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THE BRAUER GROUP OF TORSORS
AND ITS ARITHMETIC APPLICATIONS

by D. HARARI and A. N. SKOROBOGATOV

Introduction.

This paper consists of two parts. In the first part we describe the
behaviour of the Brauer group with respect to the pull-back map from
the variety to a torsor under a torus over any field of characteristic 0.

To a variety X endowed with a surjective morphism : X ---+ P~ with
geometrically integral generic fibre one canonically associates certain X-
torsors, called vertical torsors. The second part of the paper concerns the
arithmetic of vertical torsors over a number field k. Let K = k(t) be the
function field of P’, and let K be an algebraic closure of K. Assume that
the Picard group of the geometric generic fibre XK is finitely generated, and
that its Brauer group is finite. These conditions are satisfied, for example,
when XK is rationally connected. We prove that the Manin obstruction to
the Hasse principle and weak approximation on smooth and proper models
of such torsors is the only one provided the same property holds for the
k-fibres of 7r, and the number of ’bad’ fibres is small. Using the results of
the first part we give sufficient conditions for X itself (strictly speaking, for
any smooth and proper model of X) to have the afore-mentioned property.
To illustrate possible applications we exhibit apparently new classes of
conic bundle threefolds and some other varieties with the property that the

Keywords: Brauer group - Hasse principle - Universal torsor.
Math. classification: llG35 - 14G05.
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possible failure of the Hasse principle or weak approximation is accounted
for by the Manin obstruction.

Let us now describe the contents of each section in more detail. Let

1~ be a field of characteristic 0, and let X be a variety over k. Denote by
1~ an algebraic closure of k, and set Let

Br X = H6t (X, Gm) be the cohomological Brauer-Grothendieck group of
X. In their fundamental paper [CS87a] Colliot-Thelene and Sansuc defined
universal torsors and studied their various properties. For a universal torsor

f : Y - X over a variety X such that all invertible functions on X are
constants, and Pic X has no torsion, they prove that the kernel of the
natural map Br Y - Br Y is naturally isomorphic to Br k. In this paper
we show (Theorem 1.7) that the map Br X - Br Y/Br k defined by f is
canonically identified with the map Br X - (Br X )r (provided k is such
that H3 (r,1~* ) = 0). We also obtain sufficient conditions that ensure that
the unramified Brauer group of Y is the image of the unramified Brauer

group of X.

In the arithmetic part of the paper we present a generalization of the
results of [H94], as well as of those of [S90], [S96], [CSOO], that allows a
few bad fibres in the theorem on the behaviour of the Manin obstruction

regarding the passage from the k-fibres to the total space. Our main

achievement are Theorems 2.12 and 2.9, proved by a combination of ’open
descent’ and fibration methods. Let X be a smooth and projective variety
over a number field k, and let X - P~ be a dominant morphism with
geometrically integral generic fibre. Assume that the sum of degrees of the
closed points of Pk corresponding to non-split (bad) fibres is at most 3, and
that every non-split fibre contains a multiplicity 1 irreducible component
splitting into two over an algebraic closure of the residue field. Assume
further that PicXK is finitely generated, Br XK is finite, and XK has a
k(t)-point. Then we prove that unless we are in an explicitly described
exceptional case, the possible failure of the Hasse principle and weak
approximation on X is accounted for by the Manin obstruction whenever
the same is true for smooth k-fibres of 1T. We also prove a similar result

in the case when there are only two non-split fibres, both over k-points,
each containing an irreducible component of multiplicity 1 defined over an
extension of k of prime degree. Explicit examples of applications can be
found in the end of the paper.
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Notation and conventions

All cohomology groups in this paper are either group cohomology of
finite groups, Galois or 6tale cohomology groups. (For example, we write
7~(~,...) for H6t(X,...) for a scheme X.) Let F be a finite group, and M
be an F-module. Then M) denotes the subgroup of M) con-
sisting of the classes whose image under the restriction map to every cyclic
subgroup of F is zero. For a discrete r-module M we write M) for the
Galois cohomology group Hi (r, M). Assume that M, as an abelian group,
is of finite type and torsion-free. We define for

i = 1, 2, where G is the (finite) image of the action of r on M. Note that the
groups M), i = 1, 2, are finite. Let 1~’ be the smallest extension of
k such that the action of Gal (k/k’) on M is trivial. Write G = Gal (k’lk).
Then H’(k’, M) = 0 because HI (k’, Z) = 0. The restriction-inflation se-
quence for M gives M) = Hl (G, M). There is also an exact sequence

