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Abstract

Let X be a del Pezzo surface of degree 1, and let G be the simple Lie group of
type E8. We construct a locally closed embedding of a universal torsor over
X into the G-orbit of the highest weight vector of the adjoint representation.
This embedding is equivariant with respect to the action of the Néron-Severi
torus T of X identified with a maximal torus of G extended by the group of
scalars. Moreover, the T -invariant hyperplane sections of the torsor defined
by the roots of G are inverse images of the 240 exceptional curves on X.

Introduction

Let G be the split simple Lie group of type E8 with Lie algebra g. Let
X be a split del Pezzo surface of degree 1, and let T be a universal torsor
over X. In this paper we construct an embedding of T into the G-orbit
of the highest weight vector of the adjoint representation of G in g. This
orbit is the affine cone (G/P )a (with the zero removed) over the generalized
Grassmannian G/P ⊂ P(g). Let H ⊂ G be a split maximal torus, and
let T ⊂ GL(g) be the extension of H by the centre of GL(g). The above
embedding is equivariant with respect to the action of T identified with the
Néron–Severi torus of X. Moreover, the T -invariant hyperplane sections of T
corresponding to the 240 roots of E8 are the inverse images of the 240 lines
on X. This extends the main result of [5] to del Pezzo surfaces of degree 1.
Generalising the blowing-up construction of [5, Section 4] we prove the

following result which may be of independent interest. Let g = h⊕ (
⊕
β∈R gβ)

be a semisimple Lie algebra with a Cartan subalgebra h and a root system
R. Let α ∈ R be a long simple root, and let V be the simple g-module whose
highest weight ω is the fundamental weight dual to α. Define a Z-graded Lie
algebra structure on g by setting h ⊂ g0, and gβ ⊂ gn if β − nα is a linear
combination of simple roots other than α. Then there is a natural Z-grading
on V = ⊕n≥0Vn such that giVj ⊂ Vj−i. The subalgebra g0 is the direct sum of
the 1-dimensional abelian Lie algebra and a semisimple Lie algebra g′. Each
graded component Vi is a g

′-module; moreover, V1 is the simple g
′-module of

highest weight −α. Let G (resp. G′) be the split simply connected semisimple
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Lie group whose Lie algebra is g (resp. g′), and let H ⊂ G be the Cartan
subgroup with Lie algebra h. The G-orbit of the highest weight vector in P(V )
is the homogeneous space G/P , where P is the maximal parabolic subgroup
of G defined by α. Similarly, G′/P ′ ⊂ P(V1) is the G′-orbit of the highest
weight vector in P(V1). Let G≤−2 ⊂ G be the unipotent subgroup whose
Lie algebra is the nilpotent Lie subalgebra g≤−2 ⊂ g. Finally, let Hω be the
1-parameter subgroup of the maximal torus H such that the kernel of the
natural surjection Ĥ = P (R) → Ĥω is given by (x, ω) = 0. In Theorem 1.6
we construct an open subset of G/P invariant under the semi-direct product
G≤−2oHω such that the quotient is isomorphic to P(V1) blown-up at G′/P ′.
Although we largely follow the same strategy of proof as in [5] the generali-

sation from the cases A4, D5, E6, E7 to the case E8 is far from straightforward.
The root system E7 is obtained from E8 by removing α = α8, the simple root
corresponding to the last node of the longest leg of the Dynkin diagram. (Here
and elsewhere we use Bourbaki’s notation.) A number of difficulties stem from
the fact that the simple Lie algebra g of type E8 graded by α8 has five non-zero
graded components gn and not three as was the case for (A4, α3), (D5, α5),
(E6, α6) and (E7, α7), so in our case G≤−2 is no longer trivial. The main result
of Section 2 is Theorem 2.1 applicable whenever the grading of g has length 5.
Let (G′/P ′)a be the affine cone over G

′/P ′. Theorem 2.1 says that a natural
torsor under the multiplicative group Gm over the blowing-up of a subvari-
ety Z ⊂ V1 \ {0} at Z ∩ (G′/P ′)a is isomorphic to a locally closed subset of
(G/P )a provided there exists a symmetric bilinear form on g−1 with values in
g−2 satisfying certain properties. This form allows us to construct a section of
a quotient morphism by the action of G≤−2. In Section 3 we zoom in on the
cases E7 and E8 and prove some technical lemmas about these algebras and
related homogeneous spaces. The preparations for the proof proper start in
Section 4, where we construct the required symmetric form, which turns out
to be essentially unique. Its construction is made possible by the following
fact (undoubtedly well known to experts): blowing up a point on a del Pezzo
surface of degree 2 one obtains a del Pezzo surface of degree 1 only if the point
does not belong to the union of exceptional curves and the branch curve of
the anti-canonical double covering (Lemma 4.1). The proof of the main result
of this paper, Theorem 5.3, is finished in Section 5.

1 The blow-up theorem

Throughout the paper we denote by k a field of characteristic 0 with an
algebraic closure k.

Let G be a split simply connected semisimple group, with a Borel subgroup
B defined over k, and a split maximal torus H ⊂ B, H ' Grm,k. These data
define a root system R together with a basis of simple roots Δ. Let W be the
Weyl group of R. If α ∈ R, then α∨ = 2

(α,α)α is the corresponding coroot.
Let α ∈ Δ be a simple root, and ω be the fundamental weight dual to α,

that is, (ω, α∨) = 1, and (ω, β∨) = 0 if β ∈ Δ \ {α}.
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Let G→ GL(V ) the irreducible representation with the highest weight ω.
Let P ⊂ G, P ⊃ B, be the maximal parabolic subgroup such that G/P is the
orbit of the highest weight vector v in P(V ). The orbit Gv is (G/P )a \ {0},
where (G/P )a is the affine cone over G/P . Let G̃ be the reductive subgroup
of GL(V ) generated by G and the scalar matrices.
Let g, h, b be the corresponding Lie algebras. A simple root α ∈ Δ turns

g = h ⊕ (
⊕
β∈R gβ) into a graded Lie algebra g =

⊕
n∈Z gn, where h ⊂ g0

and gβ ⊂ gn if n is the coefficient of α in the decomposition of β into an
integral linear combination of simple roots. The subalgebra p = g≥0 is the
Lie algebra of P . The subalgebra g0 is reductive, and is the direct sum of the
1-dimensional centre and the semisimple Lie algebra g′ = [g0, g0]. The Dynkin
diagram of g′ is obtained from that of g by removing the node corresponding
to α. Let G′ ⊂ G be the semisimple simply connected group with Lie algebra
g′.
The vector space V is the direct sum V = ⊕n≥0Vn, where Vn is spanned by

the vectors of weight τ such that n is the coefficient of α in the decomposition
of the root ω − τ into a linear combination of simple roots. It is clear that V
is a graded g-module, that is, giVj ⊂ V−i+j . We have V0 = kv.

Lemma 1.1 The map g 7→ gv is an isomorphism of g′-modules g−1 → V1.
Moreover, V1 is an irreducible g

′-module with highest weight −α.
The g′-module V2 is isomorphic to V

+
2 ⊕ V

−
2 , where the map g 7→ gv is

an isomorphism of g′-modules g−2 → V
−
2 , and V

+
2 = S

2(V1)/V (−2α), where
V (−2α) is the irreducible g′-module with highest weight −2α.

Proof Let U(g) be the universal enveloping algebra of g. Consider the gen-
eralised Verma module M = U(g) ⊗U(p) kv. By the Poincaré–Birkhoff–Witt
theorem the composite map U(g≤−1)→ U(g)→M is an isomorphism of left
U(g≤−1)-modules, and also of g′-modules. The grading on U(g≤−1) induced by
the grading on g≤−1 defines a grading M = ⊕n≥0Mn. We have the following
decompositions of g′-modules:

M0 = kv, M1 = g−1v, M2 = g−2v ⊕ S
2(g−1)v.

