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1. Introduction. In this paper we are primarily concerned with elliptic
curves E defined over an algebraic number field k which have all their 2-
division points defined over k. In §2 we remind the reader of the current
machinery for finding the 2-Selmer group of E, including the refinements
recently introduced in [4]; this section also establishes our notation. In §3
we introduce further refinements to this process; the main result here is
Lemma 3, which leads up to Theorem 2. This shows that under suitable
conditions the bilinear functions introduced in [4] are not merely symmetric
but alternating; we expect this result to be useful in other contexts as well
as in the present one. In §4 we prove a lemma about the effect of twisting on
the parity of the rank of the 2-Selmer group of E which we shall need in §6.
In §§5 and 6 we address the question which actually gave rise to this whole

investigation. The study of rational points on pencils of curves of genus 1 has
already been applied to prove the existence of rational points on certain K3
surfaces (see [4], pp. 585, 626 and [17]). However the proof of those results
depended both on the finiteness of the relevant Tate-Shafarevich groups and
on Schinzel’s Hypothesis. The first of those hypotheses is widely regarded as
a respectable one to assume, but that is much less true of the second. The first
paper about such pencils which did not depend on Schinzel’s Hypothesis was
[18], but there the underlying surfaces were only Del Pezzo. In §§5 and 6 we
consider a family (1) of K3 surfaces quite different from that in [17], for which
we can again exhibit sufficient conditions for the Hasse principle to hold. To
prove this we still need the finiteness of the relevant Tate-Shafarevich groups,
but we do not need Schinzel’s Hypothesis. The possibility of doing this for
the surfaces (1) was suggested to us some five years ago by Colliot-Thélène,
but at that time neither he nor we foresaw the difficulties involved.
The K3 surfaces studied here have the form

Z2 = f (1)(X)f (2)(Y ) (1)

where the f (s) are quartic polynomials defined over k, having no repeated
roots. In order to simplify the definition of the set of bad places for (1), we
shall assume that we are given f (1) and f (2) separately, rather than merely
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their product. Geometrically, surfaces (1) can be described as Kummer sur-
faces attached to products of two elliptic curves. In order to prove that
solubility of (1) in kv for each place v of k implies solubility in k, we expect
to need further conditions on the surface (1) — not least because of the likely
existence of non-trivial Brauer-Manin obstructions. It is not absurd to hope
that these are the only obstructions to the Hasse principle for surfaces (1).
But with our present fragmentary understanding of Brauer-Manin obstruc-
tions for K3 surfaces, it would be unrealistic to try to prove this. What the
reader can reasonably ask for is as follows. Clearly a proof of the solubility of
(1) under certain extra conditions implies indirectly that under these extra
conditions there is no Brauer-Manin obstruction. But we should also exhibit
a direct proof that the extra conditions imply that those parts of the Brauer-
Manin obstruction which we know how to describe are trivial, and this direct
proof should actually make use of all the extra conditions. In other words,
we should show (and do show in the appendix to this paper) that though the
extra conditions may be too strong, they are not outrageously too strong.
In §6, but not in §5, one of the further conditions which we impose is that

the Jacobians E(1) and E(2) respectively of the curves

D(1) : U2 = f (1)(X) and D(2) : V 2 = f (2)(Y ) (2)

have all their 2-division points defined over k. It is well known that the
Jacobian of z2 = f(x), where f is a quartic polynomial with no repeated
roots, is given by v2 = g(u) where g is the resolvent cubic of f . (See [1]; a
short proof is given in Appendix A of [13]. Explicitly, the cubic resolvent of
f(x) = ax4+ cx2+dx+ e is g(u) = u3− 27Iu− 27J where I = 12ae+ c2 and
J = 72ace − 27ad2 − 2c3.) Thus if ks is the least splitting field of f (s) over
k the conditions that the E(s) have all their 2-division points defined over k
can also be expressed as follows: Gal(ks/k) ⊂ V4 for each s, where V4 is the
subgroup of order 4 of the alternating group A4.
An elliptic curve with rational 2-division points can be written in the

form
E : Y 2 = (X − c1)(X − c2)(X − c3), (3)

where without loss of generality we can assume that the ci are integers. The
twist of E by an element b in k∗ is

Eb : Y
2 = (X − bc1)(X − bc2)(X − bc3), (4)
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where we can require b and the bci to be integers. An equivalent form,
probably more common in the literature, is

V 2 = b(U − c1)(U − c2)(U − c3).

Similarly, if D : y2 = f(x) is a 2-covering of E then Db will denote its twist
y2 = bf(x), which is a 2-covering of Eb.
The primes of bad reduction for E are those which divide

R = 2(c1 − c2)(c2 − c3)(c3 − c1); (5)

the additional bad primes for Eb are those which divide b to an odd power.
Our investigation of (1) falls naturally into two parts. The hypothesis

that (1) is everywhere locally soluble is equivalent to the assertion that for
each place v of k there exists av in k

∗
v such that both the equations

U2 = avf
(1)(X) and V 2 = avf

(2)(Y )

are soluble in kv. However for (1) to be soluble in k there must exist a in k
∗

such that both the equations

U2 = af (1)(X) and V 2 = af (2)(Y ) (6)

are soluble in each kv. (These curves are D
(1)
a and D

(2)
a respectively, and their

Jacobians are E
(1)
a and E

(2)
a .) For the existence of a to follow from that of

the av is a local-to-global assertion, and the obstruction to it is the Brauer-
Manin obstruction given by the quaternion algebras (c, f (1)(X)), where c is an
element of k∗ whose image in the k-algebra k[X]/(f (1)(X))⊗k k[Y ]/(f (2)(Y ))
is a square. This step is a particular case of a general set-up discussed
in §5 (see Theorem 3 and its Corollary), culminating in Lemma 6. If both
Jacobians have rational 2-torsion then the classes of these quaternion algebras
come from Br k and hence produce no Brauer-Manin obstruction; this is
proved in Lemma 7.
Because we have to consider the equations (6) as a varies, we need infor-

mation about the effect of twisting on the 2-Selmer group. The result which
we need in §6 is a special case of stronger and more general results due to
Kramer [8]; for ease of reference it is stated in §4. We recall that the ele-
ments of the 2-Selmer group of E can be written as triples m = (m1,m2,m3)
where the mi are in k

∗/k∗2 and m1m2m3 = 1. A detailed exposition of
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this can be found at (7). We denote the triple associated with D
(s)
a by

m(s) = (m
(s)
1 ,m

(s)
2 ,m

(s)
3 ). We shall assume that neither of the m

(s) is (1, 1, 1);
for if for example m(1) = (1, 1, 1) then we could choose any value of Y and (1)
would become an elliptic curve with rational 2-torsion, which would therefore
have finite solutions.
Once we have proved that there does exist a such that (6) is soluble in

each kv, the methods which we use are similar to those used in [18]; the key
idea was first introduced in [15] and [4]. What we do is to modify the value

of a which appears in (6) so that the 2-Selmer groups of the two E
(s)
a both

have order 8; the order cannot be less than 8 because the 2-Selmer group of
E
(s)
a contains D

(s)
a and the curves corresponding to the 2-division points, and

after Lemma 8 and the assumption that neither m(s) is (1, 1, 1), these are all
distinct. Hence the order of that part of each Tate-Shafarevich group which
is killed by 2 must be at most 2, and it cannot be equal to 2 because of the
assumed finiteness of the Tate-Shafarevich group and the known properties
of the Cassels-Tate skew-symmetric form. Thus the image of D

(s)
a in the

Tate-Shafarevich group is zero, and D
(s)
a must therefore be soluble.

This process, which constitutes the proof of the solubility of (1) under
suitable conditions, is best described as an algorithm. To make it work we
need further conditions on the f (s). One of these we call Condition E. It
is analogous to Condition D on page 583 of [4] and Conditions D and E
of other previous papers; see for example pages 521 and 525 of [16]. Like
them it is related to the Brauer-Manin condition. (Condition E is weaker
than Condition D; it is essentially arithmetical, whereas Condition D can be
written in purely algebraic form.) In [18] Condition E appears as Condition
5 (p. 905, see also Thm. 3); in Thm. 1 of [18] it is replaced by a condition
which is simpler but not unreasonably stronger. In the present paper no
such replacement for Condition E seems to be feasible. In [18] there is also
nothing corresponding to Conditions Z1 and Z2 below.
We shall need several sets of bad places of k. In the definitions which

follow, an even prime will be one which divides 2 and an odd prime will be
one which does not divide 2.

• S0, which depends only on k, consists of the infinite places, the even
primes, and a set of generators for the ideal class group of k.

• S(E) is obtained from S0 by adjoining the odd primes of bad reduction
for the elliptic curve E.

4



• S(D(s)), s = 1, 2, is obtained from S(E(s)), where E(s) is the Jacobian
of D(s), by adjoining the primes at which some m

(s)
i is not a unit.

• S(D(1), D(2)) = S(D(1)) ∪ S(D(2)). This set can be regarded as the set
of bad places for the surface (1).

• Sc = Sc(D(1), D(2)) for any c in k∗ is obtained from S(D(1), D(2)) by
adjoining those primes for which c is not a unit.

• B will always denote a finite set of places such that B ⊃ S0. We often
write B as the disjoint union of two sets B′ and B′′, in which case we
shall require that B′ ⊃ S0.

Let M be the set of triples m each of whose components mi lies in the
subgroup of k∗/k∗2 generated by the m

(s)
i for s = 1, 2 and i = 1, 2, 3; see (39)

for a cohomological interpretation of M. The reason for introducing M is
that it consists of those 2-coverings which cannot be rendered insoluble by
twisting by an element c of k∗ which is in k∗2v for every place v in S(D

(1), D(2))

and which does not render insoluble either of the D
(s)
c . Condition E is as

follows:

For every place v in S(D(1), D(2)) there exists av ∈ k∗v with the
following property: for each v both D

(1)
av and D

(2)
av are soluble in

kv, but for each s = 1, 2 and for each m ∈ M \ {(1, 1, 1),m(s)}
there exists w in S(D(1), D(2)) such that the 2-covering of E(s)aw
given by m is not soluble in kw.

In Theorem 4 of the appendix we show that Condition E implies the triviality
of the algebraic Brauer-Manin obstruction for (1).
Conditions Z1 and Z2 were originally invented because we were unable to

prove Theorem 1 without postulating some such properties; they are stronger
than we need, but weaker conditions of the same kind would lead to fur-
ther complications in the arguments in §6. We have subsequently observed
that they imply that the 2-component of the transcendental Brauer-Manin
obstruction is trivial; see Theorem 5 of the appendix. Condition Z1 is as
follows, where the c

(s)
i are defined by writing the curves E

(s) in the form (3).

For some permutation i, j, k of 1, 2, 3 there exist odd primes p
(1)
ij ,

p
(1)
ik not in S(D

(2)) such that the elements of the triple m(1) are
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units at p
(1)
ij and p

(1)
ik , and

p
(1)
ij ‖(c

(1)
i − c

(1)
j ) and (c

(1)
i − c

(1)
k ), (c

(1)
j − c

(1)
k ) are units at p

(1)
ij ,

p
(1)
ik ‖(c

(1)
i − c

(1)
k ) and (c

(1)
i − c

(1)
j ), (c

(1)
j − c

(1)
k ) are units at p

(1)
ik .

Condition Z2 is obtained from Condition Z1 by interchanging 1 and 2.

Theorem 1 Suppose that (1) is everywhere locally soluble, that the 2-division
points of E(1) and E(2) are defined over k, and that Conditions E, Z1 and Z2
hold. If the relevant Tate-Shafarevich groups are finite, (1) is soluble in k.