We conclude that M) is naturally a subgroup of M).
When 1~ is a number field we denote by Qk the set of places of k, and

by kv the completion of k at the place v. Let Ak be the ring of adeles of
k. It is an easy corollary of the Tchebotarev density theorem that for a
number field k the group M) consists of a E M) such that
the localisation cxv E M) is trivial for almost all places v E Ok.

By a variety X over a field k we understand in this paper a separated
scheme of finite type over Speck. The Brauer group Br X = H2 (X, Gm)
is equipped with a natural filtration Bro X C Br1 X C Br X, where

BrX] and Set

A;[X]* = HO(X, Cm ) . There is a Hochschild-Serre spectral sequence 
J

It yields a canonical map When we

obtain the exact sequence of low degree terms

and a complex
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Recall that number field ([CF], 7.11.4), or if k = ko (t)
where l~o is a number field (see [H94], proof of Thm. 3. 5.1 ) . When k is
arbitrary, a k-point of X defines a section of the maps Br k - Br X and

H 3(k, k*) - H3(X, Gm). If this is the case, Bro X = Br 1~ and the map
Bri X - is surjective.

The unramified Brauer group of the field k(X) with respect to k is a
subgroup Brnr (k(X)lk) C Br (k(X)); it is isomorphic to the Brauer group
of any smooth and proper model of X ([G], 6.2).

Recall that for any number field k the local invariant of class field

theory is an injective map jv : Br kv -~ which is an isomorphism for
finite v. Let X be a proper, smooth and geometrically integral k-variety.
Then the set of adelic points X(Ak) is the product TIvEOk Assume

that 0, and let X(k) be the closure of the diagonal image of X(k)
in X(Ak ) . Set

(Note that the sum is well defined, see [CS87a] III or [SO1], 5.2). The
reciprocity law of global class field theory implies that

In particular, the condition 0 is an obstruction to the existence
of a k-rational point on X; this is the Manin (or Brauer-Manin) obstruction
to the Hasse principle. The condition X (Ak) is the Brauer-

Manin obstruction to weak approximation. One says that the Brauer-
Manin obstruction to weak approximation is the only one if X(k) =

The property that the Brauer-Manin obstruction to the Hasse

principle (resp. to weak approximation) is the only one is a k-birational
invariant of smooth and proper varieties. (This follows from the birational
invariance of the Brauer group ([G], 6.2), the v-adic implicit function
theorem, and Nishimura’s lemma, which says that the condition X (1~) ~ ~
is a k-birational invariant of smooth and proper varieties.)

1. Torsors and the Brauer group.

In this section k is any field of characteristic zero.
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1.1. Torsors under tori and their relative compactifications.

By T we shall denote an algebraic k-torus with module of characters
T. Let p : X 2013~ Speck be a smooth and geometrically integral k-variety,
and let f : V 2013~ X be a torsor under T. Equivalently, Y is a smooth and
geometrically integral k-variety equipped with a (scheme-theoretically) free
action of T such that YIT = X.

We shall frequently use the Leray spectral sequence

By the relative Rosenlicht lemma ([CS87a], Prop. 1.4.2) we have an exact
sequence of sheaves on X in the 6tale topology:

Here p*T is a sheaf on X obtained from the F-module T. Note that
Z) = 0 for any normal integral scheme S ([SGA 4], IX 3.6 (ii)j.

This implies in particular that = 0.

LEMMA 1.1. - Let X be a normal k-variety, and let f : Y ---+ X be a
torsor under a torus T. Then we have the following properties:

Proof. (i) is established in the proof of ([CS87a], Prop. 2.1.1 ) . For
the convenience of the reader we reproduce this argument here in the case
T = G, alongside with the proof of (ii).