Let X−α ⊂ g−α be a non-zero element. The g-module V is isomorphic to
the quotient M/N , where the g-submodule N is generated by X2−αv. The
standard relations in U(g) imply that N = U(g≤0)X2−αv. The grading on
M induces the grading N = ⊕i≥0Ni. We have N0 = N1 = 0, and hence
V1 =M1 ' g−1. If β 6= α is a simple root, then β −α is not a root, thus X−α
is a highest weight vector of the g′-module V1; in particular, V1 is an irreducible
g′-module with highest weight −α. The g′-module N2 is generated by X2−αv,
thus N2 ' V (−2α). We obtain V2 = M2/N2 = g−2 ⊕

(
S2(g−1)/V (−2α)

)
.

QED

We shall identify the g′-modules g−1 and V1 by the isomorphism that sends
g to gv. The exponential map exp(x) =

∑
n≥0 ad(x)

n/n! on the nilpotent Lie
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subalgebra g≤−1 is a morphism of affine varieties exp : g≤−1 → GL(g) whose
image is contained in G. For x ∈ g−1 = V1 we write

exp(x)v = v + x+ p2(x) + p3(x) + . . . ,

where pn(x) is in HomG′(S
n(V1), Vn). Let p(x, y) be the polarisation of p(x) =

p2(x). Then p(x, y) =
1
2(xy + yx)v ∈ V

+
2 is the symmetric part of xyv. The

skew-symmetric part of xyv is 12 [x, y]v ∈ V
−
2 . Note that p(x) ∈ V

+
2 .

Let P ′ ⊂ G′ be the stabiliser of X−αv in P(V1). This is a parabolic
subgroup of G′, and the affine cone (G′/P ′)a over G

′/P ′ is G′(X−αv) ∪ {0}.
We now introduce an important subgroup of G̃. Define D ⊂ GL(V ) as

the 1-dimensional torus whose element gt, t ∈ k∗, acts on Vi as multiplication
by t1−i. It is easy to see that D ⊂ G̃. Indeed, let r be the positive rational
number such that rω is a primitive element of the root lattice Q(R). This
lattice is identified with the cocharacter lattice of H. Let Hω ⊂ H be the
1-dimensional subtorus defined by rω ∈ Q(R). Then D is contained in the
2-dimensional torus generated by the scalar matrices and Hω, so that D ⊂ G̃.

Lemma 1.2 (G′/P ′)a = (G/P )a ∩ V1 = p−1(0)

Proof Let us prove the first equality. The tangent space to x ∈ (G/P )a is
kx+ gx. If x ∈ (G′/P ′)a ⊂ V1, then

Tx,(G/P )a ∩ V1 = (kx+ gx) ∩ V1 = kx+ g
′x = Tx,(G′/P ′)a .

Hence (G′/P ′)a is an irreducible component of (G/P )a ∩ V1. On the other
hand, the closed set (G/P )a∩V1 is a union of G′-orbits, but the closure of any
non-zero orbit contains the unique closed orbit (G′/P ′)a. Hence (G

′/P ′)a =
(G/P )a ∩ V1.
If p(x) = 0, then obviously pn(x) = 0 for all n ≥ 2. Thus exp(x)v = v + x

is in (G/P )a. Hence gt exp(x)v = tv+x is also in (G/P )a for any t ∈ k∗. But
(G/P )a is a closed set, so that the limit point x ∈ V1 is contained in it. By
the first equality we see that x is actually in (G′/P ′)a. On the other hand,
p(X−αv) = 0, and since p is G

′-equivariant, p vanishes on the orbit G′(X−αv),
and hence on (G′/P ′)a. QED

Let B− ⊂ G be the opposite Borel subgroup, and N− ⊂ G its unipotent
radical; thus B− = N−H. Let b− (resp. n−) be the Lie algebra of B− (resp.
of N−). Then N− = exp(n−), and

n− = g≤−1 ⊕ (n
− ∩ g0) ⊂ g≤0.

The decreasing family of nilpotent subalgebras g≤−n ⊂ n−, n ≥ 1, defines a
decreasing family of unipotent subgroups G≤−n = exp(g≤−n) ⊂ N−.

Let πn : (G/P )a → Vn be the natural projections. Let π
+
2 (resp. π

−
2 ) be

the projection to V +2 (resp. to V
−
2 ).

The Bruhat decomposition represents G/P as a disjoint union of the
Bruhat cells B−(kvμ) ⊂ P(V ), where vμ ∈ V is a vector of weight μ = w(ω),
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and w is a coset representative of W modulo the Weyl group of P . Since
V0 = kv is the trivial g0-module, the big (open) cell is B

−(kv) = N−(kv) =
G≤−1(kv). The preimage of the big cell in (G/P )a is a dense open subset of
(G/P )a given by π0(x) 6= 0.

Lemma 1.3 If μ ∈W(ω) is a weight of Vn, n ≥ 2, then π1(B−vμ) = 0.

Proof For any x ∈ Vn we have B−x ⊂ ⊕i≥nVi since V is a graded g-module.
QED

Let G≤−2oD ⊂ G̃ be the semidirect product. It is clear that it preserves
the fibres of π1 : (G/P )a → V1.

Proposition 1.4 If x ∈ V1, x 6∈ (G′/P ′)a, then π
−1
1 (x) = (G≤−2oD)exp(x)v.

If x ∈ V1, x ∈ (G′/P ′)a\{0}, then π
−1
1 (x) = G≤−1x ∪ (G≤−2oD)exp(x)v.

Proof Let y ∈ π−11 (x), x 6= 0. Then y is contained in B
−vμ for some μ = w(ω).

Since x 6= 0 we have vμ = v or vμ ∈ V1, by Lemma 1.3. In the first case, after
applying an appropriate element u ∈ D, we ensure that π0(uy) = v and
therefore uy is in G≤−1v = exp(g≤−1)v. Since π1(uy) = π1(y) = x we see
that π−11 (x) = Dexp(x + g≤−2)v = (G≤−2 o D)exp(x)v. In the second case
y ∈ V≥1, moreover

y ∈ exp(g≤−1)exp(n
− ∩ g0)vμ ⊂ G≤−1(G

′/P ′)a,

since exp(n− ∩ g0) ⊂ G′ and vμ ∈ (G′/P ′)a. Now π1(y) = x implies that
x ∈ (G′/P ′)a and y ∈ G≤−1x. Since (G′/P ′)a is a subset of (G/P )a, we see
that G≤−1x is also a subset of (G/P )a. This completes the proof. QED

It follows that π−11 (V1 \ {0}) is the union of

(G≤−2 oD)exp(g−1 \ {0})v = (G≤−1 \G≤−2)k
∗v

and G≤−1((G
′/P ′)a \ {0}).

From now on we assume that α is a long root of the root system R.

Lemma 1.5 The group G≤−2 acts freely on π
−1
1 (x) for any x ∈ V1 \ {0}.