It is noteworthy that the surfaces studied in [17] are fibred by pencils
of curves of genus 1, and that we study the surfaces (1) by lifting them to
threefolds which are fibred by pencils of products of two curves of genus 1.
These facts are fundamental to the approach in both papers; but they do
raise the question whether it is only in the presence of such fibrations that
there exist reasonably simple sufficient conditions for the Hasse principle to
hold for families of K3 surfaces.
We are indebted to Jean-Louis Colliot-Thélène and to the referee for

a large number of valuable comments, in particular to Jean-Louis Colliot-
Thélène for communicating to us an argument that lead us to Theorem 3.
We are grateful to David Harari, Jan Nekovář and Olivier Wittenberg for
useful discussions. The research reported in §3 was begun at a conference at
the American Institute of Mathematics at Palo Alto. We are grateful to that
Institute for its hospitality.

2. Preliminaries. We start by summarizing the standard theory of 2-
descents on the elliptic curve (3). The notation introduced in this section
will be used, with minor exceptions, throughout the paper. In the notation
of (3), to any triple m = (m1,m2,m3) of elements of k

∗ with m1m2m3 = 1
we associate the 2-covering Em of E given by

miY
2
i = X − ci for i = 1, 2, 3 and Y = Y1Y2Y3. (7)

Twisting Em does not alter the value of m; that is, (Em)b = (Eb)
m.

We ought to treat themi as elements of k
∗/k∗2 since the group of triplesm

is really a way of describing H1(k,E[2]); treating the mi as elements of k
∗ is

convenient but involves some abuse of notation. In particular, the valuations
vp(mi) for primes p of k really take values in Z/2. We shall say that m is
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a unit at p if all the vp(mi) are even. There is an isomorphism between
the F2-vector space of all 2-coverings of E and the group of triples m, the
addition of two 2-coverings corresponding to componentwise multiplication
of the triples m. The 2-coverings associated with the 2-division points are
given by the triples

((c1 − c2)(c1 − c3), c1 − c2, c1 − c3) for (c1, 0),

(c2 − c1, (c2 − c3)(c2 − c1), c2 − c3) for (c2, 0),

(c3 − c1, c3 − c2, (c3 − c1)(c3 − c2)) for (c3, 0).

(8)

For every finite set B ⊃ S0 of places of k we shall as usual denote by o∗B
the group consisting of the elements of k∗ which are units outside B. We now
define various sets, each of which is a vector space over F2. Write

XB = o
∗
B/o

∗2
B , Yv = k

∗
v/k

∗2
v , YB =

⊕

v∈B
Yv,

with a convention for VB, TB,WB andKB similar to that for YB, where V, T,W
and K will be defined shortly; but note that the spaces o∗B and XB do not
follow this convention, nor does UB which will be defined later. If n is the
order of B then XB has dimension n by Dirichlet’s unit theorem, and YB has
dimension 2n because Yv contains 4/|2|v elements. It is known from class
field theory that XB → YB is injective. Write

Vv = Yv ⊕ Yv, VB =
⊕

v∈B
Vv = YB ⊕ YB.

It is customary to identify the group of triples m with (k∗/k∗2)2, though
this identification is not canonical and has the disadvantage of destroying
the symmetry. This accounts for the way in which VB and its subspaces
are defined; but we shall almost always write elements of VB as triples, the
product of whose three components is 1.
Let UB be the image of XB ⊕XB in VB. Thus dimUB = 1

2
dimVB = 2n.

Define the non-degenerate alternating bilinear form eB on VB by

eB =
∑

v∈B
ev where ev((a, b), (c, d)) = (a, d)v + (b, c)v, (9)

the factors on the right being additive Hilbert symbols. If we write elements
of VB as triples m = (m1,m2,m3) with m1m2m3 = 1 and the mi in YB, then

ev(m
′,m′′) = (m′1,m

′′
1)v + (m

′
2,m

′′
2)v + (m

′
3,m

′′
3)v (10)
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in an obvious notation. If we identify Vv with H
1(kv, E[2]) then the bilinear

form ev is induced by the Weil pairing E[2]× E[2]→ F2.
The Hilbert product formula shows that UB is isotropic with respect to

eB, and comparison of dimensions shows that it is maximal isotropic in VB.
Let Tv be the image of (o

∗
v/o

∗2
v )
2 in Vv, where ov is the ring of integers of kv,

and let Wv be the image of E(kv) in Vv under the Kummer map

P = (X,Y ) 7→ (X − c1, X − c2, X − c3) (11)

in the notation of (3). Tate has shown that Wv is a maximal isotropic sub-
space of Vv for the alternating form ev, and Wv = Tv if v is not an infinite
place, an even prime or an odd prime of bad reduction for E. A 2-covering
of E is soluble in kv if and only if the corresponding point of Vv is in Wv.
Provided that B ⊃ S(E), a 2-covering of E is soluble in kv for all v not

in B if and only if the corresponding point of (k∗/k∗2)2 is in UB. Hence in
this case the 2-Selmer group of E can be identified with UB ∩WB. Since UB
and WB are both maximal isotropic in VB, UB ∩WB is both the left and the
right kernel of the bilinear map UB ×WB → F2 induced by eB.

So far this is traditional folklore, first systematically described by Tate.
The next step was introduced in [4]. For any B ⊃ S(E) we construct inside
each Vv a maximal isotropic subspace Kv such that VB = UB ⊕ KB. Let
tB : VB → UB be the projection along KB and write

U ′B = UB ∩ (WB +KB), W ′
B = WB/(WB ∩KB) =

⊕

v∈B
W ′
v

where W ′
v = Wv/(Wv ∩Kv). The map tB induces an isomorphism

τB : W
′
B → U ′B

and the bilinear function eB induces a bilinear function

e′B : U
′
B ×W

′
B → F2.

(An explicit description of τ−1B will be given in the proof of Lemma 3.) The
bilinear functions U ′B×U

′
B → F2 and W

′
B×W

′
B → F2 defined respectively by

θ[B(u
′
1, u

′
2) = e

′
B(u

′
1, τ

−1
B (u

′
2)) and θ]B(w

′
1, w

′
2) = e

′
B(τBw

′
1, w

′
2) (12)

are symmetric. (For the proof, see [4] or [16].) We have θ]B(w
′
1, w

′
2) =

θ[B(τBw
′
1, τBw

′
2).
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If B ⊃ S(E) the 2-Selmer group of E is isomorphic to both the left and
the right kernel of e′B, and hence also to the kernels of the two maps (12). We
have now two descriptions of the 2-Selmer group — one as UB ∩WB, which
can be identified with the kernel of eB restricted to UB ×WB, and the other
as either kernel of e′B. These are essentially the same. For U

′
B is orthogonal

to WB∩KB, so that e′B induces a map U
′
B×WB 7→ F2 whose left kernel is the

same as the left kernel of e′B. This is contained in the left kernel of eB acting
on UB ×WB; and these two left kernels have the same order, so they must
be equal. In particular the left kernel of e′B can be identified with UB ∩WB.

3. Refining the 2-descent process. In [4] there is considerable freedom in
choosing the Kv, and this raises three obvious questions:

• Is there a canonical choice of the Kv?

• How small can we make U ′ and W ′?

• Can we ensure that the functions (12) are not merely symmetric but
alternating?

The answer to the first question appears to be negative, even after we have
fixed the decomposition of the Vv in Lemma 1. Since U

′
B ⊃ UB∩WB, the best

possible response to the second question would be to achieve U ′B = UB ∩WB;
we shall do this by satisfying the requirement

WB = (UB ∩WB)⊕ (KB ∩WB) (13)

which is stronger. For suppose that (13) holds; then

WB +KB = (UB ∩WB) +KB

and it follows immediately that

U ′B = UB ∩ (WB +KB) = UB ∩WB. (14)

The proof that (13) implies (14) makes no assumptions about B other than
B ⊃ S(E); we shall use this fact with B′ instead of B in the proof of Lemma
3. Since the 2-Selmer group is UB∩WB and can be identified with the left and
right kernels of each of the functions (12), these functions vanish identically
and are therefore alternating. However in the proof of Theorem 2 below we
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shall need to consider other recipes for choosing the Kv, for which (13) does
not hold but we can still prove that the functions (12) are alternating.
The construction of the Kv in this paper depends on two vector space

lemmas, whose setting generalizes the structure described in §2. We have
stated Lemma 2 in a more general form than we need for the applications, so
that the notation makes it easier to use Lemma 1. In doing this we follow [4],
but Lemma 2 is considerably more powerful than the corresponding result
there or in [16]; however Lemma 1 can already be found in [16].

Lemma 1 Let ψ be a non-degenerate alternating bilinear form on a finite
dimensional F2-vector space V , and let W be a maximal isotropic subspace
of V . Then V can be expressed as a direct sum ⊕Vi of mutually orthogonal
subspaces, each of dimension 2, such that the restriction of ψ to any Vi is
non-degenerate, each Vi∩W has dimension 1 and W is the direct sum of the
Vi ∩W .

Proof The existence of ψ shows that dim V is even; so let dim V = 2n with
n > 1, the case n = 1 being trivial. It is enough to show that if w1 is a non-
trivial element of W then w1 lies in a subspace V1 satisfying the conditions
of the lemma, and that if V ′ is the orthogonal complement of V1 in V then
dim(V ′ ∩W ) = n − 1; for we can then complete the proof by induction on
n. For this, choose x1 in V not orthogonal to w1. Let V1 be the vector
space generated by w1 and x1 and let V

′ be its orthogonal complement in
V . Thus dim(V1 ∩W ) = 1 and the restriction of ψ to V1 is non-degenerate,
because V1 is not isotropic. Now V

′ ∩W is the subspace of W orthogonal to
x1; so dim(V

′ ∩W ) ≥ n − 1. On the other hand, w1 is not in V ′ ∩W ; so
dim(V ′ ∩W ) ≤ n− 1. �

Lemma 2 Let the Vi be n vector spaces over F2, each equipped with a non-
degenerate additive alternating bilinear form ψi with values in F2. Denote by
ψ the sum of the ψi, which is a non-degenerate bilinear form on V = ⊕Vi.
For each i let Wi be maximal isotropic in Vi, and let U be maximal isotropic
in V with respect to ψ. Then there exist maximal isotropic subspaces Ki ⊂ Vi
such that V = U ⊕K and

W = (U ∩W )⊕ (K ∩W ) (15)

where W = ⊕Wi and K = ⊕Ki. Moreover U ∩ (W +K) = U ∩W .

10



Suppose also that there are functions φi on Vi with values in F2 which
satisfy

φi(ξ + η) = φi(ξ) + φi(η) + ψi(ξ, η) (16)

for any ξ, η in Vi, and let φ on V be the sum of the φi. Assume that φ is
trivial on U and φi is trivial on Wi. Then the Ki can be so chosen that in
addition φi is trivial on Ki and therefore φ is trivial on K.

Proof We consider first the special case in which every Vi has dimension 2 and
therefore every Wi has dimension 1. Let I be maximal among those subsets
of {1, . . . , n} for which U ∩WI is trivial, and let J be the complement of I.
For i ∈ I we choose Ki = Wi; this will automatically ensure that φi is trivial
on Ki and that U +⊕i∈IKi is a direct sum. For any j ∈ J the maximality of
I shows that U ∩ (WI +Wj) is nontrivial, whence Wj ⊂ U ⊕WI because Wj
is one-dimensional; so U ⊕WI ⊃ W . Choose each Kj so that Vj = Wj ⊕Kj
and suppose that u+

∑
wi =

∑
kj is in (U ⊕WI)∩KJ . If for ` ∈ J we write

the nontrivial element w` of W` as w` = u
′ +
∑
w′i in U ⊕WI then

ψ(k`, w`) =ψ(
∑

kj, w`) = ψ(u,w`) = ψ(u,
∑

w′i)

= ψ(
∑

kj −
∑

wi,
∑

w′i) = 0;

so k` = 0. Since this is true for each `, (U ⊕WI) +KJ is a direct sum. By
comparison of dimensions V = U ⊕K. Again K ∩W = WI , so that

(U ∩W )⊕ (K ∩W ) = (U ∩W )⊕WI = (U ⊕WI) ∩W = W.

