of the torsor
f : Y → X , and let G be the linear k-group which is the structure group of the torsor
g : Z → Y . A canonical isomorphism Y ×X Y = Y ×k F gives rise to canonical
isomorphisms

V = RY/X (Z) ×X Y = RY×X Y/Y (Z ×X Y ) = RY×k F/Y (Z ×k F). (4)

One can also give a geometric description of V . Let L/k be a separable extension which
splits F , i.e. such that the scheme FL = F ×k L is the disjoint union of m = |F(k)|
copies of Spec(L), e.g. L = k. Then YL → X L is a Galois covering with the Galois
group F(L) = F(k). Writing down the canonical isomorphisms in (4) one sees that
VL is the fibred product of m copies of ZL over YL with respect to the morphisms
σg : ZL → YL for all σ ∈ F(k).

Since Z is a Y -torsor under GY = G×k Y we see that RY/X (Z) is an X -torsor under
the X -group scheme RY/X (GY ), hence V is a Y -torsor under the Y -group scheme

RY/X (GY ) ×X Y = RY×X Y/Y (GY ×X Y ) = RY×k F/Y (G ×k Y ×k F)

= RF/k(G F ) ×k Y.

Explicitly, if the scheme F is the disjoint union of Spec(ki ), where ki , i = 1, . . . , n,
are finite extensions of k, then V → Y is a torsor under the linear k-group

RF/k(G F ) =
n∏

i=1

Rki /k(Gki ).

It is clear that RF/k(G F )L � (GL)m , so that RF/k(G F ) is an L/k-form of Gm . We
can describe this twisted form as follows. Let Sm be the symmetric group acting on
the m-element set F(k) by permutations. Then Sm acts on the coordinate k-algebra
k[F] � k

m
by permutations of factors. The Galois group � = Gal(k/k) acts on F(k)

by group automorphisms, via a homomorphism ρ : � → Sm defined up to conjuga-
tion, such that ρ(�) normalizes F(k) ⊂ Sm . Various objects acted on by Sm can be
twisted by ρ: the twisted form of km is the étale k-algebra k[F], the twisted form of
the ‘constant’ k-group scheme F(k) is F , and the twisted form of Gm is RF/k(G F ).
From the action of F(k) on Gm by permutations of factors via ρ we obtain a k-action
of the twisted form F on the k-group RF/k(G F ), i.e. a morphism of k-group schemes
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Descent obstruction is equivalent to étale Brauer–Manin obstruction 505

F ×k RF/k(G F ) → RF/k(G F ).

For σ ∈ F(k) and α ∈ RF/k(G F )(k) we write σ α for the result of applying σ to α.
Let us define G as the semi-direct product RF/k(G F ) � F with respect to this

action. The k-group F acts on V = RY/X (Z) ×X Y via the second factor, so that F
and RF/k(G F ) both act freely on V . For any σ ∈ F(k) and any α ∈ RF/k(G F )(k) the
element σασ−1 acts on V ×k k as σ α ∈ RF/k(G F )(k). We thus obtain a k-action of G
on V which extends that of RF/k(G F ), and makes V an X -torsor under G. Moreover,
the X -morphism h : V → Y is compatible with the natural surjection G → F , and so
is a surjective X -torsor morphism.

The inclusion Spec(k) ↪→ F of the origin of the group law on F defines a surjec-
tive homomorphism of k-group schemes φ : RF/k(G F ) → G. It also gives rise to a
section Y → Y ×k F of Y ×k F/Y , and hence to a morphism of Y -schemes

V = RY×k F/Y (Z ×k F) → RY/Y (Z) = Z ,

which is compatible with φ, and hence is a surjective Y -torsor morphism. �	
Remark The easiest case of this proposition is when F = Z/2. Then V is simply the
fibred product of Z → Y and the same morphism followed by the automorphism of
Y given by the non-trivial element of F . In this case RF/k(G F ) = G ×k G, and the
structure group of V/X is the semi-direct product G2

� Z/2. This situation arises, for
example, for a K3 covering Y of an Enriques surface X . A torsor over Y may or may
not be a torsor over X , but irrespective of this there exists a bigger X -torsor V that
factors through Z .

The following proposition fills a minor gap in the argument of [14, Prop. 5.3.3],
where it is not shown that the collection of local points Pv ∈ Y (kv) is in fact an adelic
point on Y .