Let x be a geometric point of X, R be the strictly henselian local ring
of X at x, and K be the field of fractions of R. The stalk of at

x is Pic (Y x x R), and the stalk of R2 f*Gm at x is Br (Y Xx R). Note
that Gm) = 0 for any local ring R ([M], III.4.10), hence the scheme
Y x x R is isomorphic to Gm, R. We have Pic Gm,s - Pic ,5’ for any normal
base scheme S. Now 0 which implies Pic (Y x x R) = 0.
Therefore, RI f*Gm = 0.

Recall that a ring of finite type over an excellent ring (resp. the
localization of an excellent ring) is excellent ( ~EGA4~ , 7.8.3). Hence the local
ring Ox,x is an excellent ring. Since k is of characteristic zero, Hironaka’s
resolution of singularities holds for Ox,x. By [EGA4], 7.9.5 and 18.8.17, the
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ring R, and hence also the scheme is excellent. Therefore, the Brauer
group Br fits into the following exact sequence of abelian groups ([G], I
Cor. 6.2):

It is known that ([M], IV.2.13). Similarly Z/n) -
0 for any n &#x3E; 0 by [M], III.3.ll (the residue field is algebraically closed),
hence H 1 (R, Q/Z) = 0. This proves that Br Gm,R = 0, hence R2 0.

0

From (2), (3) and statement (i) of this lemma we obtain an exact
sequence off-modules ([CS87a], Prop. 2.1.1, see also [SO1], 1.3):

The map T - Pic X in this exact sequence is called the type of the torsor
f : Y - X. The torsor f : Y - X is called universal if its type is an
isomorphism. In this case we have Pic Y = 0. When = 1~* the type
of the torsor f : Y - X is injective if and only if ~[V]* = k*. In particular,
this property holds for universal torsors, and implies Bri Y = Bro Y = Br k
by (1).

In this paper we define a relative smooth compactification of a torsor
under a torus as follows.

DEFINITION 1.2. - Let f : Y -~ X be a torsor under a torus. A
relative smooth compactification of f : Y - X is a geometrically integral
variety Z endowed with a smooth and proper morphism g : Z - X with
connected geometric fibres, together with an embedding i : Y - Z such
that i(Y) is open and dense in Z, and f = g o i.

The existence of a relative smooth compactification in characteristic
0 follows from Hironaka’s theorem.

DEFINITION 1.3 [CS77]. - An exact sequence off-modules

such that M, P, F are free abelian groups of finite rank, is called a flasque
resolution of M if the following conditions hold:
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(a) P is a permutation r -module, that is, it has a r-invariant Z-basis.

(b) F is flasque, that is, the Tate cohomology group F) is
trivial for any subgroup G’ C G, where G is the image of the action of r
on F.

LEMMA 1.4. - Let X be a smooth k-variety, and let f : Y --~ X be a
torsor under a torus T of type T : T - Pic X. Let g : Z - X be a relative
smooth compactification of f : Y - X. Then

(i) there is a natural flasque resolution of T :

Proof - We prove (i) and (ii) simultaneously. Since Z is regular we
have an exact sequence of sheaves in the 6tale topology on Z:

The sheaf DivzBy is defined as the direct sum of j,,Z, where j is the

embedding into Z of a closed integral subset of codimension 1 contained in

Z B Y, for all such closed subsets of Z. The sequence (5) is exact since Z
is regular, and hence the Weil divisors coincide with Cartier divisors (see
[M], II, Example 3.9). Let D+ (X) (resp. ’D+ (Z)) be the derived category of
bounded below complexes of 6tale sheaves on X (resp. on Z). The derived
functor I~g* : D+ (Z) -~ D+ (X ) gives an exact triangle in D+ (X) :

In D+ (X) there is also an exact triangle defined by (3). There is a natural
isomorphism = The canonical morphism -1

is an isomorphism in our case since g is proper with connected

fibres. These two morphisms define a morphism of exact triangles in

D+(X):

Let K be the function field k(X), Ko - k(X). We have the following
identifications:
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From (6) we obtain the following commutative diagram of r-modules with
exact rows and columns, which is the definition of F:

The arrows in the right hand square are the natural maps. The top row
agrees with the exact sequence (4); the map bi~ - Pic X is the type T of the
torsor f : Y - X. We observed that Gm,x - g*Gm,z. This implies that
k[X]* = k[Z]*, and that Pic X injects into Pic Z (by the Leray spectral
sequence). Now it follows from the diagram that the map T -~ 
is injective. This proves the exactness of the sequence in (i).