Proof Recall that v is a vector of highest weight ω, so we can write v = vω. By
Lemma 1.3, π−11 (V1 \ {0}) is contained in the union of B

−k∗vω and B
−k∗vμ,

where μ ∈ Wω is a weight of V1, hence it is enough to prove that G≤−2
acts freely on these cells. If rα is the reflection in the simple root α, then
rα(ω) = ω−α is the weight ofX−αv ∈ V1, thus in the latter case μ ∈W′(ω−α),
where W′ is the Weyl group of g′. Due to G′-invariance it suffices to check that
the stabilisers of vω and vω−α in G≤−2 are trivial. Since G≤−2 is unipotent this
is equivalent to the triviality of the stabilisers in the Lie algebra g≤−2. The
stabiliser of any weight vector vμ in g≤−2 is a direct sum of root spaces. On
the other hand, if μ is an extremal weight of V and β is a root of g, then either
gβvμ = 0 or g−βvμ = 0. A simple sl2 argument shows that if (μ, β) < 0 then
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g−βvμ = 0 and gβvμ 6= 0. We claim that (μ, β) < 0 for μ = ω or μ = ω−α and
any root β of g≤−2. Indeed if μ = ω, then (ω, β) < 0 for any root β of g≤−1.
Now let μ = ω − α. Then we have (ω − α, β) = (rα(ω), β) = (ω, rα(β)). Our
assumption that α is a long root implies that rα(β) ∈ {β − α, β, β + α}, thus
rα(β) is a root of g≤−1, so that (ω, rα(β)) < 0. This implies that (ω−α, β) < 0
and so completes the proof of the lemma. QED

Theorem 1.6 Let π = (π1, π
+
2 ) : (G/P )a → V1 ⊕ V

+
2 be the natural projec-

tion. Define the open subset U ⊂ (G/P )a as the complement to the union of
closed subsets π−11 (0) and (π

+
2 )
−1(0).

(i) G≤−2 acts freely on U , and the fibres of π contained in U are orbits of
G≤−2.
(ii) G≤−2 o D acts freely on U preserving the fibres of U → V1 \ {0} ×

P(V +2 ), which are orbits of G≤−2 oD.
(iii) G≤−2\U → (G≤−2 oD)\U is a torsor under D ∼= Gm.
(iv) (G≤−2 oD)\U is isomorphic to V1 \ {0} blown up at (G′/P ′)a \ {0}.

The exceptional divisor is given by π0(x) = 0.

We write various quotient morphisms in the theorem as a commutative
diagram:

U

π

V0 × (V1 \ {0})× (V
+
2 \ {0})× V

−
2 × V≥3

π

G≤−2\U (V1 \ {0})× (V
+
2 \ {0})

(G≤−2 oD)\U (V1 \ {0})× P(V
+
2 )

Bl(G′/P ′)a\{0}(V1 \ {0}) V1 \ {0}

(1)

Proof If t ∈ k∗ and h ∈ G≤−2 are such that gthξ = ξ, then π
+
2 (ξ) = π

+
2 (gthξ) =

t−1π+2 (ξ) 6= 0, hence t = 1. Then g = 1 by Lemma 1.5, so that G≤−2oD acts
freely on U . By Proposition 1.4 we can write U = U1 ∪ U2, where

U1 ⊂ (G≤−2 oD)exp(g−1 \ {0})v, and U2 ⊂ G≤−1
(
(G′/P ′)a \ {0}

)
,

since for x ∈ (G′/P ′)a we have p(x) = 0 so that no point in (G≤−2oD)exp(x)v
is in U . If ξ ∈ U1, then π

+
2 (ξ) is proportional to p(π1(ξ)), thus Lemma 1.2

implies that π+2 (ξ) 6= 0 is equivalent to π1(ξ) /∈ (G
′/P ′)a, so that

U1 = G≤−2exp(g−1 \ (G
′/P ′)a)k

∗v.

The fibres of π contained in U1 are orbits of G≤−2, and those of U1 → V1 \
{0} × P(V +2 ) are orbits of G≤−2 oD. Moreover, the morphism

(G≤−2 oD)× (V1 \ (G
′/P ′)a) −→ U1
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sending (s, x) to s exp(x)v, is an isomorphism. In particular, π1 gives rise to
a trivial (G≤−2 o D)-torsor U1 → V1 \ (G′/P ′)a. Any element of U2 can be
written as ξ = h exp(y)x, where x ∈ (G′/P ′)a \ {0}, y ∈ g−1 ' V1, h ∈ G≤−2.
Then π+2 (ξ) = p(x, y), so that

U2 = G≤−2{exp(y)x |x ∈ (G
′/P ′)a, y ∈ V1, p(x, y) 6= 0}.

Let x be a non-zero point of (G′/P ′)a. Let us observe that p(x, y) = 0 for
y ∈ V1 if and only if y is in the tangent space Tx,(G′/P ′)a , since p(x) = 0 gives a
system of quadratic equations defining (G′/P ′)a, by Lemma 1.2. Thus the zero
set of p(x, y) in

(
(G′/P ′)a \ {0}

)
× V1 is the tangent bundle of (G′/P ′)a \ {0}.

Moreover, for such pairs (x, y) we have exp(y)x = x. For this we need to show
that yx = 0, and this follows from [x, y] = 0 by the remarks after Lemma 1.1,
so we only need to prove that x and y commute. Recall that Tx,(G′/P ′)a is
kx+ g′x ⊂ V1. By the G′-invariance we can assume without loss of generality
that x = X−αv, so that we must show that [X−α, [X−α, g

′]] = 0. For this it is
enough to prove that [X−α, [X−α, Xβ ]] = 0 for any root β of g

′. But β 6= α,
and it is well known that β− 2α is never a root for any long root α 6= β. This
finishes the proof that exp(y)x = x.
Let us show that the fibres of the restriction of π to U2 are orbits of G≤−2.

If exp(y)x and exp(y′)x′ have the same image under π, then x′ = x and
p(x, y) = p(x, y′), so that y′ − y ∈ Tx,(G′/P ′)a . As we have seen, this implies
exp(y′ − y)x = x. Since

exp(y′) = h exp(y)exp(y′ − y)

for some h ∈ G≤−2, we are done. It follows that the fibres of U2 → V1 \ {0} ×
P(V +2 ) are orbits of G≤−2oD, which completes the proof of (i) and (ii). Part
(iii) is now obvious.
Let N be the normal bundle to (G′/P ′)a \ {0} in V1, that is, the cokernel

of the injective map of vector bundles T(G′/P ′)a → V1. The map (x, y) 7→
(x, p(x, y)) identifies N without its zero section with

G≤−2\U2 ⊂
(
(G′/P ′)a \ {0}

)
× (V +2 \ {0}),

thus (G≤−2 o D)\U2 = P(N ). Finally, π1 : (G≤−2 o D)\U → V1 \ {0} is a
morphism of smooth varieties which is an isomorphism away from (G′/P ′)a,
whereas π−11 ((G

′/P ′)a\{0}) is isomorphic to the projectivisation of the normal
bundle to (G′/P ′)a \ {0} in V1 \ {0}. It is known and not very hard to prove
that this implies the first statement of (iv). But U2 is the closed subset of U
given by π0(x) = 0. This finishes the proof. QED

2 The case of grading of length 5

Let us now assume that the grading of g defined by a simple root α has length
5, i.e., gn = 0 exactly when |n| > 2. An inspection of tables in [1] shows that
this is the full list of such pairs (R, α):

(Bn, αi), i 6= 1; (Cn, αi), i 6= n; (Dn, αi), i /∈ {1, n−1, n}; (E6, αi), i = 2, 3, 5;
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(E7, αi), i = 1, 2, 6; (E8, αi), i = 1, 8; (F4, αi), i = 1, 4; (G2, α2).

Recall that our enumeration of roots follows the conventions of [1].
We keep the notation of the previous section, in particular V is the sim-

ple g-module with highest weight ω, the fundamental weight dual to α. We
identify V1 with g−1, and V

−
2 with g−2.