It only remains to show that if the φi exist then we can choose the Kj for
j ∈ J so that φj vanishes on Kj. Let βj be the nontrivial element of Wj,
and let α′j and α

′′
j = α′j + βj be the elements of Vj \Wj. Since φj(βj) = 0 it

follows from (16) and the non-degeneracy of ψj that

φj(α
′
j) + φj(α

′′
j ) = ψj(α

′
j, βj) = 1;

we now generate Kj by whichever of α
′
j and α

′′
j satisfies φj(αj) = 0.

To deduce the lemma in general, we use Lemma 1 to decompose each Vi
as the direct sum of mutually orthogonal subspaces Vij of dimension 2, on
each of which the bilinear form ψi is non-degenerate and each of which meets
Wi in a subspace Wij of dimension 1. By what we have already proved, we
can find spaces Kij having (with respect to this finer decomposition) all the
properties stated in the lemma. Now take Ki to be the sum of the Kij . �
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We now revert to the notation of §2. Let B1 ⊂ B and let VB1 be a vector
subspace of VB1 . There are two (and sometimes three) vector spaces in VB
which we can naturally associate with VB1 , and we need a notation which
distinguishes them. One, which we shall denote again by VB1 , is simply
VB1 ⊕ {0} where {0} is the trivial vector subspace of VB\B1 . A second is
VB1 ⊕ VB\B1 ; this is ı

∗VB1 where ı : VB → VB1 is the projection map. The
third can only be defined when VB1 ⊂ UB1 . Now the pull-back of VB1 under
the injection XB1 ×XB1 ↪→ VB1 is a vector subspace of XB×XB, so its image
in VB is a vector space which we call ∗VB1 ⊂ UB. This construction induces
a natural isomorphism VB1 → ∗VB1 , and we shall frequently identify these
two spaces. If VB1 ⊂ U ′B1 and KB\B1 = TB\B1 then ∗VB1 ⊂ U ′B; in this case
the image of ∗VB1 under τ

−1
B lies in W ′

B1 ⊕ {0} ⊂ W ′
B, which we identify

with W ′
B1 , and the diagram

∗VB1 ↪→ ∗U
′
B1 → W ′

B1
↑ ↑ ‖
VB1 ↪→ U ′B1 → W ′

B1

commutes, where U ′B1 → W ′
B1 is τ

−1
B1 .

From here until the end of this section we require that B ⊃ S(E). Let
B be the disjoint union of the sets B′ ⊃ S0 and B′′, and replace ψi by ev.
It is not easy to make use of the construction of the Kv given in the proof
of Lemma 2. In what follows, we shall therefore usually apply Lemma 2 to
B′ rather than B, and we shall use a simpler but less powerful recipe for
choosing Kv when v is in B′′. The new recipe does not yield (13), but we
shall see in Theorem 2 that it does still make θ[B alternating. The first part
of Lemma 2, which does not involve the φi, gives the following result.

Lemma 3 In the notation of §2, we can take Kv = Tv for all v in B′′, and
we can choose the Kv for v in B′ so that

WB′ = (UB′ ∩WB′)⊕ (KB′ ∩WB′) ⊂ VB′ , (17)

which implies U ′B′ = UB′ ∩WB′. Moreover

U ′B = ∗U
′
B′ ⊕ τBW

′
B′′ = ∗U

′
B′ ⊕

(
⊕q∈B′′τBW

′
q

)
⊂ VB, (18)

and the restriction of θ[B to ∗U
′
B′ is trivial.

12



Proof For B = B′ this follows from Lemma 2. In the general case, let the Kv
for v in B′ be those already constructed for B = B′ and let Kv = Tv for v in
B′′. By dimension count, to prove that VB = UB ⊕KB it is enough to prove
that KB ∩UB is trivial. But if σ = (σ1, σ2, σ3) is an element of KB ∩UB then
the σi must be units at p for any p in B′′; so σ belongs to the image of UB′ in
VB = VB′⊕VB′′ . Hence the projection onto VB′ of σ lies in KB′ ∩UB′ , which is
trivial; so each σi is trivial and KB ∩ UB is indeed trivial. As we noted after
(14), the assertion that U ′B′ = UB′ ∩WB′ follows from (17). Again

dimU ′B = dimW
′
B = dimW

′
B′ + dimW

′
B′′ = dimU

′
B′ + dimW

′
B′′ . (19)

Consider the map

U ′B ↪→ VB = WB +KB → W ′
B = W

′
B′ ⊕W

′
B′′ → W ′

B′′ , (20)

where the second map is projection along KB, since W
′
B = WB/(WB ∩KB).

Suppose that u is in the kernel of the map (20). Because the map U ′B → W ′
B

which is a factor of (20) is the isomorphism τ−1B and KB′′ = TB′′ , this implies
that u is in ∗UB′ and therefore in ∗UB′ ∩U ′B = ∗U

′
B′ . The relation (19) now

shows that the map (20) is onto and its kernel is precisely ∗U
′
B′ .

For use later, it is convenient to calculate τ−1B u for any u in U ′B, though
for the proof of Lemma 3 we only need to do this for u in ∗U

′
B′ . To obtain

τ−1B u we project u to an element uv of Vv for each v in B and then add to
each uv whatever element of Kv is needed for the sum to lie in Wv; this sum
is then projected into W ′

v. If u is in ∗U
′
B′ then uv is inWv for each v in B

′, by
the sentence before (19), and in Tv = Kv for each v in B′′. So the component
of τ−1B u in W ′

v for v in B
′ is just the coset of Wv ∩Kv containing uv; and the

component of τ−1B u in W ′
v for v in B

′′ is trivial. To compute the first function
(12) we add an element of KB to u

′
2 in such a way as to obtain an element

w2 of WB, and we then evaluate

θ[B(u
′
1, u

′
2) = eB(u

′
1, w2) = eB′(u

′
1, w2) + eB′′(u

′
1, w2).

If u′1 and u
′
2 are both in ∗U

′
B′ then the first summand on the right vanishes

because U ′B′ ⊂ WB′ and eB′ is trivial on WB′×WB′ , and the second summand
on the right vanishes because the projection of w2 on VB′′ is trivial. �
The map τ−1B : W

′
B → U ′B depends on the choice of B

′ and of the Kv, and
so does the composite map WB → W ′

B → U ′B → UB. Lemma 3 enables us to

write the matrix representing θ] or θ[ in the form

(
0 ∗
∗ ∗

)

, and we already

13



know that this matrix is symmetric. In Theorem 2 we obtain sufficient condi-
tions for the matrix to be alternating; this result is useful primarily because
alternating matrices have even rank. Our main application of Theorem 2 is
to twisted curves Eb where B′ contains S(E) and the primes in B′′ are bad
only because they divide b. But it costs nothing to prove a slightly more
general result.
For the rest of this paper, we always choose the Kv in accordance with

the recipe in Lemma 3. When we apply the second paragraph of Lemma 2,
we replace i by v and ψi by ev; and for (m1,m2,m3) in Vv where v ∈ B′ we
take φv((m1,m2,m3)) to be any one of the three expressions

(mi(ci − cj)(ci − ck),mj(cj − ci)(cj − ck))v, (21)

which can easily be seen to be equal. The significance of φv is as follows.
The antipodal involution (X,Y ) 7→ (X,−Y ) on (3) determines an involution
on the 2-covering Em; in the notation of (7) this involution reverses the signs
of Y1, Y2, Y3. The quotient of E

m by this involution is a smooth projective
curve Cm of genus 0, which is given by

(c2 − c3)m1Y
2
1 + (c3 − c1)m2Y

2
2 + (c1 − c2)m3Y

2
3 = 0; (22)

and φv(m) is just the class [C
m] as an element of Br kv. We must check that

these φv satisfy the conditions of Lemma 2. Straightforward calculation,
starting from (21) and using the bilinearity of the Hilbert symbol, shows
that if we write ξ = (ξ1, ξ2, ξ3) and η = (η1, η2, η3) then

φv(ξ + η)+φv(ξ) + φv(η) = (ξ1, η2)v + (η1, ξ2)v

+ ((c1 − c2)(c1 − c3), (c2 − c1)(c2 − c3))v.

Here the sum of the first two terms on the right is ev(ξ, η), and the third term
vanishes because the sum of its two arguments is (c1− c2)2. The triviality of
φ on UB′ follows from the Hilbert product formula, and the triviality on Wv
follows from the fact that for m ∈ Wv the conic Cm has a kv-point, whence
[Cm] = 0. Alternatively, we can argue as follows. It follows from (22) that

(c2 − c1)(c2 − c3)m2(m1Y1)
2 + (c1 − c2)(c1 − c3)m1(m2Y2)

2

= m1m2m3((c1 − c2)Y3)
2.

If the 2-covering (7) is soluble, then since m1m2m3 = 1 this implies

((c1 − c2)(c1 − c3)m1, (c2 − c1)(c2 − c3)m2)v = 0, (23)

14



which is just the result that we need.

Theorem 2 Suppose that B ⊃ S(E) is the disjoint union of B′ ⊃ S0 and
B′′. Suppose that for each q in B′′ all the vq(ci − cj) have the same parity.
Choose the Kv as in Lemma 3 so that in particular

WB′ = (UB′ ∩WB′)⊕ (KB′ ∩WB′) (24)

and Kv = Tv for all v in B′′. Then θ[B is alternating on U
′
B.

Proof For v in B′, φv vanishes on Kv because the Kv have been chosen as in
Lemma 2. For p in B′′ and m in Kp = Tp the mi are units at p. Hence (22)
has good reduction at p because the vp(ci − cj) are all congruent mod 2; so
φp again vanishes on Kp. Thus φB(k) = 0 for all k in K.
Now let u be in U ′B; thus u = w+ k with w in WB and k in KB, and τ

−1
B u

is the image of w in W ′
B. Now

θ[B(u, u) = e
′
B(u, τ

−1
B u) = eB(u,w) = φB(u) + φB(w) + φB(u− w)

where the right hand equality is (16). The Hilbert product formula, applied
for example to (21), shows that φB(u) = 0. If m is in Wv then E

m is soluble
in kv and hence so is C

m; so φv(m) = [C
m] = 0. This proves that φB(w) = 0;

finally u− w = k and we have already shown that φB(k) = 0. �
For later use we need detailed information about Wq for odd q in B. The

following lemma provides a complete dictionary, though in what follows we
shall only use part of it. (Unfortunately it does not seem possible to use the
corresponding information when v is an infinite place, nor even to describe
it when v comes from an even prime; indeed the result over Q for the prime
2 is already extremely intricate.) In the statement and proof of the following
lemma a1 ∼ a2 will mean that a1/a2 is in k

∗2
q , and classes will mean classes

in k∗q/k
∗2
q .

Lemma 4 Let q be an odd prime.
If q divides all the ci − cj to the same even power, then Wq = (o∗q/o

∗2
q )
2.

If q divides all the ci − cj to the same odd power, then Wq consists of the
classes of

(1, 1, 1) and the three triples (8). (25)

Now suppose that q does not divide all the ci−cj to the same power. After
renumbering, let

v(c1 − c2) > v(c1 − c3) = v(c2 − c3). (26)
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Denote by η the class of c1 − c2, by ε the class of c1 − c3 (which by (26) is
the same as the class of c2− c3), and by ν the class of quadratic non-residues
mod q. If v(ε) is odd then Wq consists of the classes of

(1, 1, 1), (ηε, η, ε), (−η,−ηε, ε), (−ε,−ε, 1). (27)

If v(η) is odd and v(ε) even then Wq consists of the classes of

(1, 1, 1), (ηε, η, ε), (ν, ν, 1), (νηε, νη, ε). (28)

If v(η) and v(ε) are both even and ε ∼ ν then Wq consists of the classes of

(1, 1, 1), (ν, ν, 1), (ν, 1, ν), (1, ν, ν). (29)

If v(η) and v(ε) are both even and ε ∼ 1 then Wq consists of the classes of

(1, 1, 1), (ν, ν, 1), (π, π, 1), (πν, πν, 1) (30)

where π is a uniformizing variable for q.