To complete the proof of (i) we now show that F is a flasque r-
module. Let k’c k be the smallest (necessarily Galois) extension of k such
that Gal (k/k’) acts trivially on the modules in diagram (7). Call G the
finite group Gal (k’lk).

Note that the generic fibre ZKo smooth

compactification of the principal homogeneous space YKo = Y x x Ko of the
torus T x x Ko. We identify r = Gal with Gal (K/Ko ) . Then
we have a canonical isomorphism of r-modules T (see, e.g.
[SOl], Lemma 2.4.3). This leads to an exact sequence of r-modules

The exact sequence (8) will not change if we replace the extension K =

k(X) of Ko = k(X) by the extension L = k(Y) of Lo = k(Y). Indeed, since
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Ko is algebraically closed in Lo the Galois group Gal (L/Lo ) is canonically
isomorphic to r = Gal (K/Ko ) . On the other hand, we are dealing with r-
modules which are free abelian groups of finite type that do not change after
the passage from K to L. The advantage now is that Y has a canonical Lo-
point given by the embedding of the generic point into Y. Hence the Galois
module Pic ZL = Pic ZK is the Picard module of a smooth compactification
of the torus TL. The Galois group r acts on Pic ZL via its quotient G. By
a theorem of Voskresenskii ([V], Thm. 4.6) the G-module Pic ZL is flasque.

The G-module Div is the direct sum of the module of ’vertical’

divisors Div v, that is, the divisors on Z that do not intersect the generic
fibre ZK, and the module of ’horizontal’ divisors, that is, the divisors on
Z that are Zariski closures of the divisors on Zx with support in Zx B 
The G-module of horizontal divisors is thus identified with Div ZK B YK 
Restriction to the generic fibre defines a map of G-modules Pic Z - Pic 
This map is surjective because Z is regular. Its kernel obviously contains
Pic X, hence it factors through a surjective map F --~ Pic Z K .

The composition of the map T -~ from diagram (7) with
the map --~ Div (Zx) given by the restriction of divisors
to the generic fibre Zx, is none other than the second map from (8). Indeed,
the right hand vertical arrow in (6) gives rise to a commutative diagram

which is precisely what we need:

Putting everything together we obtain an exact commutative diagram of
G-modules
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(The exactness of the bottom row follows immediately from the exactness
of the columns and the top row). Since Div v is a permutation module, it is
flasque by Shapiro’s lemma. Now the bottom line of the diagram shows that
F is flasque (in fact, an extension of a flasque module by a permutation
module is split). This establishes (i).

In particular, we have ~I - ~ (C, F) - 0 for any cyclic subgroup
C C G. By the periodicity of Tate cohomology of cyclic groups we obtain
H 1 (C, F) = 0 for any cyclic subgroup C C G.

We now go back to diagram (7). The just established property of F,
and the fact that DivZBY(Z) is a permutation G-module, and hence

enable us to conclude that coincides with the injective image
of in H2(1~, T) (cf. [CS87b], the proof of Prop. 9.5 (ii)). The
statement (ii) now follows from diagram (7). D

Remark 1.5. - We have associated a canonical flasque resolution
of T to any relative smooth compactification of an X-torsor under T.
This generalizes the construction due to Voskresenskii and Colliot-Thelene-
Sansuc (see [V], [CS77]) when the X is the spectrum of a field.