Theorem 2.1 Assume that the grading of g defined by a simple root α has
five non-zero terms. Let Z be a smooth closed subset of g−1 \ {0} such that
Z0 := Z ∩ (G′/P ′)a is also smooth. Assume that there exists a linear map
s : S2(g−1)→ g−2 such that s(x) = 0 and [a, x] = 4s(x, a) for any x ∈ Z0 and
a ∈ Tx,Z .
Define Z̃ = D{exp(x+ s(x))v|x ∈ Z}∩U , and let Z be the Zariski closure

of Z̃ in π−11 (Z) ∩ U . Then
(i) π1 : Z → Z is surjective.
(ii) Z is D-invariant, and D acts freely on Z.
(iii) The quotient D\Z is isomorphic to Z blown up at Z0. The exceptional

divisor is given by π0(x) = 0.

This theorem states that the above sets are related as follows:

Z̃

π1

Z

π1

D\Z

Z \ Z0

exp(x+s(x))v

Z BlZ0(Z)

where the downward arrows π1 are surjective.

Proof (i) If x ∈ Z \ Z0, then exp(x+ s(x))v ∈ U because x 6= 0 and p(x) 6= 0
by Lemma 1.2. Thus exp(x+ s(x))v ∈ Z̃ ⊂ Z. Since x = π1(exp(x+ s(x))v),
we see that x ∈ π1(Z).
Let k[[t]] be the k-algebra of formal power series. Now let x ∈ Z0 and

a ∈ Tx,Z , and let
φ(t) = x+ at+O(t2) ∈ Z(k[[t]])

be a k[[t]]-point of Z. Let us prove that

y = lim
t→0
gt exp

(
φ(t) + s(φ(t))

)
v

is a well defined point of Z. Using the identity g exp(h)g−1 = exp(Adgh) and
the fact that gt (v) = tv we obtain

y = lim
t→0
exp
(
gt (φ(t) + s(φ(t)))g

−1
t

)
tv.

Since Adgtz = t
iz for any z ∈ gi, and

φ(t) + s(φ(t)) = x+ at+O(t2) + 2s(x, a)t+O2(t
2),

where O2(t
2) ∈ g−2, we obtain

y = lim
t→0
exp
(
xt−1 + a+O(t) + 2s(x, a)t−1 +O2(1)

)
tv.
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Since [g−2, g≤−1] = 0, by the Campbell–Hausdorff formula for any b, c ∈ g≤−1
we have

exp(b)exp(c) = exp
(
b+ c+

[b, c]

2

)
.

Since O2(1) ∈ g−2 and 4s(x, a) = [a, x] we have

y = lim
t→0
exp(O(1))exp(a)exp(xt−1)tv = lim

t→0

(
exp(a)xv+O(1)xtv

)
= exp(a)xv,

where we used that [x, [x, v]] = 2p(x) = 0 which holds because x is in Z0.
Thus, y is well defined and, moreover,

y = exp(a)xv = xv + p(x, a)v modV −2 ⊕ V>2. (2)

In particular π1(y) = x. Hence π1 : Z → Z is surjective.
(ii) follows from the D-invariance of Z̃ and Theorem 1.6(ii).
(iii) Let Y = π−11 (Z) ∩ U and X = π(Y). It is clear that Y is a closed

subset of X ×k Ank , where A
n
k = V0 ⊕ V

−
2 ⊕ V≥3. By construction Z is closed

in Y, and hence is closed in X ×k Ank :

Z Y

π

X ×k Ank

X

We shall prove that π induces an isomorphism Z−̃→X . By the functoriality
of blowing up and Theorem 1.6 (iv), (G−2 o D)\Y ' D\X is isomorphic to
BlZ0(Z), so this is enough to complete the proof of (iii).
Write X0 = π(π

−1
1 (Z0)). We have the following useful descriptions of X0

and its complement in X :

X0 = {(x, p(x, a)) ∈ U |x ∈ Z0, a ∈ Tx,Z},

X \ X0 = {(x, tp(x))|x ∈ Z \ Z0, t ∈ k
∗}.

The image π(Z) contains X \ X0 by the argument from the beginning of the
proof of (i), and it contains X0 by formula (2). Thus π(Z) = X .
Let us show that π induces an isomorphism π−1(X \X0)∩Z−̃→X \X0. If

z = (z0, z1, z
+
2 , z

−
2 , ...) is a k-point of Z, then we have

z0z
+
2 = p(z1), z0z

−
2 = s(z1)v, (3)

because these equations are satisfied on the open subset Z̃ ⊂ Z which is
given by z0 6= 0. If y = (y1, y

+
2 ) is a k-point of X \ X0, then p(y1) 6= 0 and

y+2 6= 0. Suppose that π(z) = y, then z1 = y1 and z
+
2 = y

+
2 . That implies that

z = gt exp(y1 + s(y1))v, where t is such that y
+
2 t = p(y1), is a unique point

of Z above y. This defines a section of π : Z → X over X \ X0. Applying
Lemma 2.2 below with A = Z and B = X we conclude that X is isomorphic
to Z . The second statement of (iii) is immediate from the first equation of
(3). QED
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Lemma 2.2 Let B be a normal geometrically integral variety over a field k,
and let ϕ be the projection B ×k Ank → B. Let A ⊂ B ×k A

n
k be a closed

irreducible subscheme such that ϕ(A) = B. If ϕ induces an isomorphism of
fields of functions k(B)−̃→k(A), then ϕ : A→ B is an isomorphism.

Proof Let us denote the field k(A) = k(B) by K. Let Ω ⊂ B be the largest
open subset such that ϕ induces an isomorphism ϕ−1(Ω) ∩ A−̃→Ω. Let us
show that B \ Ω has codimension at least 2, i.e., Ω contains all the points of
B of codimension 1. Let D ⊂ B be an irreducible divisor, and let OD ⊂ K
be its local ring. Since B is normal, OD is a discrete valuation ring with
valuation val : O∗D → Z. Write Spec (OD) ×B A = Spec (R), where R is a
subring of K that contains OD. If val(x) < 0 for some x ∈ R \ 0, then R = K
and the closed fibre of Spec (R) → Spec (OD) is empty. Since Spec (R) →
Spec (OD) is surjective we conclude that val(x) ≥ 0 for all x ∈ R \ 0, hence
R = OD. Therefore, the codimension of B\Ω is at least 2. The composition of
ϕ−1 : Ω→ A with any coordinate projection A ⊂ B×k Ank → A1k is a rational
function on B which is regular away from a closed subset of codimension 2, and
hence is regular everywhere on B. Since A is irreducible we have ϕ−1(B) = A,
so that ϕ is indeed an isomorphism. QED

We thank J-L. Colliot-Thélène for pointing out this simple proof.

3 The case when the adjoint representa-

tion is fundamental

Consider the case when the adjoint representation of g is a fundamental rep-
resentation, i.e., when the maximal root of R is the fundamental weight ω
dual to some simple root α. This happens precisely in the following cases:

(Bn, α2), n ≥ 3; (Dn, α2), n ≥ 4; (E6, α2), (E7, α1), (E8, α8), (F4, α1), (G2, α2).

The tables in [1] show that the coefficient of α in the decomposition of the
root ω into a linear combination of simple roots is 2. Thus the Z-grading
g = ⊕gn defined by α has exactly five non-zero terms gn, |n| ≤ 2. The
following properties are easy to check:

• g0 = g′ ⊕ kz is the direct sum of Lie algebras, where z ∈ h, z 6= 0, spans
the centre of g0, and g

′ is semisimple;

• the g′-modules g±1 are isomorphic symplectic irreducible g′-modules
such that all weights have multiplicity 1;

• g±2 are trivial g′-modules, dim g±2 = 1;

• z is a grading element of g, i.e. [z, g] = ng for any g ∈ gn.

We can choose generators v ∈ g2 and w ∈ g−2 so that z = [v, w]. Using
that gn = 0 for |n| ≥ 3 one checks that [[y, w], v] = y for any y ∈ g1, and
[[x, v], w] = x for any x ∈ g−1. We identify the g0-modules g−1 and g1 via
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the isomorphism that sends x to [x, v]; its inverse sends y to [y, w]. Define a
symplectic form on g−1 by

〈a, b〉w = [a, b],

where a, b ∈ g−1. It is easy to check that this form is non-degenerate.

Lemma 3.1 For any y ∈ (G′/P ′)a ⊂ g−1 and a ∈ Ty,(G′/P ′)a we have 〈y, a〉 =
0.

Proof Recall that g2 = gω, where ω, the fundamental weight dual to α, is the
highest weight of the adjoint representation of g. Recall also that the highest
weight of the g′-module g−1 is ω − α. Since the symplectic form 〈a, b〉 is G′-
invariant, it is enough to prove the statement when y ∈ g−1 is an eigenvector
of H of weight ω − α. Since Ty,(G′/P ′)a = ky + [g

′, y] we must prove that the
vector space [g′, y] has zero intersection with gα. This follows from the fact
that ω − 2α is not a root. QED

Define the invariant tensors p ∈ Homg′(S2(g−1), g0), q ∈ Homg′(S3(g−1), g−1),
r ∈ Homg′(S4(g−1), k) as follows:

p(x) =
1

2
ad2x(v), q(x) =

1

6
ad3x(v), r(x)w =

1

24
ad4x(v).

Then for any x ∈ g−1 we can write exp(x)v as the sum of graded components

exp(x)v = v + [x, v] + p(x) + q(x) + r(x)w. (4)

We denote the polarisations of these forms by the same letters, for example

r(a, b, c, d) =
1

576

∑

π∈S4

adπ(a)adπ(b)adπ(c)adπ(d)(v).

Lemma 3.2 For any x ∈ g−1 we have ad2x(v) = 2p(x) ∈ g
′.

Proof For any x ∈ g−1 we have [[[x, v], x], v] = 0 from the Jacobi identity,
hence [x, [x, v]] ∈ g′ which proves our formula. QED

The intersection h′ = g′ ∩ h is a Cartan subalgebra in g′. Since g−1 is a
minuscule g′-module, all the weights of g−1 have multiplicity 1 with respect
to h′. Let Λ ⊂ (h′)∗ be the set of weights of g−1. Let Xμ ∈ g−1 be a non-zero
vector of weight μ ∈ Λ. Then any x ∈ g−1 is uniquely written as x =

∑
xμXμ,

where xμ is a homogeneous coordinate of weight μ. Set cμ = 〈Xμ, X−μ〉. Then
clearly c−μ = −cμ. These numbers are non-zero since the symplectic form
〈x, y〉 is non-degenerate. We can write

r(x) =
∑

μ1+μ2+μ3+μ4=0

rμ1,μ2,μ3,μ4x
μ1xμ2xμ3xμ4 ,

where the monomials correspond to all sets of four (not necessarily distinct)
elements of Λ with zero sum.
Write q(x) =

∑
qμ(x)Xμ. We have [Xμ, x] = cμx

−μw and [Xμ, q(x)] =
cμq
−μ(x)w.

11



Lemma 3.3 We have the following formulae:

∂r(x)

∂xμ
= cμq

−μ(x) = 〈Xμ, q(x)〉, (5)

∂q(x)

∂xβ
= [Xβ , p(x)] +

1

2
cβx

−βx = [Xβ , p(x)] +
1

2
〈Xβ , x〉x. (6)

Proof The left hand side of (5) multiplied by 24 is

[Xμ, [x, [x, [x, v]]]]+[x, [Xμ, [x, [x, v]]]]+[x, [x, [Xμ, [x, v]]]]+[x, [x, [x, [Xμ, v]]]].

Here the first term equals 6[Xμ, q(x)]. The second term is

6[Xμ, q(x)] + [[x,Xμ], [x, [x, v]]] = 6[Xμ, q(x)],

since p(x) ∈ g′ by Lemma 3.2, and g′ is the stabiliser of w. The third term
equals [x, [Xμ, [x, [x, v]]]] + [x, [[x,Xμ], [x, v]]], but since [w, [x, v]] = −x, it is
the same as the second term. Finally, the fourth term is [x, [x, [Xμ, [x, v]]]] +
[x, [x, [[x,Xμ], v]]]. Using [w, v] = −z and [z, x] = −x we conclude that it is
the same as the third term, thus completing the proof of (5).
The left hand side of (6) multiplied by 6 is the following expression

[Xβ , [x, [x, v]]] + [x, [Xβ , [x, v]]] + [x, [x, [Xβ , v]]].

The first term equals 2[Xβ , p(x)]. The second term is the sum of the first term
and [[x,Xβ ], [x, v]] = cβx

−βx. The last term is the sum of the second term
and [x, [[x,Xβ ], v]] = −cβx−β [x, [w, v]] = cβx−βx. QED

For the sake of completeness we list here some formulae that follow from
(5) and (6), but which will not be used in the rest of the paper:

∂2r(x)

∂xμ∂xβ
w = [Xμ, [Xβ , p(x)]] +

1

2
〈Xμ, x〉〈Xβ , x〉w;

for any x, a ∈ g−1 we have

q(x, x, a) =
1

3
[a, p(x)] +

1

6
〈a, x〉x, r(x, x, x, a) =

1

4
〈a, q(x)〉.

From now on we only consider the case when g is the simple Lie algebra
of type E8. We have dim (g) = 248, g

′ is the simple Lie algebra of type
E7, dim g

′ = 133, and dim g±1 = 56. It is known that g is the algebra
of endomorphisms of g−1 preserving the invariant quartic form r(x) and the
symplectic form 〈x, y〉. It is also known that all coefficients rμ1,μ2,μ3,μ4 are non-
zero (and can be made ±1 with an appropriate choice of basis vectors Xμ, see
[2], Thm. 6.1.2). We deduce from (5) that for any μ ∈ Λ the cubic form qμ(x)
is a linear combination of the monomials xμ1xμ2xμ3 such that μ1+μ2+μ3 = μ
with non-zero coefficients. In particular, qμ(x) is not divisible by xμ, for any
μ ∈ Λ.
The following technical lemma will be used later in the construction.
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Lemma 3.4 Let ρ(x) ∈ S3(g∗−1) be a non-zero homogeneous cubic form of
weight β ∈ Λ,

ρ(x) =
∑

μ1+μ2+μ3=β

cμ1,μ2,μ3x
μ1xμ2xμ3 .

If cμ1,μ2,μ3 = 0 whenever μi = β, then ρ(x) is not identically zero on (G
′/P ′)a.

Proof Let g′0 ⊂ g
′ denote the stabiliser of the hyperplane of g−1 given by

xβ = 0. Then g′0 ' k ⊕ g
′′ is a direct sum of Lie algebras, where g′′ is

the simple Lie algebra of type E6. The g
′′-module g−1 is the direct sum of

irreducible submodules

g−1 =W−3 ⊕W−1 ⊕W1 ⊕W3, (7)

where W3 and W−3 are trivial g
′′-modules of dimension 1, Xβ ∈ W3, and

W1 and W−1 are dual g
′′-modules of dimension 27. Moreover, there exists

an element h in the centre of g′0 such that [h, v] = iv for any v ∈ Wi. The
polynomial ρ(x) must have weight 3 with respect to h, so

ρ(x) ∈ (S2(W ∗3 )⊗W
∗
−3) ⊕ (W

∗
3 ⊗W

∗
1 ⊗W

∗
−1) ⊕ S

3(W ∗1 ).

Let φ : g−1 → W1 be the natural projection. Since W ∗3 is spanned by x
β our

assumption on ρ(x) implies that ρ(x) ∈ S3(W ∗1 ), so that ρ(x) = ρ(φ(x)) for
any x in g−1. Since φ((G

′/P ′)a) =W1, the non-zero form ρ(x) cannot vanish
everywhere on (G′/P ′)a. QED

4 Curves on del Pezzo surfaces of degree 2

For a curve C on a smooth surface X we write [C] for the class of C in the
Picard group PicX. We denote the intersection index of divisors D1 and D2
on X by (D1.D2).

Lemma 4.1 Let M1, . . . ,M8 be points in P2k such that the blow-up of P
2
k in

M1, . . . ,M8 is a del Pezzo surface X of degree 1. Let X
′ be the del Pezzo

surface of degree 2 obtained by blowing-up P2k at M1, . . . ,M7, and let M be
the point corresponding to M8 in X

′. Let B ⊂ X ′ be the branch curve of the
anti-canonical double covering κ : X ′ → P2k. Then M 6∈ B. The induced map
of cotangent spaces

κ∗ : T∗κ(M),P2 −→ T∗M,X′

is an isomorphism.

Proof Let σ : X → X ′ be the morphism inverse to the blowing-up of M in X ′,
and let E = σ−1(M) be the exceptional divisor. Since X is a del Pezzo surface
of degree 1 it is clear that M does not belong to the exceptional curves of X ′.
It is well known that B ⊂ P2k is a smooth quartic curve, and that the union
of exceptional curves of X ′ is the inverse image of the union of bitangents to
B ⊂ P2k, see [3, Ch. 4]. Thus if M ∈ B, then the tangent line L to B at κ(M)
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is not a bitangent. Hence κ−1(L) is a rational curve with one node and no
other singular points. Let C be the strict transform of κ−1(L) in X, that is,
the closure of κ−1(L)\{M} in X. The multiplicity of M in κ−1(L) is 2, hence
the intersection index (C.E) = 2. For the same reason we have the following
relation in PicX:

[C] + 2[E] = σ∗(κ−1(L)) = σ∗(−KX′) = −KX + [E].

Hence [C] = −KX−[E] and so (C.−KX) = 0, which contradicts the ampleness
of −KX . QED

Let T ′ ⊂ GL(g) be the torus generated by the maximal torus H ′ ⊂ G′ and
the 1-dimensional torus Gm whose element t ∈ k∗ acts on gn as multiplication
by tn+2. (Note that H ′ ∩Gm = {±1}.) We denote by χ0 the character of T ′

by which T ′ acts on the 1-dimensional centre of g0. This gives natural exact
sequences

0 −→ Q(E7) −→ T̂
′ −→ Ĝm = Z −→ 0

and
0 −→ Zχ0 −→ T̂

′ −→ Ĥ ′ = P (E7) −→ 0.

For χ ∈ T̂ ′ let Snχ(g−1) be the weight χ eigenspace of S
n(g−1), and let

Snχ(g
∗
−1) be the dual space of homogeneous forms. In other words, we have

φ(x) ∈ Snχ(g
∗
−1) if and only if φ(tx) = χ(t)

−1φ(x).

Define (G′/P ′)sfa as the open subset of (G
′/P ′)a consisting of stable points

with respect to H ′ (which means that the H ′-orbits are closed with finite
stabilisers), with the additional condition that the stabilisers in T ′ are trivial.
By geometric invariant theory [4] the quotient Y ′ = T ′\(G′/P ′)sfa exists as
a quasi-projective variety. By [5, Thm. 2.7] the canonical morphism f ′ :
(G′/P ′)sfa → Y

′ is a universal torsor. By [5, Thm. 6.1] there is an embedding
X ′ ↪→ Y ′ such that the images of the weight hyperplane sections cut the
exceptional curves on X ′. Moreover, the restriction of f ′ to X ′ is a universal
torsor T ′ → X ′, and so defines an isomorphism T̂ ′ → PicX ′. It follows that
the natural restriction map PicY ′ → PicX ′ is an isomorphism. The type of
the universal torsor f ′ : T ′ → X ′ up to sign is an isomorphism τ : T̂ ′−̃→PicX ′

described on page 397 of [5]. We reproduce this description here for the
convenience of the reader. Let χ ∈ T̂ ′, and let φ(x) ∈ Snχ(g

∗
−1). Let Zφ ⊂ T

′

be the closed T ′-invariant subset given by φ(x) = 0, and let Cφ = X
′∩f ′(Zφ).

If φ(x) does not vanish identically on T ′, then Cφ is a curve on X ′ whose
class in PicX ′ equals τ(χ). Following a convention of [5] we identify T̂ ′ with
PicX ′ via isomorphism −τ . Then by formula (14) of [5] the intersection index
(Cφ. − KX′), also called the degree of Cφ, equals n. Moreover, by formula
(15) of [5] we have

H0(X ′,O(Cφ)) = k[T
′]−χ = S

2
χ(g
∗
−1)/

(
I(T ′) ∩ S2χ(g

∗
−1)
)
. (8)

Here are some important examples of curves of low degree on X ′. If n = 1
and μ ∈ T̂ ′ is a weight of g−1, we denote by `μ the exceptional curve in X ′
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cut by the image of the hyperplane section given by xμ = 0. It is clear that
[`μ] = μ. We note that μ is a weight of g−1 if and only if χ0−μ is a weight of
g−1. According to formula (12) of [5] the intersection index of `μ and `ν can
be written as

(`μ.`ν) =
1

2
− (μ, ν), (9)

where the last pairing is the standard bilinear form on Q(E7)⊗Q applied to
the restrictions of μ and ν to Ĥ ′ = P (E7).
For n = 2 we have S2(g−1) = V

+
2 ⊕ V (−2α) = g

′ ⊕ V (−2α) (cf. Lemma
1.1). If φ(x) ∈ S2χ0(g

∗
−1), then Cφ is an anti-canonical curve, i.e. [Cφ] = χ0 =

−KX′ . Indeed, this is the only effective divisor class with self-intersection 2
which is orthogonal to Q(E7) ⊂ PicX ′.
Now let ξ ∈ T̂ ′ be a weight of g′, ξ 6= χ0. Then it can be checked using (9)

that ξ = μ+ ν, where μ, ν ∈ T̂ ′ are weights of g−1 such that the intersection
index (`μ.`ν) = 1. Thus for φ(x) ∈ S2ξ (g

∗
−1) the curve Cφ is linearly equivalent

to `μ + `ν , where (`
2
μ) = (`

2
ν) = −1, (`μ.`ν) = 1, so that (C

2
φ) = 0. The

Riemann–Roch theorem implies dimH0(X ′,O(Cφ)) = 2, hence Cφ belongs to
a pencil of curves whose generic members are irreducible conics on X ′.

Let us denote by g×−1 the open subset of g−1 consisting of the points with
all weight coordinates non-zero. Similarly, X ′× denotes the complement to
the union of exceptional curves in X ′. Since X = BlM (X

′) is a del Pezzo
surface of degree 1, we have M ∈ X ′×. Then f ′−1(M) ⊂ g×−1, that is, the
coordinates of any point in the fibre above M are non-zero. Let x0 ∈ T ′ be a
k-point in the fibre over M . For y ∈ g×−1 we let

y
x0
denote the element of the

diagonal torus of GL(g−1) that sends x0 to y.

Lemma 4.2 There exists a non-empty open set Ω ⊂ (G′/P ′)a such that for
any y ∈ Ω(k), any root μ of g′, any weight ν of g−1 and any quadratic
polynomial s(x) of weight 0 with respect to H ′ neither of the forms pμ(x),
qν(x)− xνs(x) vanishes identically on y

x0
T ′.