Proof Since Wq is maximal isotropic in Vq and q is odd, Wq contains exactly
four elements. Hence it is enough to show in each case that the elements
exhibited induce distinct elements of Vq and lie in Wq; and the first of these
statements is always obvious. If the ci− cj are all divisible by the same even
power of q we can rescale the equation (3) so that q becomes a prime of good
reduction, and the assertion is then well-known. The three expressions (8)
are all in Wq; this proves the assertions in the lemma whenever v(ε) is odd,
and also shows that the second expression (28) is in Wq. If v(ε) is even we
can find ξ in o∗q such that ξ ∼ ν(c1 − c3) and 1 + ξ ∼ c1 − c3. Indeed, the
conic (c1 − c3)X21 = ν(c1 − c3)X22 + 1 has good reduction, and so is solvable
in oq by Hensel’s lemma. Moreover, we can arrange that X2 is in o

∗
q; then we

choose ξ = ν(c1 − c3)X22 . Now take X = c1 + ξ(c1 − c3) in (11), so that

Y 2 = ξ(1 + ξ)(c1 − c3)
2{(c1 − c2) + ξ(c1 − c3)} ∼ (c1 − c3)

3ξ2(1 + ξ)

is in k∗2; thus (ν, ν, 1) is in Wq, which completes the proof of (28). The same
argument also shows that (ν, ν, 1) is inWq under the hypotheses of (29). One
of the last two triples (29) is an expression (8), and this completes the proof
of (29). Finally, under the hypotheses of (30) the same argument as before
shows that (ν, ν, 1) is in Wq. Since now v(η) > v(ε) + 1, we can take

X = c1 + π(c1 − c3) or X = c1 + νπ(c1 − c3)
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and this shows that the last two elements of (30) are also in Wq. �

Remark When the smallest v(ci−cj) is odd, E has additive reduction. When
all the v(ci − cj) are equal to the same even number E has good reduction.
All the other cases correspond to multiplicative reduction.

4. An effect of twisting. For b ∈ k∗ let Eb be the quadratic twist (4) of
an elliptic curve E with equation (3), and let db be the rank of the 2-Selmer
group of Eb. We now address a special case of the problem of the variation
of the parity of db with b.

Lemma 5 Let q be an odd prime in S(E) such that

vq(c1 − c2) > 0, vq(c1 − c3) = vq(c2 − c3) = 0.

Let b, c in k∗ be such that b ∈ k∗2v for all v in S(E) other than q, b is
a quadratic non-residue at q, and c is a unit at q. Then dc and dcb have
opposite parities.

Proof Equation (4) shows that without loss of generality we can assume
c = 1. The parity of db + d1 is that of the rank of the 2-Selmer group of E
over k(

√
b) ([10], Lemma 1.2, which uses the skew-symmetric Cassels-Tate

form, but not the conjectural finiteness of the Tate–Shafarevich groups).
By Thm. 1 of [8] this rank has the same parity as the (finite) sum of th

iv = dimWv/(Wv∩W
(b)
v ), whereW

(b)
v is the image of Eb(kv) in Vv (see [8], (11)

and Prop. 7). In our case if v 6= q is in S(E) then E and Eb are isomorphic
over kv, and hence iv = 0. The reduction of E at q is multiplicative and
k(
√
b)/k is inert, thus iq = 1 by the formulae on p. 128 of [8]. If v 6∈ S(E)

is a prime dividing b to an odd power, then the reduction of E at v is good
and k(

√
b)/k is ramified; in this case iv = 0 by Prop. 3 of [8]. If both E and

Eb have good reduction at v, then Wv = W
(b)
v , so that iv = 0. Alternatively,

dim Wv ∩W
(b)
v in all these cases can be easily found from Lemma 4. �

5. The local-to-global step and the vertical obstruction. Let k be a field
of characteristic 0 with algebraic closure k; Γ = Gal (k/k). Let X and Y
be smooth projective varieties over k, and π : Y → X a ramified double
covering. For an irreducible divisor D ⊂ X we write valD : k(X)

∗ → Z for
the corresponding valuation, and write kD for the algebraic closure of k in
the function field k(D). Choose f ∈ k(X) such that k(Y ) = k(X)(

√
f).

Define a separable k-algebra L as the direct sum of kD such that valD(f) is
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odd; L is well defined since f is unique up to multiplication by an element
of k(X)∗2.
Let Y be the quotient of Y ×k Gm by μ2 = {±1} acting on Gm by

multiplication and on Y as the Galois group of the covering Y → X. The
generic fibre of Y → X is a k(X)-torsor under Gm; it is trivial by Hilbert’s
theorem 90. Hence Y is birationally equivalent to X ×k P1k over X. If t is a
multiplicative coordinate on Gm, then Y is given by the equation y2 = tf .
The fibres of the natural map Y → P1k are the quadratic twists Ya of Y , for
all a ∈ k∗. By Hironaka’s theorem there exists a smooth compactification
Y ⊂ X such that the following diagram commutes:

Y ↪→ X

y p



y

Gm ↪→ P1k

We refer the reader to §1 of [5] for a convenient survey of the basic properties
of the Brauer group. By definition the vertical Brauer group BrvertX attached
to the morphism p : X → P1k is the intersection of p

∗Br k(P1k) = p∗Br k(t)
and BrX in Br k(X ). The commutative diagram

Br k(X) ↪→ Br k(X ×k P1k) = Br k(X )
∪ ∪ ∪
BrX = Br (X ×k P1k) = BrX

shows that BrX is naturally isomorphic to BrX . Thus we can consider
BrvertX as a subgroup of BrX. Recall the standard notation

Br 0X = Im[Br k → BrX], Br 1X = Ker [BrX → BrX].

Theorem 3 In the above notation BrvertX /Br 0X consists of the classes of
quaternion algebras (c, f), where c belongs to the finite group Ker [k∗/k∗2 →
L∗/L∗2].

The theorem also holds for π unramified provided that c ranges over all
of k∗/k∗2.
Proof By the definition of Y the base change Gm → Gm, t 7→ t2, turns
Y → Gm into Y ×k Gm → Gm. Hence the base change f : P1k → P

1
k given
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by t = z2 turns p : X → P1k into p
′ : X ′ → P1k, where X

′ is birationally
equivalent to Y ×k P1k over P

1
k. We have an obvious commutative diagram:

Br k(z)
p′∗

−−→ Br k(X ′) ⊃ BrX ′ = Br (Y ×k P1k) = BrY

f∗

x



x



x



Br k(t)
p∗

−−→ Br k(X ) ⊃ BrX

Let A ∈ Br k(t) be such that p∗A ∈ BrX . Since the fibres of Y → Gm
are geometrically irreducible, A can be ramified only at 0 and ∞. On the
other hand, we have p′∗f ∗A ∈ BrX ′ = Br (Y ×k P1k). Since the fibres of the
projection Y ×kP1k → P

1
k are geometrically irreducible, f

∗A is an unramified
element of Br k(z), hence f ∗A ∈ BrP1k = Br k. The covering f : P

1
k → P

1
k is

ramified only at 0 and∞, with ramification index 2, hence the equal residues
of A at 0 and ∞ are the classes in k∗/k∗2 of some c ∈ k∗. It follows that up
to an element of Br k we have A = (c, t) (see [5], §1.2). The natural injection
Br k(X) → Br k(X ) sends (c, f) to (c, f) = (c, t), since tf ∈ k(X )∗2. This
map restricted to BrX is an isomorphism onto BrX , hence (c, t) ∈ BrX if
and only if (c, f) ∈ BrX. The purity theorem of Grothendieck ([6], II, Thm.
6.1, see also [5], Thm. 1.3.2) gives the following exact sequence

0→ BrX → Br k(X)
res
−→ ⊕H1(k(D),Q/Z)

where the sum is over all irreducible divisors D ⊂ X. If valD(f) is even
then resD((c, f)) = 0; if valD(f) is odd, then resD((c, f)) is the class of c
in k∗D/k

∗2
D ⊂ k(D)∗/k(D)∗2 = H1(k(D), 1

2
Z/Z) ⊂ H1(k(D),Q/Z) (see [5],

Prop. 1.1.3). This shows that (c, f) ∈ BrX = BrX precisely when c goes to
zero in L∗/L∗2. �
Now assume that k is a number field, and X has points in all completions

of k.

Lemma 6 (i) The obstruction related to BrvertX , which we call the vertical
Brauer-Manin obstruction, vanishes if and only if for each place v of k there
exists av ∈ k∗v such that Yav(kv) is non-empty and

∑

v

invv((c, av)) = 0 for all c ∈ Ker [k
∗/k∗2 → L∗/L∗2]. (31)

(ii) Let {av} be a family satisfying the conditions of (i), and let B be a
finite set of places of k. Then there exists a ∈ k∗ arbitrarily close to av for
each v ∈ B, and in particular with a/av ∈ k∗2v , such that for each place v of
k the set Ya(kv) is non-empty.
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Proof (i) The vertical obstruction vanishes if and only if there exists {Pv}
in
∏
v X (kv) such that

∑
v invv(A(Pv)) = 0 for all A ∈ BrvertX . Theorem

3 shows that the quotient of BrvertX by the image of Br k is finite; and for
fixed A the function invv(A(Pv)) with values in Q/Z is locally constant.
Thus for each v we can find Qv in a small neighbourhood of Pv in X (kv) such
that p(Qv) ∈ Gm and invv(A(Qv)) = invv(A(Pv)) for all A in Br vertX . Let
av ∈ k∗v be the coordinate of p(Qv). Now (i) follows from Theorem 3.
(ii) See the proof of Theorem A of [2], which uses torsors and strong

approximation. Alternatively, if L contains a factor which is an abelian ex-
tension of k we can apply Theorem 2.2.1(a) of [3] to an appropriate model X
(this theorem uses Dirichlet’s theorem on primes in an arithmetic progres-
sion). For both theorems it is essential that at most two geometric fibres of
p are degenerate. �
Similar results were obtained by David Harari by a different method (un-

published).
We now consider a particular case of the above set-up. In the rest of

this section f (1)(x1) and f
(2)(x2) will be any separable quartic polynomials.

We remind the reader that the curves D(s), s = 1, 2, are defined by y2s =
f (s)(xs), and that E

(s) is the Jacobian of D(s). Let Y be the blowing-up of
the sixteen points of D(1) × D(2) given by x1 = x2 = 0, and let X be the
minimal desingularization of the quotient of D(1) × D(2) by the involution
which changes the signs of y1 and y2. This involution extends to Y and
defines a double covering π : Y → X ramified at the sixteen exceptional
curves. We can choose either of f (1) and f (2) as our function f . For s = 1, 2
let Ls be the separable k-algebra k[x]/(f

(s)(x)); then L = L1 ⊗k L2.

Lemma 7 (i) Suppose that the group Ker[k∗/k∗2 → L∗/L∗2] is generated by
Ker[k∗/k∗2 → L∗1/L

∗2
1 ] and Ker[k

∗/k∗2 → L∗2/L
∗2
2 ]. Then BrvertX = Br 0X.

(ii) The condition of (i) is satisfied when each f (i) is irreducible with a
biquadratic splitting field or is the product of two irreducible quadratic poly-
nomials.
(iii) Let k be a number field. Suppose that X has points in all completions

of k, and each E(s) has all its 2-division points in k. Let B be a finite set
of places of k and for each v in B let av in k∗v be such that each D

(s)
av (kv) is

non-empty. Then there exists a in k∗ arbitrarily close to av for each v in B
such that for each place v of k neither of the D

(s)
a (kv) is empty.