1.2. The pull-back of the Brauer group to a torsor.

In connection with arithmetic applications of torsors under tori we
are interested in describing the cokernel of the map f * : Br X ---+ Br Y,
especially when Y is a universal torsor. Arguably a more essential question
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is the computation of the cokernel of the map f nr : Brnr -

Brnr Colliot-Thélène and Sansuc pointed out that when 1~ is

algebraically closed the map f nr is an isomorphism. (This follows from
the fact that in this situation Y is birationally equivalent to the product

Our first result concerns the cokernel of f * : Br X - Br Y over an
algebraically closed field.

THEOREM 1.6. - Let k be an algebraically closed field of charac-
teristic 0. Let X be a smooth and geometrically integral variety over k
such that - k* and Pic X is a free abelian group of finite type. Let

f : Y --~ X be a torsor under a k-torus such that k[Y]* = k* and Pic Y is
a free abelian group of finite type (for example, a universal torsor). Then
the map f * : Br X - Br Y is an isomorphism.

Note that after [CS87a] the injectivity of f * : Br X - Br Y is known
to be true (over an algebraically closed field) for any torsor under a torus,
but the surjectivity does not hold in general. A well-known example is the
torsor under but Br

Proof of Theorem 1.6. - Let X be a smooth and geometrically
connected variety over an algebraically closed field k, such that k[X]* = k*
and Pic X is torsion-free. Let f : Y --4 X be a torsor under T. We denote its
type by Ty. The assumptions of Theorem 1.6 are equivalent to the condition
that TY is injective and Ty (T) is a primitive sublattice of Pic X.

Let us choose a Z-basis in T ~ Z’~, and factor f : Y - X into a
composition of torsors under 

where each Yi is a k-variety. Then we have H° (Y2, Gm) = k*. It is also

clear that Pic Yi is a torsion free abelian group of finite type. It is therefore

enough to prove Theorem 1.6 when T = Gm. We assume this from now on.

The spectral sequence (2) and Lemma 1.1 imply that BrY =

H2 (X, f * Gm ) . Now the exact sequence (3) together with the remark that
follows it, and the fact that Br Y is a torsion group lead to an exact se-

quence
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The Kummer exact sequence gives rise to the exact sequence

Now our assumptions imply = 0. Using the exact sequence

we see that - 0 for any n &#x3E; 0, hence H2(X,Z)tors = 0. It

now follows from (10) that the map f * : Br X - Br Y is an isomorphism.
Theorem 1.6 is proved. D

Over general fields the situation is more complicated.

THEOREM 1.7. - Let k be a field of characteristic 0 such that

H3 (1~, I~* ) = 0. Let X be a smooth and geometrically integral k-variety
such that I~~X~* - k* and Pic X is a free abelian group of finite type.

(a) Let f : Y - X be a torsor under a k-torus T, such that I~ ~Y~ * k’
and Pic Y is a free abelian group of finite type (for example, a universal
torsor). Let T : T -~ Pic X be the type of f : Y - X. Let P, be the
intersection of the image of (Br X ) r -~ H2 (I~, Pic X ) with T*(H2(k, T ) ) in

Then there is an exact sequence of abelian groups

(b) Let f : Y - X be a universal torsor. Then there is a natural
isomorphism = such that the canonical map Br X -

(Br X ) r identifies with the map Br X - Br Y/Br k defined by f * .
Note that, in the assumptions of this theorem, the surjectivity of the

map f * : Br X - Br Y for a universal torsor f : Y - X is equivalent to
the surjectivity of the map Br X - 

Proof. - The natural map of r-modules f* : Br X ~ Br Y is

an isomorphism by Theorem 1.6. Hence

isomorphism.
is also an

We now exploit the functoriality of the Hochschild-Serre spectral
sequence

with respect to the morphism f : Y - X. In view of our assumption
H3 (1~, l~* ) = 0 this spectral sequence gives rise to the following commutative
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diagram with exact rows:

The statement (a) now follows from this diagram combined with exact
sequence (4). To prove (b) we observe that for a universal X-torsor Y one
has Pic Y = 0. From the diagram we obtain Br Y /Br 1 Y == (Br Y)r, and
the result follows. Theorem 1.7 is proved. D

For the sake of completeness we record a proposition which can
be proved along the same lines but without recourse to the condition

H3 (k, k*) == 0. It improves a similar earlier result of Colliot- