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Abstract

Let X be the Shimura curve corresponding to the quaternion algebra over Q
ramified only at 3 and 13. B. Jordan showed that XQ(

√
−13) is a counterexam-

ple to the Hasse principle. Using an equation of X found by A. Kurihara, we
show, by elementary means, that X has no Q(

√
−13)-rational divisor classes

of odd degree. A corollary of this is the fact that this counterexample is
explained by the Manin obstruction.

Mathematics subject classification (2000): 11G18, 11G05, 11G30

1 Introduction

Let X be a smooth and projective variety over a number field k. Assume that
X is a counterexample to the Hasse principle, that is, X has no k-rational point
but has rational points in all the completions of k. If we denote by Ak the adèles
of k, then the global reciprocity applied to the Brauer–Grothendieck group Br(X)
defines a certain subset X(Ak)Br ⊂ X(Ak) which contains the diagonal image of
X(k). One says that the failure of the Hasse principle for X is explained by the
Manin obstruction if X(Ak)Br = ∅.

Now let X be a curve. It is an open question whether or not all counterexamples
to the Hasse principle on curves can be accounted for by the Manin obstruction.
(The answer to the same question for surfaces is known to be negative, see [9], Sect.
8). One can easily give a conditional answer if X already has no rational divisor
class of degree 1; then the finiteness of the Tate–Shafarevich group of the Jacobian
of X implies that X(Ak)Br = ∅, see [9], Cor. 6.2.5. A few examples of this kind are
known: over k = Q we have Schinzel’s curve x4 + 17y4 − 2(4y2 + z2)2 = 0, Cassels’s
curve x4 + y4 − 2412z4 = 0 and a more complicated curve in [2]. These curves have
genus 3. When X has a rational divisor class of degree 1 very little is known. A
simplest case when our question can be answered is when X is equipped with a
morphism f : X → A, where A is an abelian variety such that A(k) is finite. Two
typical cases are when X can be realised as a subvariety of its Jacobian (using a
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rational divisor class of degree 1), or when f is a finite covering of an elliptic curve.
In some other cases our problem can be resolved by descent. See [9], pp. 127–128.

One difficulty for general curves seems to be a ‘lack of structure’, so hopefully
the problem should become more tractable if we restrict ourselves to a class of
‘modular curves’, say Shimura curves. Motivated by this goal, we study in this paper,
by elementary methods, one particular Shimura curve that is a counterexample
to the Hasse principle. Let B be the quaternion algebra over Q ramified only
at 3 and 13, and let XB/Q be the corresponding Shimura curve. Using subtle
properties of the Galois representation on certain points of finite order of abelian
surfaces parametrized by the points of XB, Bruce Jordan [3] showed that XB(K) =
∅ where K = Q(

√
−13). On the other hand, the question of existence of local

points on Shimura curves is completely answered by Shimura and Jordan–Livné
[4]. In particular, XB(AK) 6= ∅. The question which naturally arises is whether
this counterexample to the Hasse principle can be accounted for by the Manin
obstruction. We work with the equation of XB obtained by Akira Kurihara in
[7]. Unlike the classical modular curves the equations of Shimura curves are difficult
to obtain. The method in [7] is based on a (very plausible) guess, and so, until that
guess is proved correct, our main result should be regarded as concerning not the
Shimura curve XB itself but the curve X of genus 3 given by the equations

X :

{
v2 = −(3u2 + 12u+ 13)(u2 + 12u+ 39)

z2 = 2u2 + 6u+ 5
(1)

In this paper we prove that:

• X has no divisor classes of odd degree over K = Q(
√
−13); in particular it

does not have any divisor class of degree 1.

• The failure of the Hasse principle for XK is explained by the Manin obstruc-
tion.

As we mentioned earlier, the second claim follows from the first one if one assumes
that the Tate–Shafarevich group of the Jacobian of XK is finite. We do not make
this assumption; indeed our results do not rely on any conjectures.

2 Divisor classes of degree 1

Note that X covers the curve

Y : v2 = −(3u2 + 12u+ 13)(u2 + 12u+ 39). (2)

We begin by studying the arithmetic of Y . Clearly Y is a genus 1 curve and a short
search reveals that Y has a K-point

P0 = [(−39 + 4
√
−13)/7, (260− 120

√
−13)/49].
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It is straighforward to give a birational map from Y to its jacobian elliptic curve

E : y2 = (x− 10)(x+ 3)(x+ 6)

taking P0 to the point at infinity on E. The map however is complicated and we
do not give the equations here. The reader who would like to check this and other
calculations made in this paper should look at
http://www.ma.ic.ac.uk/~anskor/publ.htm

Lemma 2.1 E(K) has rank 1; a Z-basis for E(K) is

S1 = [10, 0], S2 = [−3, 0], S3 = [−14/13, (480/169)
√
−13].