Proof (i) The quaternion algebra (c, f) = (c, f (s)(xs)) with c ∈ Ker [k∗/k∗2 →
L∗s/L

∗2
s ] is in BrX and belongs to the image of Br k(xs); and k(xs) ⊂ k(X ).
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The algebra (c, f (s)(x)) is unramified away from the closed points of A1k given
by the monic irreducible factors P (x) of f (s)(x). The residue at P (x) = 0 is
the class of c in H1(kP ,Z/2) = k

∗
P/k

∗2
P , where kP = k[x]/(P (x)). Since Ls =

⊕PkP where the sum is taken over all irreducible monic P (x) dividing f (s)(x),
we have L∗s/L

∗2
s = ⊕Pk

∗
P/k

∗2
P . Hence (c, f

(s)(x)) is unramified everywhere on
A1k. It is also unramified at infinity since the degree of f

(s) is even. Thus
(c, f (s)(x)) represents an element of BrP1k = Br k.
(ii) In this case L is a direct sum of composita of factors of L1 and L2.

All these fields are pluriquadratic extensions of k, and the statement follows
at once.
(iii) We are in the situation of (ii), thus we have the conclusion of (i).

Since the vertical Brauer–Manin obstruction vanishes, (31) holds for any

family {av} such that D
(s)
av (kv) is not empty. Now the statement follows from

Lemma 6(ii). �
Note that the condition in (i) of this lemma is not always satisfied. Indeed,

Ker[k∗/k∗2 → L∗/L∗2] consists of the classes of those a in k∗ such that
L ⊃ k(

√
a). Hence it is enough to show that there exist extensions k1 and

k2, both of degree 4, such that each of them contains the same quadratic
extension k0 of k and no other subextension, but the compositum K = k1k2
also contains a different quadratic extension of k. To construct such an
example we start with a Galois extension K/k with Galois group D4, the
dihedral group of order 8 generated by (1234) and (13). Let H1 and H2 be
the subgroups of D4 generated by (13) and (24) respectively, and let k1 and
k2 be the fixed fields of H1 and H2 respectively; then K = k1k2. The fields
L with K ⊃ L ⊃ k correspond to the subgroups G = Gal(K/L) ⊂ D4, and
L ⊂ ki if and only if G ⊃ Hi = Gal(K/ki). The subgroups of index 2 in
D4 are G1 = 〈(1234)〉, G2 = 〈(12)(34), (13)(24)〉 and G3 = 〈(13)(24)〉; and
G3 contains both Hi, whereas G1 and G2 contain neither Hi. Hence there
are three quadratic extensions of k contained in K, but only one of them is
contained in either of the ki.

Corollary Assume that the surface (1) is everywhere locally soluble and
Condition E holds. Then there exists a ∈ k∗ such that for s = 1, 2 the 2-
covering of E

(s)
a given by m ∈ M is everywhere locally soluble if and only if

m = (1, 1, 1) or m = m(s).

Proof Condition E gives us av ∈ k∗v for every place v of bad reduction of (1).
By Lemma 7(iii) we can find a ∈ k∗ such that a/av ∈ k∗2 for all these places,
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and such that both curves D
(s)
a are everywhere locally soluble. However, the

2-covering of E
(s)
a given by m ∈M other than (1, 1, 1) or m(s) is not soluble

at the place w provided by Condition E. �
The proof of Lemma 7(iii) is not constructive. But for any particular pair

f (1), f (2) defined over k, regardless of whether it satisfies the conditions of
Lemma 7(ii) or (iii), the search for a suitable a, and therefore the decision
whether such an a exists, is finite. The argument is as follows. Let ψ be
the natural map k∗ →

∏
S(k

∗
v/k

∗2
v ) where S = S(D

(1), D(2)), and for any a
in k∗/k∗2 decompose the ideal (a) as a′a′′ where a′ is a product of ideals in
S and a′′ is a product of ideals outside S; here a′ and a′′ are really ideals
modulo squares of ideals. Suppose we choose one of the finitely many values
of ψ(a) for which both D

(s)
a are locally soluble at each place in S; this in

particular determines a′. Let p be a prime with vp(a
′′) odd; then f (s)(X) = 0

must be soluble in kp for D
(s)
a to be soluble in kp. The only other condition

which we need to impose on a′′ is that a′a′′ is principal and can be written
as (a) with ψ(a) having the chosen value. For given a′ the question whether
there exists an a′′ satisfying these conditions is decidable.

6. Proof of Theorem 1. We need to impose some extra constraints on
the value of a given by the Corollary to Lemma 7. Once we have chosen a,
the twists E

(s)
c which will appear in this section will all be such that c/a is

a unit at each prime in Sa = Sa(D(1), D(2)). The first additional property in
Lemma 8 ensures that Conditions Z1 and Z2 hold for all those D

(s)
c and not

merely for the D(s). The second additional property ensures that for each
s the three triples (8) are distinct from each other, from (1, 1, 1) and from
m(s); we have already required each m(s) to be distinct from (1, 1, 1). Recall
that the m(s) are units outside Sa.

Lemma 8 Assume that the surface (1) is everywhere locally soluble and
Condition E holds. Then there exists a ∈ k∗ such that for s = 1, 2 the
2-covering of E

(s)
a given by m ∈ M is everywhere locally soluble if and only

if m = (1, 1, 1) or m = m(s). Moreover, we can arrange that in addition

• a is a unit at p(s) for each p(s) in Conditions Z1 and Z2,

• there is a prime ideal p not in S(D(1), D(2)) such that vp(a) is odd.

Proof Choose a as in the Corollary to Lemma 7. If the first additional
property does not hold, suppose for example that some such p(1) does divide
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a to an odd power, and let p be a prime ideal not in Sa such that we can
write p/p(1) = (b) where b is in k∗2v for every v in Sa other than p

(1). The

solubility of D
(1)
a at p(1) implies that we are in case (27) of Lemma 4 and

therefore m(1) is in the class of (1, 1, 1) because by hypothesis m(1) is a unit

at p(1). Hence D
(1)
ab is soluble at p

(1). Similarly D
(2)
a is in case (25) of Lemma

4, so that m(2) is in the class of (1, 1, 1) and D
(2)
ab is soluble at p

(1). For any v

in Sa other than p(1), D
(s)
ab is isomorphic to D

(s)
a over kv and therefore soluble

in kv. The Hilbert product formula applied to each symbol (m
(s)
i , b) shows

that each m
(s)
i is a square at p; thus the curves D

(s)
ab are soluble at p. Since

both curves D
(s)
ab are everywhere locally soluble we can replace a by ab, and

p(1) divides ab to an even power.
To satisfy the second condition we multiply a by π, where p = (π) is a

principal prime ideal such that π is in k∗2v for every v in Sa.
It remains to check that no 2-covering of E

(s)
ab defined by a triple m 6=

(1, 1, 1), m 6= m(s), is everywhere locally soluble. By Corollary to Lemma 7

the 2-covering of E
(s)
a is insoluble at some prime v ∈ Sa, and v 6= p(1) since

each m
(s)
i is a square at p

(1). Now E
(s)
ab and E

(s)
a are isomorphic over kv, so

that their 2-coverings given by m are both soluble or both insoluble. �
We denote the rank of the 2-Selmer group of E

(s)
a by d

(s)
a . From now

on a has the fixed value given by Lemma 8; thus Sa is also fixed. At later
stages the constant actually used for the twisting will be denoted by c, and
to change the twisting we shall replace c by cb where b will be a unit at every
prime in Sc. As was noted in §1, the components mi of a triple m are really
elements of k∗/k∗2, though it is convenient to represent them as elements of
k∗; so vq(mi) for any prime q is really an element of Z/2.
We express the proof of Theorem 1 as an algorithm for choosing a value

of c such that every D
(s)
c is everywhere locally soluble and each d

(s)
c = 3. The

reader to whom algorithms are repellent can choose that value of c satisfying
the conditions of Lemma 8 for which the pair d

(1)
c , d

(2)
c is minimal under the

lexicographic ordering. The arguments which follow then enable him or her
to obtain a contradiction unless d

(1)
c = d

(2)
c = 3. Of course recasting the

argument in this form renders it non-constructive.
Define the restricted 2-Selmer group of E

(s)
c to be the subgroup of the

2-Selmer group consisting of those triples which are units outside Sa. The
restricted 2-Selmer group contains D

(s)
c and the trivial element E

(s)
c . In the

first stage of the algorithm, which is Lemma 9(i), we reduce the restricted
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2-Selmer group of each E
(s)
c for this value of c to these two elements. In the

second stage we reduce d(1) to 3, possibly at the price of increasing d(2); and
in the third stage we reduce d(2) to 3 while preserving d(1) = 3.
Lemma 9(ii) will show that the twistings involved in these stages leave the

restricted 2-Selmer groups of the two E(s) unchanged. For at each step the
change in the twisting will be given either by the Corollary to Lemma 10 or
by Lemma 12. In the former case it will satisfy the conditions of Lemma 9(ii);
in the latter case it will be the compositum of a twisting which obviously does
not change the restricted 2-Selmer groups and a twisting which satisfies the
conditions of Lemma 9(ii). Indeed Lemma 9(ii) has been tailored to these
applications.

Lemma 9 Let a satisfy the conclusions of Lemma 8.
(i) We can choose b in k∗ so that b is a unit at each prime in Sa and for

s = 1, 2 the restricted 2-Selmer group of E
(s)
ab consists of E

(s)
ab and D

(s)
ab .

(ii) Let c, c′ be such that c/a is a unit at each prime in Sa and

• c′/c is a unit at each prime in Sc,

• c′/c is in k∗2v for each v in Sa other than possibly the p
(1) and p(2) of

Conditions Z1 and Z2,

• every m(s)i is in k
∗2
q for all q at which c

′/c is not a unit.

Then c′/a is a unit at each prime in Sa. Moreover, if the restricted 2-Selmer
group of E

(s)
c consists of E

(s)
c and D

(s)
c then the restricted 2-Selmer group of

E
(s)
c′ consists of E

(s)
c′ and D

(s)
c′ .

Proof Suppose that m is a triple which is a unit outside Sa but which is
not in the M defined in Condition E in §1. By the Tchebotarev density
theorem we can choose a prime p not in Sa which splits completely in the
field obtained by adjoining the square roots of all the m

(s)
i to k, but does not

split completely in the field obtained by also adjoining the square roots of
the mi. For such a p all the m

(s)
i for either s are in k

∗2
p but not all the mi

are in k∗2p . Using Dirichlet’s theorem on primes in arithmetic progression,
choose a further prime p′ 6= p not in Sa such that pp′ = (x) for some x in
k∗ which is in k∗2v for every v in Sa. The Hilbert product formula applied to
each symbol (m

(s)
i , x) shows that each m

(s)
i is a square at p

′. Choose p, p′, x
for each m ∈ USa \M, with all the p, p

′ distinct, and let b be the product of
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all the factors x. For each of s = 1, 2 the curves D
(s)
a and D

(s)
ab are isomorphic

over kv for all v ∈ Sa. This and the fact that each m
(s)
i is a square at p and

p′ imply that the curves D
(s)
ab are everywhere locally soluble. The 2-covering

of E
(s)
ab associated with m is locally insoluble at p because we are in the case

(25) of Lemma 4; here the mi are units at p and not all squares at p, whereas
the components of the triples (8) are not all units at p. Hence the restricted

Selmer group of E
(s)
ab is contained in M. But if m ∈ M \ {(1, 1, 1),m

(s)}
then Condition E implies that the corresponding 2-covering of E

(s)
a is not

locally soluble in kw for some w ∈ Sa. Hence neither is the 2-covering of
E
(s)
ab corresponding to m, because b is in k

∗2
w and therefore the 2-coverings of

E
(s)
a and E

(s)
ab corresponding to m are isomorphic over kw. So the restricted

2-Selmer group of E
(s)
ab consists of E

(s)
ab and D

(s)
ab . This proves (i).