Proof (cf. [5, Prop. 6.2], the first statement) For contradiction assume that
pμ(xy/x0) vanishes at every point (x, y) of T ′ × (G′/P ′)a. Up to proportion-
ality pμ(y) is a unique quadratic polynomial in I((G′/P ′)a) of weight μ. So
for any x ∈ T ′ we have

pμ
(
x

x0
y

)

= tpμ(y)

for some t ∈ k∗. Write

pμ(y) =
∑

μ1+μ2=μ

cμ1,μ2y
μ1yμ2 .

By symmetry cμ1,μ2 6= 0 whenever μ1 + μ2 = μ. We can choose a point
x ∈ T ′(k) such that f ′(x) belongs to exactly one exceptional curve of X ′. If
this curve corresponds to the weight μ1, then x

μ1 = 0 and xν 6= 0 for any
ν 6= μ1. It follows that t = 0, a contradiction.
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Now assume that for any x ∈ T ′ we have

qν
(
x

x0
y

)

−
xν

xν0
yνs

(
x

x0
y

)

∈ I((G′/P ′)a).

We choose a point x ∈ T ′(k) such that f ′(x) lies on the exceptional curve
corresponding to ν and no other exceptional curve of X ′. Then xν = 0 is the
only vanishing coordinate of x. Since qν(x) is not divisible by xν we obtain a
contradiction with Lemma 3.4. QED

Let us fix an open set Ω as in Lemma 4.2, and pick up a k-point y0 in Ω
×.

Define

T̃ ′ =
y0

x0
T ′, X̃ ′ = T̃ ′/T ′, p̃(x) = p

(
y0

x0
x

)

.

Let M̃ be the point f ′(y0) ∈ X̃ ′. An obvious isomorphism X ′−̃→X̃ ′ sends M
to M̃ , so that X is isomorphic to the blowing-up of M̃ in X̃ ′.

Lemma 4.3 If μ ∈ T̂ ′ is a weight of g′, μ 6= χ0, then the closed subset of T ′

given by p̃μ(x) = 0 is f ′−1(Pμ), where Pμ ⊂ X ′ is the unique geometrically
integral conic passing through M such that [Pμ] = μ.

Proof (cf. [5, Cor. 6.3]) We have seen above that Pμ is a conic such that
[Pμ] = μ. Now y0 ∈ (G′/P ′)a implies p̃(x0) = 0, so that M ∈ Pμ. The conic
Pμ cannot be reducible since M lies in X

′×. QED

Corollary 4.4 The orbit T ′y0 is the scheme-theoretic intersection T̃ ′∩(G′/P ′)a.
This implies the following relation among the tangent spaces at y0:

Ty0,(G′/P ′)a ∩ Ty0,T̃ ′ = Ty0,T ′y0 . (10)

Proof (cf. [5, Cor. 6.4]) We can easily find two weights μ and ν such that
the intersection index of the conics Pμ and Pν is 1, that is, M is the point
of intersection of Pμ and Pν with multiplicity 1. Hence the orbit T

′y0 is
the scheme-theoretic intersection of T̃ ′ and the subvariety of g−1 given by
pμ(x) = pν(x) = 0. This implies our statement. QED

Proposition 4.5 There exists a quadratic form s(x) ∈ S2χ0(g
∗
−1) such that

s(y0) = 0, 〈y0, a〉+ 4s(y0, a) = 0 for any a ∈ Ty0,T̃ ′ . (11)

It is unique up to addition of a form from the ideal of T̃ ′.

Proof We write κ : X̃ ′ → P2k = P
(
H0(X̃ ′,−KX̃′)

∗
)
for the anti-canonical

double covering. By Lemma 4.1 the induced map κ∗ : T∗
κ(M̃),P2

→ T∗
M̃,X̃′

, is

an isomorphism. Since f ′ : T̃ ′ → X̃ ′ is a torsor under T ′ we have TM̃,X̃′ =
Ty0,T̃ ′/Ty0,T ′y0 , so the induced map f

′∗ : T∗
M̃,X̃′

→ T∗
y0,T̃ ′

is identified with
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the canonical injection (Ty0,T̃ ′/Ty0,T ′y0)
∗ → T∗

y0,T̃ ′
. The morphisms f ′ and κ

thus induce the following maps:

T∗
κ(M̃),P2

−̃→T∗
M̃,X̃′

−̃→(Ty0,T̃ ′/Ty0,T ′y0)
∗ ↪→ T∗

y0,T̃ ′
.

By (8) we have

H0(X̃ ′,−KX̃′) = S
2
χ0(g

∗
−1)/

(
I(T̃ ′) ∩ S2χ0(g

∗
−1)
)
.

There is a canonical isomorphism

T∗
κ(M̃),P2

= {s ∈ S2χ0(g
∗
−1)/

(
I(T̃ ′) ∩ S2χ0(g

∗
−1)
)
such that s(y0) = 0}.

Consider the linear form L ∈ T∗
y0,T̃ ′

defined by L(a) = 〈y0, a〉, where a ∈

Ty0,T̃ ′ . For any y ∈ (G
′/P ′)a and any a ∈ Ty,(G′/P ′)a we have 〈y, a〉 = 0

by Lemma 3.1. In particular, Ty0,T ′y0 ⊂ Ker (L), hence L belongs to the
subspace (Ty0,T̃ ′/Ty0,T ′y0)

∗. It is straightforward to check that the map f ′∗κ∗ :
T∗
κ(M̃),P2

→ T∗
y0,T̃ ′

sends s to the linear form s(y0, a), where a ∈ T∗y0,T̃ ′
.

Therefore, there exists a quadratic form s ∈ S2χ0(g
∗
−1) satisfying (11). Its

uniqueness modulo the ideal of T̃ ′ is clear. QED

Let us now define

q̃(x) = q

(
y0

x0
x

)

−
y0

x0
x s

(
y0

x0
x

)

.

Lemma 4.6 If μ ∈ T̂ ′ is a weight of g−1, then the closed subset of T ′ given
by q̃μ(x) = 0 is f ′−1(Qμ), where Qμ is the unique rational curve with a double
point at M and no other singularities, such that [Qμ] = χ0+μ = −KX′+[`μ].

Proof (cf. [5, Prop. 6.2], the second statement) To check that M ∈ Qμ set
x = x0. We have s(y0) = 0. Now y0 ∈ (G′/P ′)a implies p(y0) = 0 by Lemma
1.2, and so qμ(y0) = 0.
Formula (6) and condition (11) show that the derivatives of q̃(x) vanish

on Ty0,T̃ ′ .
If the curve Qμ is not geometrically integral, the condition (Qμ.−KX′) = 3

implies that Qμ is either the union of three exceptional curves, or the union
of an exceptional curve and a conic. But M is singular on Qμ, so M must
belong to an exceptional curve, which is a contradiction. QED

5 The main theorem

Recall from the introduction that T ⊂ GL(g) is the extension of the maximal
torus H ⊂ G by the centre of GL(g). The torus T is generated by T ′ and
the 1-dimensional torus D ⊂ GL(g), whose element t ∈ k∗ acts on gn as
multiplication by tn+1. We remind the reader that X = BlM (X

′) is the del
Pezzo surface of degree 1 obtained by blowing up the point M on X ′. Under
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the canonical isomorphism X ′−̃→X̃ ′, the point M̃ in X̃ ′ corresponds to M
in X ′. By the main theorem of [5] we have a universal torsor f ′ : T̃ ′ → X̃ ′,
where T̃ ′ is a locally closed subset of g−1.
Let us apply Theorem 2.1 to Z = T̃ ′ and the map s : S2(g−1)→ g−2 given

by s(x)w, where s(x) is the quadratic form as in Proposition 4.5. In this case
Z0 = T