Proof. Let
E−13 : y

2 = (x+ 130)(x− 39)(x− 78)

be the −13-twist of E. Cremona’s program mwrank tells us that the rank of E(Q)
is 0 and that 2-division points [10, 0], [−3, 0] form a basis for E(Q). The same
program tells us that [−130, 0], [39, 0], [14, 480] is a basis for E−13(Q) (now of rank
1). Suppose now that S ∈ E(K) and let σ be the non-trivial automorphism of K.
Then S+Sσ is in E(Q) and so belongs to the subgroup generated by S1, S2. Likewise
S − Sσ is in E−13(Q), and hence belongs to the subgroup generated by S1, S2, S3.
Hence 2S = (S + Sσ) + (S − Sσ) is also in the subgroup generated by S1, S2, S3. It
is easy to check that S1, S2, S3 are independent modulo 2E(K). Hence S1, S2, S3 is
a basis. QED

Using our birational map we find that the images of these three points on Y are
the points

P1 = [(−39− 4
√
−13)/7, (−260− 120

√
−13)/49],

P2 = [(−39− 4
√
−13)/19, (−1300 + 120

√
−13)/361],

P3 =

[
(−11442639− 2077204

√
−13)

3412219
,
(−74800945937900 + 46469317632360

√
−13)

11643238503961

]

.

Corollary 2.2 The classes [P1−P0], [P2−P0], [P3−P0] form a Z-basis for Pic
0(Y ).

Lemma 2.3 Let f ∈ K(Y ) be the function given by f = u2+12u+39 on the affine
equation for Y in (2). Let v√−13 : K

∗ → Z be the valuation corresponding to the
prime

√
−13 over K. Then

v√−13(f(P0)) = v
√
−13(f(P1)) = v

√
−13(f(P2)) = v

√
−13(f(P3)) = 1.

Proof. From the definition of f all we have to check is that v√−13(u(Pi)) = 1 for
i = 0, . . . , 3. This is immediate for i = 0, 1, 2 and a short calculation for i = 3. QED

Lemma 2.4 Suppose that Q ∈ Y (K), and let L = K(Q). Suppose that the exten-
sion L/K has odd degree. Then there is a prime P of L such that
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• P|
√
−13,

• deg(P/
√
−13) is odd, and

• P|u(Q).

In particular, if Q ∈ Y (K) then
√
−13|u(Q).

Proof. LetQ1, . . . , Qn be the conjugates of Q (Q1 = Q), and note that n = [L : K].
Thus the divisor

∑
Qi−nP0 is K-rational of degree 0 and Corollary 2.2 implies that

n∑

i=1

Qi − nP0 ∼
3∑

j=1

nj(Pj − P0)

for some integers nj. Taking everything to one side we find

n∑

i=1

Qi −
3∑

j=0

mjPj ∼ 0

for some integers mj. Thus there exists a function g ∈ K(Y ) whose divisor equals
the divisor on the left hand side:

div(g) =
n∑

i=1

Qi −
3∑

j=0

mjPj,

and we note for future reference that

m0 +m1 +m2 +m3 = n = [L : K] is odd. (3)

It is easy to see that div(f) and div(g) have disjoint support. Weil’s reciprocity (see,
for example, [8], page 43) asserts that

f(div(g)) = g(div(f)). (4)

Now f = u2 + 12u+ 39 is a factor of the right hand side of the equation (2) and it
is clear that it has double zeros at two ramification points and double poles at the
two points at infinity. Thus div(f) = 2D for some K-rational divisor D. Hence,
from (4) we have

(
n∏

i=1

f(Qi)

)(
3∏

j=0

f(Pj)
mj

)−1

= g(D)2 ∈ K∗2.

The previous lemma asserts that the f(Pj) all have valuation 1 at
√
−13, and

from (3) we get that

v√−13

(
n∏

i=1

f(Qi)

)

is odd.
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Now
∏n
i=1 f(Qi) = NormL/K(u(Q)

2 + 12u(Q) + 39). Let P1, . . . ,Ps be the distinct
primes ideals of L dividing

√
−13. We can write

(u(Q)2 + 12u(Q) + 39) =
(∏

P
rj
j

)
a

for some fractional ideal a not having any of the Pj in its support. Taking norms
we deduce that

∑
rj deg(Pj/

√
−13) = v√−13(NormL/K(u(Q)

2 + 12u(Q) + 39));

we know that the right hand side is odd and hence, for some j, both rj and
deg(Pj/

√
−13) are odd. Thus there is a prime P|

√
−13 such that deg(P/

√
−13)

is odd and vP(u(Q)
2 + 12u(Q) + 39) is odd. We see that vP(u(Q)) ≥ 0 oth-

erwise the valuation would have been even. Further, from the equation (2) we
have that vP(3u(Q)

2 + 12u(Q) + 13) is also odd. Hence P|(u(Q)2 + 12u(Q)) and
P|(3u(Q)2 + 12u(Q)) and thus P|u(Q). QED

Theorem 2.5 X does not have any K-rational divisor classes of odd degree.

Proof. Let K be an algebraic closure of K. Since X has points everywhere locally
we have an equality

H0(Gal(K/K),Pic(X)) = Pic(X)

and so it is sufficient to show that there are no K-rational divisors of odd degree,
or equivalently that there are no points defined over extensions of K of odd degree.
Thus suppose R is a point on X such that K(R)/K is of odd degree, and we seek to
derive a contradiction. Let Q be the image of R on Y . Clearly the point Q lies on
the affine patch given by the equation (2). Since the v- and the z-coordinates of R
are given by quadratic equations over the u-coordinate and the extension K(R)/K
is odd it follows that

K(u(Q)) = K(Q) = K(R).