The first conclusion in (ii) is obvious because Sc ⊃ Sa. Now D
(s)
c′ is

isomorphic to D
(s)
c in kv for each v in Sa except possibly for the p(1) and

p(2), and therefore is locally soluble at such v. For p
(1)
12 for example, D

(1)

is in case (28) of Lemma 4, so that the local solubility of D
(1)
c implies that

m
(1)
3 is locally a square, which implies the local solubility of D

(1)
c′ ; and D

(2)
c′

is locally soluble because p
(1)
12 is a prime of good reduction for E

(2)
c′ at which

m(2) is a unit. Again, D
(s)
c′ is locally soluble for each q for which c

′/a is not
a unit, by case (25) of Lemma 4; here we must consider separately the case
when c is a unit at q (when solubility follows from the third condition in the

Lemma) and when c is not a unit at q (when solubility of D
(s)
c′ follows from

solubility of D
(s)
c ). Hence D

(s)
c′ is everywhere locally soluble. For any triple

m in M other than m(s) or (1, 1, 1), arguments like those in the first half

of this paragraph show that if the 2-covering corresponding to m for E
(s)
c′ is

everywhere locally soluble, so is that corresponding to m for E
(s)
c ; and this

we know is false. Finally, if m is in USa \M then the associated 2-covering

of E
(s)
c is locally insoluble at a prime p which is not in Sa and must therefore

divide c/a; so by case (25) of Lemma 4 not all the mi are in k
∗2
p and therefore

the 2-covering of E
(s)
c′ corresponding to m is also not locally soluble at p. �

We now take ab, with the b of Lemma 9(i), to be the initial value of c;
subject to what is said in the proof of Lemma 12, all subsequent changes
of c will satisfy the conditions of Lemma 9, so that the restricted 2-Selmer
group of E

(s)
c will continue to consist of E

(s)
c and D

(s)
c . To prove Theorem

1 it is enough to show that we can modify a so as to satisfy the additional
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condition that both d
(s)
a are equal to 3; for in that case each D

(s)
a must be

soluble in k, for reasons given in the Introduction.
At each step we have to consider the two curves E

(s)
c for some c which

has already been chosen, and we further twist these curves by some b which
is prime to c. Here b and c, like a, are really elements of k∗/k∗2. At the end
of the step we replace c by cb, which will be the new twisting constant. Thus
Sc changes as the algorithm proceeds, but Sa is fixed.
The details of the second stage are determined by how the choice of b at

each step affects E(1), and those of the third stage are similarly determined
by E(2); thus we can in many places drop the superfix (s), though this will
not apply to the primes p(s) introduced in Conditions Z1 and Z2 in §1, nor to
the d(s). Each of the second and third stages consists of several steps, each
of which will be of one of two kinds. A step of the first kind will always
be possible, and it will either strictly decrease d(s) or increase it by 1. In
the latter case it will be followed by a step of the second kind, and this will
decrease d(s) by 2. To fix ideas, we describe these steps as applied to E(1).
We can assume that d

(1)
c > 3, because otherwise there is nothing to do. For

the following lemma we note that if a triple m is not a unit at some prime q
then exactly two of its components are divisible to an odd power by q.

Lemma 10 Assume that d
(1)
c > 3, and that the restricted 2-Selmer group of

E
(1)
c consists of E

(1)
c and D

(1)
c . Then we can choose q0 in Sc \Sa so that there

is a triple u in the 2-Selmer group of E
(1)
c which is a unit at q0 but is not a

unit for at least one of the two primes p(1) in Condition Z1.

Proof Since the 2-Selmer group of E
(1)
c has dimension d

(1)
c > 3, it strictly

contains the product of the restricted 2-Selmer group and the group of order
4 coming from the 2-division points; so we can choose an element u of the
2-Selmer group which is not in that product. Choose a prime q1 in Sc \ Sa.
After multiplying by one of the triples (8) if necessary, we can assume that u
is a unit at q1. If some component of u is divisible to an odd power by one of
the two p(1), then we can choose q0 = q1 and the proof is complete. Suppose
not; since u is not in the restricted 2-Selmer group, there exists q2 in Sc \ Sa
which divides some component of u to an odd power. By multiplying u by
one of the triples (8), we can get rid of the factors q2 in the components of
u. But each of the triples (8) has two components which are divisible to an
odd power by each of the two p(1); so in this case we can take q0 = q2. �
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The triples attached to the 2-division points of Ec are

u(1)c =((c1 − c2)(c1 − c3), c(c1 − c2), c(c1 − c3)),

u(2)c =(c(c2 − c1), (c2 − c1)(c2 − c3), c(c2 − c3)),

u(3)c =(c(c3 − c1), c(c3 − c2), (c3 − c1)(c3 − c2)),

and u
(1)
c u

(2)
c u

(3)
c is trivial. Denote by w

(i)
q the image of u

(i)
c in Vq. Despite the

notation, the u
(i)
c and w

(i)
q do depend on s. For q in Sc \ Sa any two of the

w
(i)
q form a base of Wq.
From now on we shall write B = Sc; this will be the B which we use in

applying the results of §3. For an odd prime q denote by χ(∙, q) the quadratic
character mod q with values in F2. The following corollary implements a step
of the first kind for the second stage.

Corollary Let q0 ∈ B \ Sa and p(1) satisfy Lemma 10. Let p = (π) be a
principal prime ideal not in B such that χ(π, p(1)) = χ(π, q0) = 1 and π is in
k∗2v for all other v in B. Then we have either
(i) d

(1)
cπ < d

(1)
c or

(ii) d
(1)
cπ = d

(1)
c +1 and the 2-Selmer group of E

(1)
cπ contains elements w2, w3

such that the image of wi in Wp is w
(i)
p and its image in Wq0 is trivial.

Proof The existence of such π follows from Dirichlet’s theorem on primes in
arithmetic progression, or from the Tchebotarev density theorem. Replacing
c by cπ alters Wv for v = p

(1) and for v = q0 but leaves it unchanged for all
other v in B. To check that both curves D(s)cπ are everywhere locally soluble
we need to prove local solubility at p(1), q0 and p. At p

(1) both m(s) are
units, and it follows from the case (28) of Lemma 4 that although Wp(1) is

altered on replacing c by cπ, the local solubility conditions at p(1) on the two
D(s) are unaltered. Since D

(s)
c is soluble in kq0 , the components of both m

(s)

are in k∗2q0 by case (25) of Lemma 4. Thus D
(s)
cπ is also soluble in kq0 . The

components of both m(s) are in k∗2p by the Hilbert product formula applied

to each (m
(s)
i , π), since π is a square at all v ∈ Sa except p

(1); thus D
(s)
cπ is

soluble in kp, by case (25) of Lemma 4 again.
Now we show that one of (i) or (ii) holds. In this paragraph and again

in the proof of Lemma 11, for any B0 ⊂ B ∪ {p} and any place v of k we
shall denote by UB0(v) for Ec the vector space consisting of those triples in
UB0 for which the associated 2-covering is soluble in kv; similarly UB0(B

]) for
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Ec will consist of those triples in UB0 which lie in UB0(v) for every v in B
].

Write B1 = B \ {q0} and note that UB1(q0) for Ec and for Ecπ are the same,
because by case (25) of Lemma 4 each of them consists of those elements
of UB1 whose components are all in k

∗2
q0
. Similarly UB1(p) for Ecπ consists of

those elements of UB1 whose components are all in k
∗2
p , and an element x of

o∗B1 is in k
∗2
p if and only if it is not divisible to an odd power by p

(1), by the
Hilbert product formula applied to (x, π). Hence UB1(p) = UB1\{p(1)} for Ecπ.

The local solubility condition at p(1) on triples which are units at p(1) is the
same for Ecπ and Ec, by case (28) of Lemma 4, so UB1({p, p

(1)}) for Ecπ is
equal to UB1\{p(1)}(p

(1)) for Ec. Thus UB1(B) for Ec contains UB1(B ∪ {p})
for Ecπ as a proper subspace, because we have deleted the u of Lemma 10.
The codimension of UB1(B ∪ {p}) in UB1∪{p}(B ∪ {p}) is at most 2, hence

d
(1)
cπ < d

(1)
c + 2. By Lemma 5 the parity of d

(1)
cπ is opposite to that of d

(1)
c .

Hence either we have strictly decreased d(1) or we have increased d(1) by 1.
In the latter case, the codimension just described must be equal to 2, and
the existence of w2, w3 follows immediately. �
If we have decreased d(1) by 1, we have made progress. But if we have

increased d(1) by 1, we show in the next few paragraphs how the existence of
w2, w3 allows a step of the second kind, which will diminish d

(1) by 2; thus
by means of the two steps taken together we again make progress so far as
the second stage is concerned. The second stage terminates when we reach
the value d(1) = 3. For the third stage we also have to ensure that this value
of d(1) is not increased by the steps which we use to diminish d(2). For a
step of the first kind we show this now; for a step of the second kind we do
so in Lemma 13. To reduce confusion of notation, we state and prove the
next lemma with E(1) and E(2) having the same roles as in Lemma 10 and
its Corollary; in the application we shall reverse the roles of E(1) and E(2).

Lemma 11 With the notation of Lemma 10 and its Corollary, d
(2)
cπ = d

(2)
c .

Proof Write B2 = S(E
(2)
c ), the set of bad places for E

(2)
c ; thus B2 does not

contain any p
(1)
ij , and the only place v in B2 for which π is not in k

∗2
v is q0.

Hence UB2(p) for E
(2)
cπ is just UB2\{q0}. It follows that

UB2(B2 ∪ {p}) = UB2\{q0}(B2)

for E
(2)
cπ . But the right hand side is the same for E

(2)
cπ and E

(2)
c ; for these two

curves can be identified in kv for any v in B2 \ {q0}, and the projection of
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m ∈ UB2\{q0} to Vq0 is in Wq0 if and only if the components of this projection

are in k∗2q0 . Moreover the left hand side has dimension d
(2)
cπ − 2 because we

have to take into account the existence of the u
(i)
cπ , and similarly the right

hand side for E
(2)
c has dimension d

(2)
c − 2 because of the existence of the u

(i)
c .

�
It is now convenient to work with θ] rather than θ[, where θ[ and θ] are

the functions defined by (12). To simplify the notation, we shall henceforth
write θ]c for θ

]
B; this will depend on the choice of the Kv.

We now describe a step of the second kind. In accordance with our
conventions, we write c for cπ, so that the new B is the union of the old B
and {p}.

Lemma 12 Suppose that we are in case (ii) of the Corollary to Lemma 10.
Let p′ = (π′) be a prime ideal not dividing c such that π′ is a square at all
v ∈ B except p and perhaps q0, and that χ(π′, p) = 1. Let q′0 = λq0 be a
prime ideal not dividing cπ′ such that χ(λ, p) = 1, λ is a square at all v ∈ B
except p and q0, and χ(π

′, q′0) has a pre-assigned value. Set c
′ = cλπ′. Then

d
(1)
c′ = d

(1)
c − 2.

Proof As usual, the existence of π′ and λ follows from Dirichlet’s theorem.
Which value we need to assign to χ(π′, q′0) will only become evident in Lemma
13. The operation of going from c to cλ in effect replaces q0 by q

′
0; since

χ(α, q′0) = χ(α, q0) for any α which is a unit outside Sa, this does not alter
the two restricted 2-Selmer groups. Going from cλ to c′ also does not alter
either of these groups, by Lemma 9(ii).
We take B′ = Sa, B′′ = B \ B′ and keep the notation B1 = B \ {q0}.