Proposition 2.4 Let X be a (not necessarily proper) variety over a number field k,
and let f : Y → X be a torsor under a k-group. Then

f (Y (Ak)) = X (Ak) ∩
∏

v

f (Y (kv)) ⊂
∏

v

X (kv).

Proof For a prime v of k we denote by Ov the ring of integers of kv , and by Fv the
residue field of Ov . Let G be the structure group of the torsor f : Y → X , and let G0

be the connected component of G. Then F = G/G0 is a finite étale k-group scheme.
There is a finite set S of primes of k such that G0, G, F extend to group schemes
G0, G, F over the ring of S-integers OS ⊂ k, where F is finite and étale, and G0 has
connected fibres. We can assume that f : Y → X comes from a torsor f : Y → X
under G, where X and Y are faithfully flat OS-schemes. Let (Pv) ∈ X (Ak) be an
adelic point. We enlarge S, if necessary, to ensure that Pv ∈ X (Ov) for all primes
v /∈ S.

If (Pv) ∈ ∏
v f (Y (kv)), then the kv-torsor f −1(Pv) under G is trivial for every

place v of k. To show that Y has an adelic point over (Pv) we need to prove that the
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Ov-torsor f −1(Pv) under G is trivial for every prime v /∈ S. Its quotient by the action
of the group scheme G0 ×OS Ov is an Ov-torsor under the finite group scheme F ,
which acquires a point over kv . By the valuative criterion of properness this point
extends to a point over Ov . The inverse image of this point in f −1(Pv) is an Ov-torsor
under G0 ×OS Ov . But such a torsor is trivial: indeed, by Lang’s theorem every torsor
under a connected Fv-group is trivial, and by Hensel’s lemma an Fv-point extends to
an Ov-point. This proves the desired triviality of the Ov-torsor f −1(Pv). �	
Corollary 2.5 Let X be a (not necessarily proper) variety over a number field k, and
let f : Y → X be a torsor under a k-group. Then f (Y (Ak)) is closed in X (Ak).

Proof By Proposition 2.4 it is enough to show that
∏

v f (Y (kv)) is a closed subset of∏
v X (kv), and for this we need to prove that f (Y (kv)) is closed in X (kv) for every

place v of k. This is a well known consequence of the implicit function theorem, see
[10, Lemma 4.6]. �	
Corollary 2.6 Let X be a proper variety over a number field k, and let f : Y → X
be a torsor under a k-group. Then f (Y (Ak)) = ∏

v f (Y (kv)).

Proof Since X is proper we have X (Ak) = ∏
v X (kv). �	

Corollary 2.7 Let X be a proper variety over a number field k, and let f : Y → X
be a torsor under a linear k-group. Then the set X (Ak)

f is closed in X (Ak).

Proof By Corollary 2.5, f (Y (Ak)) is closed in X (Ak), and the same is true for every
twist of the torsor Y/X . Since X is proper, only finitely many of these twists contain
adelic points [14, Prop. 5.3.2], hence X (Ak)

f is a closed subset of X (Ak). �	
End of proof of Theorem 1.1 The inclusion of the right hand side of (2) into the left
hand side is obvious: indeed, for any morphism f : Y → X we have f (Y (Ak)

desc) ⊂
X (Ak)

desc, because torsors can be pulled back from X to Y . To prove the opposite
inclusion in (2) we go back to Stoll’s arguments in the proof of his Prop. 5.17. Let
(Pv) ∈ X (Ak)

desc, and let X ′ → X be a torsor under a finite k-group scheme. Let
f : Y → X be a twist of X ′ → X satisfying the conclusions of Lemma 2.2. It is
enough to prove that (Pv) lifts to a point in Y (Ak)

desc. Note that since X is proper and
f is étale, Y is proper too.