Let L = K(Q) = K(R). Hence L/K has odd degree. By the previous Lemma
we know that there exists a prime ideal P of L such that P|

√
−13, P|u(Q), and

deg(P/
√
−13) is odd. But u(Q) = u(R). Thus P|u(R). From the second equation

in (1) we have
z(R)2 ≡ 5 (mod P)

and hence 5 is a square in the field OL/P. The crucial point now is that
[
OL/P : OK/

√
−13

]
= deg(P/

√
−13)

which is odd. Taking norms we get that 5deg(P/
√
−13) is a square in OK/(

√
−13). This

is a contradiction since OK/(
√
−13) = Z/13, 5 is a quadratic non-residue modulo

13 and deg(P/
√
−13) is odd. Hence there are no divisor classes of odd degree over

K. QED
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3 The Manin obstruction on X

We now come to proving that the Manin obstruction explains the failure of the Hasse
principle for XK . For this it would be enough to know the finiteness of the Tate–
Shafarevich group of the Jacobian of XK . However, using the computations of the
previous section we deduce the desired statement from a simpler fact: the finiteness
of (EK), the Tate–Shafarevich group of the Jacobian of YK . The finiteness of
this group follows from the result of Kolyvagin, which says that a modular elliptic
curve over Q with analytic rank at most 1 has a finite Tate–Shafarevich group [5],
[6]. All elliptic curves over Q are modular by a theorem of C. Breil, B. Conrad, F.
Diamond and R. Taylor [1].

Lemma 3.1 The group (EK) is finite.

Proof. We make use of John Cremona’s tables:
http://www.maths.nottingham.ac.uk/personal/jec/ftp/data/INDEX.html

- specifically the files allbsd.1-8000 and allbsd.8001-12000. The curves E/Q
and E−13/Q (respectively the curves 39A1 and 8112HH2 in these tables) have ana-
lytic ranks 0 and 1 according to these tables.

By Kolyvagin it follows that (E) and (E−13) are finite. Let us show that
this implies the finiteness of (EK). Let A = RK/Q(EK) be the abelian surface
over Q which is the Weil descent of EK . We then have H1(Q, A) = H1(K,EK) and
H1(Qv, A) =

∏
w|vH

1(Kw, EK). The functoriality of restriction maps implies that

we have a natural isomorphism (A) = (EK). Let Q be an algebraic closure of
Q, E = E ×Q Q, A = A×Q Q. By the definition of Weil descent A is isomorphic to
E × E. Using explicit action of the Galois group Gal(Q/Q) one easily checks that
the map of Q-varieties E × E → E × E given by (x, y) 7→ (x + y, x − y) descends
to a map of Q-varieties A → E × E−13. This map is an isogeny of degree 4. The
property of the Tate–Shafarevich group to be finite is preserved by isogenies. Hence
the finiteness of (A) = (EK) follows from the finiteness of (E×E−13). QED

Lemma 3.2 If (Qv)v ∈ Y (AK)Br, then u is regular at Q√−13 and
√
−13|u(Q√−13)

(where Q√−13 is the
√
−13-adic component of the adelic point).

Proof. We can regard YK as an elliptic curve. By Lemma 3.1 its Tate–Shafarevich
group is finite. It is well known that Y (AK)Br is generated by the closure of the
diagonal image of Y (K) and the connected component of 0 (see, e.g., [9], Prop.
6.2.4). Then Q√−13 is in the

√
−13-adic closure of Y (K). However, by Lemma 2.4

Y (K) ⊆ {Q ∈ Y (K√−13) : u is regular at Q and
√
−13|u(Q)}

and we know that the set on the right hand side is closed. Thus Q√−13 belongs to
that set. QED
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Theorem 3.3 The set X(AK)Br is empty.

Proof. Let φ : X → Y be the obvious map. Suppose that (Rv)v ∈ X(AK)Br. By
the functoriality of the Brauer group (see [9], (5.3)) we have φ((Rv)v) ∈ Y (AK)Br.
Thus u is regular at R√−13, and

√
−13|u(R√−13) by the previous Lemma. However

from the second equation for X we have z(R√−13)
2 ≡ 5 (mod

√
−13), and this is

impossible. QED
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4. B.W. Jordan and R.A. Livné, ‘Local Diophantine properties of Shimura curves’
Math. Ann. 270 (1985) 235–248.

5. V.A. Kolyvagin, ‘On the Mordell-Weil group and the Shaferevich-Tate group
of modular elliptic curves’. In: Proceedings of the International Congress of Mathe-
maticians. Vol I, II (Kyoto 1990), 429–436, Math. Soc. Japan, 1991.

6. V.A. Kolyvagin, ‘Euler Systems’. In: The Grothendieck Festschrift, Vol II,
435–483, Progr. Math. 87, Birkhäuser, Boston, 1990.
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