Then W ′
B is the direct sum of the subspace of dimension 2 coming from the

2-division points and the spaceW ′
B1 = τ

−1U ′B′⊕W
′
B′′\{q0}

. The ranks of θ]c and
of its restriction to W ′

B1 are equal. Let Kc be the kernel of this restriction;

this is a vector space of dimension d
(1)
c − 2. Take a base for Kc whose last

two elements are the w2 and w3 in (ii) of the Corollary to Lemma 10, in such

a way that no w
(i)
p is a factor of any element other than w2 and w3 of this

base. The use of the 2-division points has already ensured that no w
(i)
q0 is a

factor of any element of the base. Now extend this base for Kc to a base for
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W ′
B1 . The matrix which represents θ

]
c with respect to this base has the form







0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 A





 (32)

where A is nonsingular.
The set B for the curve Ec′ is B1 ∪ {q′0, p

′}. Since c/c′ is a square at all
v ∈ B1, the spaces WB1 and KB1 and hence also W

′
B1 and U

′
B1 for the curves

Ec and Ec′ can be identified. Now we extend our base for W
′
B1 to a base

for W ′
B1∪{p′}

for the curve Ec′ by adjoining w
(2)
p′ and w

(3)
p′ . This time we have

ensured that no w
(i)

q′0
is a factor of any element of the base. The matrix which

represents the restriction of θ]c′ to W
′
B1∪{p′}

with respect to our base has the
form 









0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 A ∗ ∗
0 0 1 ∗ 0 ∗
0 1 0 ∗ ∗ 0











(33)

Indeed, the fact that c/c′ is a square at all v ∈ B1 implies that the 4 × 4
submatrix in the top left hand corner of (33) is the same as (32). We have

τc′w
(2)
p′ = (π

′, 1, π′) and τc′w
(3)
p′ = (π

′, π′, 1)

since π′ is a square at all the places of Sa. It follows that

θ]c′(w
(2)
p′ , w2) =e

′
B((π

′, 1, π′), w2) = 2χ(π
′, p) = 0,

θ]c′(w
(3)
p′ , w2) =e

′
B((π

′, π′, 1), w2) = χ(π
′, p) = 1,

which explains the last two elements in the second row of (33); and the
calculations for the last two elements of the third row are similar. Each of
the last two elements in the first row of (33) is a sum of terms χ(π′, a) where
a is in B1 \ {p}, and all such terms are 0.
The rank of the matrix (33) is 4 + dimA. To see this, delete the first

row and column; in the expansion of the resulting determinant any non-zero
monomial must involve one non-zero factor from each row and column. In
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particular it must involve the 1s in the second and third rows and those in
the second and third columns. So the value of the determinant which we are
considering is detA 6= 0. We conclude that the corank of (33), which is equal
to d

(1)
c′ − 2, is the corank of (32) minus 2. Hence d

(1)
c′ = d

(1)
c − 2. �

Repeated use of steps of these two kinds implements the second stage.
For the third stage we have also to ensure that a step of the second kind
preserves d(1) = 3; this is a weaker assertion than the one in Lemma 11, but
it is adequate for our needs. As before, we state and prove the next lemma
with E(1) and E(2) having the same roles as in Lemma 12; in the application
the roles of E(1) and E(2) are reversed.

Lemma 13 With the notation of Lemma 12, suppose that d
(2)
c = 3. Then

there exists a value of χ(π′, q′0) such that d
(2)
c′ = 3.

Proof In a notation corresponding to that of (33) the assumption d
(2)
c = 3

implies that Kc is generated by m(2). Thus the restricted matrix associated
with E

(2)
c′ has the form 





0 0 0 0
0 B ∗ ∗
0 ∗ 0 x
0 ∗ x 0





 (34)

where B is non-singular and does not depend on the q′0 of Lemma 12. The
reason for the zeros in the first row is that the 2-covering corresponding to
m(2) is everywhere locally soluble. For the same reasons as in the previous
proof we have τc′w

(2)
p′ = (π

′, 1, π′) and τc′w
(3)
p′ = (π

′, π′, 1); these elements do
not depend on q′0. Taking into account the symmetry of (34) this proves that
the entries denoted by asterisks do not depend on q′0. We have

x = θ]c′(w
(2)
p′ , w

(3)
p′ ) = e

′
B((π

′, 1, π′), w
(3)
p′ ).

The only non-trivial term in the sum is that for v = p′, which is

ep′((π
′, 1, π′), u

(3)
c′ ) = (π

′, c′(c3 − c2))p′ = (π
′, c′(c3 − c2))q′0 + 1 = χ(π

′, q′0) + 1.

Here the middle equality comes from the Hilbert product formula and the
facts that π′ is locally a square at all places in B \ {q0, p}, that c′ is a unit
at q0 but not at p, and χ(π

′, p) = 1. If we delete the first row and column of
(34), the determinant of what is left is

−x2 detB + constant = χ(π′, q′0) + constant,
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where by ‘constant’ we mean something independent of the choice of q′0. Here
we have used the fact that in characteristic 2 the determinant of a symmetric
matrix contains no non-symmetric terms. Since χ(π′, q′0) played no part in
the calculations of Lemma 12 for the curve E(1), we can ensure that (34) has
corank 1 by suitable choice of χ(π′, q′0). �
This completes the specification of the third stage, and so completes the

proof of Theorem 1.

Appendix

In the first section of this appendix we show in Theorem 4, without assuming
that the 2-division points of our elliptic curves are rational, that an appropri-
ate generalization of Condition E implies the triviality of the algebraic part
of the Brauer-Manin obstruction for X, the minimal projective desingular-
ization of the surface (1). In the second section we prove that Conditions Z1
and Z2 imply that no element of exact order 2 in BrX comes from BrX. In
particular, the transcendental Brauer-Manin obstruction defined by elements
of the 2-primary torsion subgroup of BrX is trivial.

1. Condition E and the algebraic Brauer-Manin obstruction. Let k be a
field of characteristic 0, Γ = Gal (k/k). Let E(1) and E(2) be elliptic curves
which are not isogenous over k. Let

m = (m(1),m(2)) ∈ H1(k,E(1)[2])⊕H1(k,E(2)[2]),

and let D(s) be the 2-covering of E(s) given by m(s), for s = 1, 2. Write
A = E(1) × E(2), D = D(1) ×D(2). The antipodal involution ι : x 7→ −x on
A commutes with the action of A[2] by translations, hence there is a natural
action of the k-group scheme A[2] × Z/2 on A. The antipodal involution
acts on D, so that the corresponding twisted forms Dc are 2-coverings of
quadratic twists Ac for c ∈ k∗. We consider Kummer surfaces X obtained
by blowing-up the sixteen singular points of D/ι. These points correspond
to the sixteen fixed points of ι on D. The fixed point set Dι is a principal
homogeneous space of A[2] defined by m. In the notation of §5 we have
Dι = Spec(L). Let V = D \Dι and U = V/ι. Since V ⊂ D is a complement
to a finite set, the natural restriction maps PicD → PicV and BrD → BrV
are isomorphisms (the last one by [6], II, Thm. 6.1, see also [5], Thm. 1.3.2).

32



We obtain the natural composed maps

PicX → PicU → PicV = PicD, BrX → BrU → BrV = BrD. (35)

Since E(1) and E(2) are not isogenous over k we have an isomorphism of
Galois modules PicD = PicD(1)⊕PicD(2). Each Γ-module PicD(s) fits into
an exact sequence of Γ-modules

0→ E(s) → PicD(s) → Z→ 0;

here the third arrow is the degree map. Each Γ-module (PicD(s))ι fits into
an exact sequence of Γ-modules

0→ E(s)[2]→ (PicD(s))ι → Z→ 0 (36)

and (PicD)ι = (PicD(1))ι ⊕ (PicD(2))ι. The class of this extension in
Ext1k(Z, E

(s)[2]) = H1(k,E(s)[2]) is m(s); in other words, the differential sends
1 ∈ Z to m(s) ∈ H1(k,E(s)[2]). This implies that

H1(k,PicD(s)) = H1(k,E(s))/〈[D(s)]〉,
H1(k, (PicD(s))ι) = H1(k,E(s)[2])/〈m(s)〉,

where the class [D(s)] is the image of m(s) in H1(k,E(s)). Note that the

submodule (PicD(s))ι ⊂ PicD(s) is generated by the k-points of (D(s))ι.
Since X is a K3 surface the abelian group PicX is finitely generated and

torsion free. Let F be the smallest extension of k such that Gal (k/F ) acts
trivially on PicX; then it also acts trivially on the k-points of (D(s))ι for
s = 1, 2. For a Γ-module M we write H1(F/k,M) for the kernel of the
restriction map H1(k,M) → H1(F,M). Since PicX is a free abelian group
and H1(Gal (k/F ),Z) = 0 we have H1(k,PicX) = H1(F/k,PicX). The
map PicX → PicD factors through (PicD)ι, so that the maps (35) give rise
to the following commutative diagram:

Br 1X/Br 0X −→ Br 1D/Br 0D
↓ ↓

H1(k,PicX) → ⊕H1(F/k,E(s)[2])/〈m(s)〉 → ⊕H1(k,E(s))/〈[D(s)]〉
(37)

where the direct sums are taken over s = 1, 2. Here the vertical maps come
from the exact sequence

0→ Br 1X/Br 0X → H1(k,PicX)→ H3(k, k
∗
)→ H3(X,Gm) (38)
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provided by the spectral sequence Hp(k,Hq(X,Gm)) ⇒ Hp+q(X,Gm), and
the similar sequence for D.
Let us now assume that k is a number field. We have H3(k, k

∗
) = 0 and

also H3(kv, kv
∗
) = 0 for all completions kv of k, so that the vertical maps in

(37) are isomorphisms. Recall that S(D(1), D(2)) was defined in §1; it is the
union of S0 and the set of places at which at least one of D(1) and D(2) has
bad reduction. We now state a somewhat more general version of Condition
E, which makes no assumptions about the 2-division points of the E(s):

For every place v ∈ S(D(1), D(2)) there exists av ∈ k∗v such that
(i) for each v we have D

(1)
av (kv) 6= ∅ and D

(2)
av (kv) 6= ∅;

(ii) for each s = 1, 2 and each m ∈ H1(F/k,E(s)[2])\{0,m(s)}
there exists w in S(D(1), D(2)) such that the 2-covering of E(s)aw
given by m is not soluble in kw;
(iii) for all c ∈ Ker [k∗/k∗2 → L∗/L∗2] we have

∑

v∈S(D(1),D(2))

invv((c, av)) = 0.

In the case considered in the main body of the paper Γ acts trivially on E(1)[2]

and E(2)[2]. Then m(s) = (m
(s)
1 ,m

(s)
2 ,m

(s)
3 ) ∈ (k

∗/k∗2)3 with m
(s)
1 m

(s)
2 m

(s)
3 = 1

and the field F is the extension of k obtained by adjoining to k the square
roots of the m

(s)
i . A prime v not in S(E

(1), E(2)) is a prime of good reduction
of D(1) and D(2) if and only if F/k is unramified at v. We have

M = H1(F/k,E(s)[2]) (39)

for s = 1, 2. Condition E(iii) holds in this case by Lemma 7(iii) and its proof.
Thus this Condition E reduces to the one given in §1 of the paper.

Theorem 4 Let E(1) and E(2) be elliptic curves over a number field k, and
let D(1) and D(2) be 2-coverings of E(1) and E(2) respectively. If E(1) and E(2)

are not isogenous over k and Condition E holds, then the Kummer surface
X associated to D(1) ×D(2) has an adelic point satisfying the Brauer-Manin
conditions given by Br 1X.

Remark Conditions Z1 and Z2 imply that E
(1) and E(2) are not isogenous

over k; see Theorem 5 below.
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Proof D(1) and D(2) are curves of genus 1 with good reduction at v not in
S(D(1), D(2)), so these curves have kv-points. We set av = 1 for all such places
v. Now the sum in Condition E(iii) extended to all places of k is 0, and so by
Lemma 7(i) the vertical Brauer-Manin obstruction vanishes. By Lemma 7(ii)
there exists a ∈ k∗ such that a/av ∈ k∗2v for v ∈ S(D

(1), D(2)), the surface

Da = D
(1)
a ×D

(2)
a has points in all completions of k, and Condition E(ii) holds

with E
(s)
a in place of E

(s)
aw . In particular, [D

(s)
a ] ∈ H1(k,E

(s)
a ) goes to zero in

H1(kv, E
(s)
a ) for all places v, s = 1, 2. Let R = ⊕s=1,2H1(F/k,E(s)[2])/〈m(s)〉.