If (Pv) does not lift to a point in Y (Ak)
desc, then the set f −1((Pv)) has a covering

by its intersections with Y (Ak)\Y (Ak)
g , for all torsors g : Z → Y . This is an open

covering since Y (Ak)
g is closed in Y (Ak) by Corollary 2.7. The set f −1((Pv)) is a

product of finite sets, and hence is compact by Tikhonov’s theorem. Thus there are
torsors gi : Zi → Y , i = 1, . . . , n, such that f −1((Pv)) is contained in the union of
the open sets Y (Ak)\Y (Ak)

gi for i = 1, . . . , n. Let g : Z → Y be the fibred product
of the torsors gi : Zi → Y over Y . We denote by G the structure group of Z/Y . By
construction we have f −1((Pv)) ∩ Y (Ak)

g = ∅.
Let h : V → Y be a surjective X -torsor morphism satisfying the conclusion of

Proposition 2.3. We call H the structure group of the torsor V/Y . The morphism
f h : V → X is a torsor, hence by Lemma 2.2 there exists a 1-cocycle σ ∈ Z1(k, H)

and a point (Mv) ∈ V σ (Ak) whose image in X is (Pv). Let ρ be the image of σ

123



Descent obstruction is equivalent to étale Brauer–Manin obstruction 507

in Z1(k, G) under the homomorphism H → G. Then V σ → Y factors through
Zρ → Y . The image of (Mv) in Zρ is an adelic point whose projection to Y (Ak) is in
f −1((Pv)) ∩ Y (Ak)

g , hence this set is non-empty. This contradiction completes the
proof. �	

The following lemma is a well known corollary of a theorem of Gabber (also proved
by de Jong [6]), see [14, Prop. 5.3.4] .

Lemma 2.8 For any smooth projective variety Y over a number field k we have

Y (Ak)
desc ⊂ Y (Ak)

Br .

Proof By the aforementioned theorem of Gabber for any A ∈ Br Y there exists a
torsor Z A → Y under PGLm for some m such that A is the image of the class of
Z A/Y in H1(Y, PGLm) under the connecting map H1(Y, PGLm) → H2(Y, Gm). It is
easy to see that an adelic point (Qv) ∈ Y (Ak) satisfies the Brauer–Manin condition
given by A if and only if (Qv) lifts to an adelic point on a twist of the torsor Z A → Y
(see [10, Thm. 4.10], or [14, Prop. 5.3.4]). This implies the lemma. �	
Proof of Corollary 1.2 It follows from Theorem 1.1 by Lemma 2.8. �	

3 Remarks on surfaces of Kodaira dimension zero

Let k be a field of characteristic 0, and let X be a surface over k, that is, a smooth,
projective, geometrically integral variety of dimension 2. The Kodaira dimension of
X is defined as

κ(X) = tr.deg.k

( ∞⊕

n=0

H0(X,O(K X )⊗n)

)

− 1,

where K X is the canonical class. The classification of surfaces of Kodaira dimension
zero over an algebraically closed field of characteristic 0 is well known, see [2, Ch. VI].
It follows from this classification that a surface X over k with κ(X) = 0 is isomorphic
to one of the following surfaces:

(1) A k-torsor P of an abelian surface A.
(2) An étale quotient B of P by a free action of µn for n = 2, 3, 4 or 6, where µn

does not contain translations by non-zero elements of A. Then B is a bielliptic
surface (see [1, Prop. 1]). The canonical class K B has order n.

(3) A K3 surface, with K X = 0.
(4) An étale quotient Y of a K3 surface by µ2, called an Enriques surface. Then

2KY = 0, KY �= 0.

If B is a bielliptic surface such that K B has order n, then for P one can take any
B-torsor under µn whose type is the homomorphism of �-modules Z/n → PicB
sending 1 to K B , see loc. cit. We shall refer to P as a B-torsor of canonical type.
B-torsors of canonical type always exist, and are twists of each other by cocycles
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from Z1(k, µn). Each of them is a k-torsor under an abelian surface, namely its
Albanese variety. All these abelian surfaces are twists of one of them, say A, by
cocycles from Z1(k, µn), with µn acting on A by automorphisms of an abelian vari-
ety.

Now let k be a number field. Recall that if f : Y → X is a torsor under a linear
k-group G, and kv is archimedean, then the function X (kv) → H1(kv, G) sending a
point P to the class of the fibre f −1(P), is constant on every connected component
of X (kv).

Let A(Ak)0 be the connected component of 1. It is well known (see, e.g., [15, Cor.
6.2], [14, Prop. 6.2.4]) that if the Tate–Shafarevich group of A is finite, then

P(Ak)
f−cov = P(Ak)

Br = A(Ak)0 · P(k), (5)

where P(k) is the topological closure of P(k) in P(Ak). Since P(Ak)
desc contains

A(Ak)0 · P(k) we also have P(Ak)
f−cov = P(Ak)

desc. In the notation of [15] let
P(Ak)• be the product of the topological spaces P(kv) if v is a finite place, and the
sets of connected components π0(P(kv)) if v is an infinite place. The remark about
real connected components made above allows us to define P(Ak)

desc• , P(Ak)
f−cov•

and P(Ak)
Br• .

Corollary 3.1 Let B be a bielliptic surface such that K B has order n. Let A be the
abelian surface which is the Albanese variety of a B-torsor of canonical type. Assume
that the Tate–Shafarevich groups of the twisted forms of A by cocycles from Z1(k, µn)

are finite. Then B(k) is dense in B(Ak)
f−cov• = B(Ak)

desc• .

Proof We have B(k) = ∪ f σ (Pσ (k)), where σ ∈ Z1(k, µn). Now our statement
follows from formulae (1) and (5). �	

Since only finitely many twists of a given torsor contain adelic points, it is enough
to assume the finiteness of the Tate–Shafarevich group for finitely many twisted forms
of A. Harari proved that if B is any bielliptic surface with a k-point, then B(Ak)

desc• is
strictly smaller than B(Ak)

Br• ([8, Prop. 6.2], as interpreted in [10, Sect. 5.2]).
We point out the following consequence of Demarche’s result.

Corollary 3.2 Let X be a simply connected, geometrically connected variety. Then
X (Ak)

Br = X (Ak)
desc.

Proof Let (Pv) ∈ X (Ak)
Br , and let Y → X be any torsor under a finite k-group F .

Since X is simply connected, Y is isomorphic to X ×k D, where D is a k-torsor under
F . Then there exists an inner form F ′ of F such that the trivial X -torsor Y ′ = X ×k F ′
is a twist of Y (see [14, Sect. 2.1]). The embedding of the origin of the group law
Spec(k) ↪→ F ′ defines a section ϕ : X → Y ′. It is clear that (ϕ(Pv)) ∈ Y ′(Ak)

Br.
This proves that X (Ak)

Br = X (Ak)
ét,Br , and by Demarche’s formula (3) this set is

contained in X (Ak)
desc. The opposite inclusion is proved in Lemma 2.8. �	

The following corollary says that if the Brauer–Manin obstruction is the only
obstruction to weak approximation on K3 surfaces, the the descent obstruction is
the only obstruction to weak approximation on Enriques surfaces.
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Corollary 3.3 Let f be an étale morphism of degree 2 from a K3 surface X to an
Enriques surface Y . We have

Y (Ak)
desc =

⋃

[σ ]∈H1(k,µ2)

f σ
(

Xσ (Ak)
Br

)
. (6)

If Xσ (k) is dense in Xσ (Ak)
Br• for every σ ∈ Z1(k, µ2), then Y (k) is dense in

Y (Ak)
desc• .

Proof Formula (6) is a consequence of (2) and Corollary 3.2. The last statement fol-
lows from Y (k) = ∪ f σ (Xσ (k)). �	
Remarks 1. It is known that X (Ak)

Br is open in X (Ak) for any K3 surface X over
a number field k (since Br X/Br k is finite, see [16, Cor. 1.4]).

2. For the Enriques surface Y constructed in [11, Sect. 3.3], the set Y (Ak)
desc is

strictly smaller than Y (Ak)
Br .

3. In [5, Ch. 2] Steven Cunnane found an Enriques surface Y over Q which is a
counterexample to weak approximation explained by neither the Brauer–Manin
obstruction on Y nor the algebraic Brauer–Manin obstruction on a K3 cover X
of Y . In his counterexample the obstruction comes from a transcendental element
in Br X represented by a quaternion Azumaya algebra A whose class in Br X is
fixed by the Enriques involution. It is a natural question whether this counterex-
ample can be accounted for by the descent obstruction associated to a Y -torsor.
The methods of [11] do not seem to work in this case, but Corollary 3.3 gives
a positive answer to this question. Explicitly, it suffices to consider the X -torsor
under PGL2 defined by A, and to construct a Y -torsor under (PGL2)

2
� Z/2 as

in the remark after Proposition 2.3.
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