′y0 = f
′−1(M̃) is one T ′-orbit. Define T = Z. This is a locally closed

subset of (G/P )a ⊂ g. By Theorem 2.1 we obtain the following commutative
diagram

T BlT ′y0(T
′) X

σ

T ′
f ′

X ′

where the horizontal arrows are torsors under tori, and the vertical arrows are
contractions with smooth centres. Since exp(x+ s(x))v is T ′-equivariant, the
torus T ′ acts on T . The 1-dimensional torus D acts on T by construction,
hence T acts on T . The fibres of f : T → X are orbits of T , hence T , as a
composition of two torsors, is an X-torsor under T .
Let us recall that PicX with the integral bilinear form defined by the

intersection index is identified with the orthogonal direct sum of ZKX and
Q(E8) = P (E8), where (KX)

2 = 1, and Q(E8) is equipped with the standard
invariant integral bilinear form multiplied by −1, see [3, Ch. 4]. If β ∈ Q(E8)
is a root of g, we let `β be the exceptional curve on X whose class is [`β ] =
−KX + β. These gives all the 240 exceptional curves on X. The intersection
index (`β .`γ) = 1− (β, γ) for any roots β, γ ∈ E8.
Recall that ω ∈ E8 is the highest weight of g. By Theorem 2.1 (iii) the

hyperplane section yω = 0 of T is f−1(`ω), because `ω = σ−1(M) is the
exceptional divisor of σ : X → X ′. By construction, for any root β of g−1 the
hyperplane section yβ = 0 of T is f−1(`β). The same is true if β is in g′ or in
g1, by Lemma 4.3 and Lemma 4.6, respectively.

Our next goal is to show that T ⊂ (G/P )sfa , where the latter set consists
of stable points for the action of H (i.e. the points whose H-orbits in V
are closed and have finite stabilisers) with the additional condition that the
stabilisers in T are trivial, cf. [5, Def. 2.5]. By geometric invariant theory
there exists a quasi-projective variety Y and a map (G/P )sfa → Y which is a
torsor under T .
If y ∈ g denote by wt(y) the set of roots α such that yα 6= 0 and by wti(y)

the set of roots α of the graded component gi such that y
α 6= 0. By the

Hilbert–Mumford criterion y is stable if and only if 0 belongs to the interior
of the convex hull of wt(y). The stabiliser of y in T is trivial if the set α− β
for all α, β ∈ wt(y) generates the root lattice of g.

Lemma 5.1 If y ∈ (G/P )a satisfies conditions (i) and (ii) below, then y ∈
(G/P )sfa :
(i) if μ and ν are roots of g′ and (μ, ν) = 1, then μ ∈ wt(y) or ν ∈ wt(y);
(ii) wt1(y) and wt−1(y) are not empty.
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Proof First, let us prove that y is stable. We can apply Prop. 2.4 from [5]
to the adjoint representation of g′, since in the case E7 it is a fundamental
representation. By (i) wt0(y) satisfies the condition of this proposition, and
hence 0 is an interior point of the convex hull of wt0(y). By (ii) the convex
hull of wt0(y) is not a face of the convex hull of wt(y), hence 0 is in the interior
of the convex hull of wt(y).
Now let us prove that the stabiliser of y in T is trivial. By the previous

result this stabiliser is finite. By Proposition 2.2 of [5] the differences α−β for
all α, β ∈ wt(y) generate the root lattice of some semisimple Lie subalgebra of
g of rank 8. By (i) this subalgebra contains g′ and (ii) ensures that it coincides
with g. QED

Lemma 5.2 The torsor T is a Zariski closed subset of (G/P )sfa .

Proof First, let us prove that T ⊂ (G/P )sfa . We use Lemma 5.1 and prove
that any y ∈ T satisfies the conditions (i) and (ii). Let μ and ν be roots of
g0 such that (μ, ν) = 1. Then the corresponding exceptional curves `μ and `ν
are disjoint since (`μ.`ν) = 1− (μ, ν) = 0. Thus either μ ∈ wt(y) or ν ∈ wt(y),
which proves (i).
Assume now that wt1(y) = ∅. Take any two roots μ and ν of g1 such that

(μ, ν) = 1. Then as above we have `μ ∩ `ν = ∅, hence either μ ∈ wt1(y) or
ν ∈ wt1(y), so that wt1(y) cannot be empty. The set wt−1(y) is non-empty
since for any point of X ′ there exists a exceptional curve on X ′ that does not
contain it. This proves that T ⊂ (G/P )sfa .
We see that X is a subset of Y . Since X is proper, T = f−1(X) is closed

in (G/P )sfa = f
−1(Y ). QED

Theorem 5.3 For the closed embedding X ↪→ Y constructed above, T =
f−1(X) is a universal X-torsor. Moreover, the T -invariant hyperplane sec-
tions of T defined by the roots of g are the inverse images of the exceptional
curves on X.

Proof We know that T → X is a torsor under T , and we also know that
(G/P )sfa → Y is a universal torsor, that is, its type T̂ → PicY is an isomor-
phism. We pointed out above that if β is a root of g−2 ⊕ g−1, then yβ = 0 is
f−1(`β). Since [`ω] and [`β ] for all roots β of g−1 generate the abelian group
PicX, the restriction map PicY → PicX is surjective. Since the ranks of PicY
and PicX are the same, the restriction map is an isomorphism. Hence the
type T̂ → PicX is an isomorphism. Moreover, it is easy to see that this iso-
morphism sends each root β of g to the class of the corresponding exceptional
curve `β . The last claim of the theorem is already proved for all the roots of
g except the one that spans g2. For that root the claim is proved in Lemma
5.4 below. QED

Lemma 5.4 Let T ⊂ (G/P )sfa be a universal X-torsor whose type T̂ −̃→PicX
sends each root β of g to the class of the corresponding exceptional curve
`β ⊂ X. If β is a root of g, then the hyperplane section yβ = 0 of T is
f−1(`β).
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ProofWe first show that T is not contained in the hyperplane section yβ = 0.
Let R be the k-algebra of regular functions on (G/P )a. In the proof of Thm.
2.7 of [5] we showed that the codimension of the complement to (G/P )sfa in
(G/P )a is at most 2. Hence R is also the algebra of regular functions on
(G/P )sfa . Let k[T ] be the algebra of regular functions on T . The closed
embedding T ⊂ (G/P )sfa gives rise to a natural surjective homomorphism of
k-algebras Φ : R→ k[T ]. The action of T on R and k[T ] equips these algebras
with compatible T̂ -gradings:

R =
⊕

χ∈T̂

Rχ, k[T ] =
⊕

χ∈T̂

k[T ]χ,

where Rχ (respectively, k[T ]χ) denotes the T -eigenspace of weight χ. Since Φ
is T -equivariant and surjective we must have Φ(Rχ) = k[T ]χ for every χ ∈ T̂ .
If χ = −`β , where β is a root of g, then R−`β is spanned by the weight coordi-
nate yβ . Since T is a universal X-torsor, we have k[T ]−`β = H

0(X,O(`β)) ∼=
k, see (8). Thus Φ defines an isomorphism of 1-dimensional vector spaces
R−`β −̃→k[T ]−`β , in particular, Φ(y

β) 6= 0, so that the hyperplane section of
T given by yβ = 0 is the inverse image of a curve C ⊂ X. By assumption,
in PicX we have [C] = [`β ], hence C = `β , because `β is the only effective
divisor in its class. QED
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