The restriction from k to kv now provides the following commutative diagram,
where the products are taken over all places of k:

Br 1(Da)/Br k →
∏
v Br 1(Da ×k kv)/Br kv

|| ||
R → ⊕s=1,2H1(k,E

(s)
a )/〈[D

(s)
a ]〉 →

∏
v(⊕s=1,2H

1(kv, E
(s)
a ))

(40)

Condition E(ii) implies that the composition of the bottom arrows of (40) is
injective.
For each r ∈ R, r 6= 0, we choose a place v such that the image rv of r in

⊕s=1,2H1(kv, E
(s)
a ) is non-zero. The right kernel of the Tate pairing

(∙, ∙)v : ⊕s=1,2E
(s)
a (kv) × ⊕s=1,2H

1(kv, E
(s)
a ) −→ Q/Z

is trivial, hence there exists α = α(r) in ⊕s=1,2E
(s)
a (kv) such that (α, rv)v 6= 0.

Define the character ρr : R→ Z/2 by ρr(x) = (α, resk,kv(x))v. Then ρr(r) 6=
0. We obtain #R−1 characters ρr of R, not necessarily distinct, but such that
the intersection of their kernels is trivial. Hence these characters generate
Hom(R,Z/2). Let δ(r) ∈

∏
w(⊕s=1,2E

(s)
a (kw)) be such that δ(r)v = α and

δ(r)w = 0 for w 6= v.
To an adelic point {Pv} onDa we associate the character χ ∈ Hom(R,Z/2)

defined by χ(x) =
∑
invv(x(Pv)) where the sum is taken over all places v of

k. We can write χ =
∑
r∈S ρr for some S ⊂ R \ {0}. Consider the adelic

point {Qv} on Da which is the translation of {Pv} by
∑
r∈S δ(r). For any

x ∈ R we have
∑

v

invv(x(Qv)) =
∑

v

invv(x(Pv))−
∑

r∈S

∑

v

(δ(r)v, resk,kv(x))v =

χ(x)−
∑

r∈S

ρr(x) = 0
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where the first equality follows from Prop. 8(c) of [9]. The image of Br 1X/Br 0X
in Br 1(Da)/Br k factors through R, by (37). Hence the image of {Qv} on X
is an adelic point satisfying all the Brauer-Manin conditions given by Br 1X.
�

2. Condition Z and the transcendental Brauer-Manin obstruction. We
retain the notation in the Introduction to the paper. In particular, E(1) and
E(2) are elliptic curves with respective equations

z21 = (x− c
(1)
1 )(x− c

(1)
2 )(x− c

(1)
3 ), z22 = (y − c

(2)
1 )(y − c

(2)
2 )(y − c

(2)
3 ).

Theorem 5 Let k be a number field, and let X be the Kummer surface which
is the minimal projective desingularization of (1). If Conditions Z1 and Z2
hold, then E(1) and E(2) are not isogenous over k, and the 2-primary torsion
subgroup of BrX is contained in Br 1X.

Proof LetK be the extension of k obtained by adjoining to k the square roots
of −1 and the m(s)i . Conditions Z1 and Z2 imply that K/k is unramified at
the four primes p

(s)
ij , s = 1, 2, of k introduced in these conditions. Hence

there are primes of K over the p
(s)
ij satisfying the same divisibility conditions

as in Conditions Z1 and Z2. Thus Conditions Z1 and Z2 are still satisfied if
we replace k by K. By permuting the c

(1)
i and the c

(2)
i we can assume without

loss of generality that in Conditions Z1 and Z2 we have i = 1, j = 2 and
k = 3. Note that D(s) ×k K ' E(s) for s = 1, 2. If we show that E(1) and
E(2) are not isogenous over k, then all the hypotheses of Theorem 6 below
will be satisfied, so that Theorem 5 will follow from Theorem 6.
The modular invariant of the curve y2 = (x− c1)(x− c2)(x− c3) is

j = 28
(c21 + c

2
2 + c

2
3 − c1c2 − c2c3 − c1c3)

3

(c1 − c2)2(c2 − c3)2(c1 − c3)2
.

Let js be the modular invariant of E
(s), s = 1, 2. Then the valuation of j1

at p
(1)
ij is −2, whereas the valuation of j2 is positive or 0. Hence j1 is not

integral over the ring Z[j2]. By Thm. 2.6.3 of [12] the curves E
(1) and E(2)

are not isogenous over k. �

Remark Since j1 and j2 are not algebraic integers, the curves E
(1) and E(2)

do not have complex multiplication. Another consequence of Conditions Z1
and Z2 is that all 2-primary torsion in E

(s)(k), s = 1, 2, is 2-torsion. This
easily follows from (8).
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In the rest of this section k is a field of characteristic 0. Let Z be the
Kummer surface obtained by blowing up the singular points of (E(1)×E(2))/ι.
The surface (E(1) × E(2))/ι is a double covering of P1k ×P

1
k given by

z2 = (x− c(1)1 )(x− c
(1)
2 )(x− c

(1)
3 )(y − c

(2)
1 )(y − c

(2)
2 )(y − c

(2)
3 ). (41)

The singular locus of this variety consists of the sixteen points with coordi-
nates x = c

(1)
1 , c

(1)
2 , c

(1)
3 , c

(1)
4 and y = c

(2)
1 , c

(2)
2 , c

(2)
3 , c

(2)
4 , where c

(1)
4 = c

(2)
4 = ∞.

Let `ij be the rational curves on Z which are the inverse images of these
points.

Lemma 14 We have Br 1Z = Br k. Let W be the complement in Z to the
nine lines `ij with i, j = 1, 2, 3. Then Br 1W = Br k.

Proof By Prop. 2.3 of [7] the action of Γ on PicZ is trivial. Since Z(k) 6=
∅ the group Br 1Z is the direct sum of Br k and H1(k,PicZ) = 0 which
implies our first statement. The complement to the 0-dimensional closed set
(E(1)×E(2))ι in E(1)×E(2) has no non-constant invertible regular functions.
It maps to the complement to the union of all the sixteen lines `ij in Z,
which thus has the same property. Therefore, the larger open set W has no
non-constant invertible regular functions. This implies that the kernel of the
surjective map PicZ → PicW is the subgroup Z9 ⊂ PicZ freely generated by
the classes of the nine lines. The abelian group PicW = PicZ/Z9 is torsion
free, as follows, for example, from the well known structure of the Kummer
lattice (see [11]). Since the action of Γ on PicZ, and hence also on PicW , is
trivial, we have H1(k,PicW ) = 0. We have H i(k,H0(W,Gm)) = H i(k, k

∗
),

i ≥ 0, and this group injects into H i(W,Gm) since W has k-points. Now our
claim follows from the exact sequence (38) with X replaced by W . �

Lemma 15 The quaternion algebras

Aij = ((x− c
(1)
i )(x− c

(1)
3 ), (y − c

(2)
j )(y − c

(2)
3 )),

where i, j ∈ {1, 2}, belong to BrW .

Proof One shows that

div((x− c(1)i )(x− c
(1)
3 )) ≡

4∑

j=1

(`ij + `3j) mod 2,
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and similarly for div((y − c(2)j )(y − c
(2)
3 )) (see [7], the displayed formula pre-

ceding (10)). The function (y − c
(2)
j )(y − c

(2)
3 ) is the product of y

2 and

(1 − c
(2)
j /y)(1 − c

(2)
3 /y), and the latter is regular at y = ∞ with value 1.

A similar argument works for (x− c(1)i )(x− c
(1)
3 ). Hence the algebras Aij are

unramified on W . �

Lemma 16 The images of the Aij in BrW generate (BrZ)[2] ⊂ BrW .

Proof. It is easy to compute the residue of Aij at `mn. It turns out to be rep-
resented by an element of k∗, so the corresponding class in k(`mn)

∗/k(`mn)
∗2

is trivial. Thus Aij ∈ BrZ.
Let π : Z → P1

k
be the map defined by (x, y, z) 7→ x. The generic fibre E

of π is the quadratic twist of the elliptic curve E(2) over the field k(x) by the

class of (x−c(1)1 )(x−c
(1)
2 )(x−c

(1)
3 ) in k(x)

∗/k(x)∗2, see (41). The inclusion of
the generic fibre into Z defines a natural restriction map BrZ → Br E . This
map is injective by a general theorem of Grothendieck [6].
Every element of (Br E)[2] has the form

Ba(x),b(x) = (a(x), y − c
(2)
1 ) + (b(x), y − c

(2)
2 ),

where a(x) and b(x) are square-free polynomials in k[x] (see [14], Exercise

2 on p. 91). Assume that Ba(x),b(x) ∈ BrZ. If x − e for some e 6= c
(1)
i ,

i = 1, 2, 3, divides a(x), b(x) or both, then the residue of Ba(x),b(x) at the

elliptic curve E ⊂ Y given by x = e is the class of y − c
(2)
1 , y − c

(2)
2 or

(y− c(2)1 )(y− c
(2)
2 ) in k(E)

∗/k(E)∗2. None of these three classes is trivial, and
this contradicts the assumption that Ba(x),b(x) is unramified on Z. Therefore
every element of (BrZ)[2] has the form Ba(x),b(x) such that the only possible

factors of a(x) and b(x) are x− c(1)1 , x− c
(1)
2 , x− c

(1)
3 . We note that Br k(x) =

Br k(y) = 0 by Tsen’s theorem, so that the elements of Br k(Z) given by
(p(x), q(x)) with p(x), q(x) ∈ k(x)∗ are trivial. Using this fact and equation
(41) it is straightforward to write the class of Ba(x),b(x) in Br k(Z) as a linear
combination of the classes of Aij, i, j ∈ {1, 2}. Now lemma follows from the
injectivity of the natural map BrZ → Br k(Z). �

Theorem 6 Let k be a field of characteristic different from 2. Assume that√
−1 ∈ k, that c(1)1 −c

(1)
2 , c

(1)
1 −c

(1)
3 , c

(2)
1 −c

(2)
2 , c

(2)
1 −c

(2)
3 generate a subgroup of

k∗/k∗2 isomorphic to (Z/2)4 and that E(1) and E(2) are not isogenous over k.
Then the 2-primary torsion subgroup of BrZ is contained in Br 1Z = Br k.
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Proof Suppose that the order of β ∈ BrZ is a power of 2, and the image
of β in BrZ is non-zero. Replacing β by an appropriate power we can
assume that the order of its image in BrZ is exactly 2. By Lemma 16
there exists a non-empty subset S ⊂ {(1, 1), (1, 2), (2, 1), (2, 2)} such that
the linear combination

∑
(i,j)∈S Aij, which is an element of BrW by Lemma

15, has the same image in BrZ ⊂ BrW as β. Considering β −
∑
(i,j)∈S Aij

as an element of BrW we see that its image in BrW is trivial, so that
β −

∑
(i,j)∈S Aij ∈ Br 1W . By Lemma 14 we can write

β =
∑

(i,j)∈S

Aij + γ,

where γ ∈ Br k. Thus
∑
(i,j)∈S Aij is unramified everywhere on Z.

Let us now compute the residues of the Aij at some of the lines `mn.

We write c
(1)
ij = c

(1)
i − c

(1)
j , c

(2)
ij = c

(2)
i − c

(2)
j . Then the residues of A11,

A12, A21, A22 at `11 are the classes of c
(1)
12 c

(2)
12 , c

(2)
12 c

(2)
13 , c

(1)
12 c

(1)
13 , 1 respectively

in k∗/k∗2 ⊂ k(`11)
∗/k(`11)

∗2. By the assumption in the theorem the only
possibility is that S consists of the one element (2, 2). But the residue of A22
at `12 is the class of c

(1)
12 c

(1)
13 , which shows that A22 is ramified at `12. This

contradiction proves the theorem. �
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cohomologie des schémas, Adv. Stud. Pure Math. 3 (North-Holland,
Amsterdam, 1968), 46-188.

[7] D.Harari and A.N.Skorobogatov, Non-abelian descent and the arith-
metic of Enriques surfaces. Preprint, 2004.

[8] K.Kramer, Arithmetic of elliptic curves upon quadratic extension,
Trans. Amer. Math. Soc. 264(1981), 121-135.

[9] Yu.I.Manin, Le groupe de Brauer-Grothendieck en géométrie diophanti-
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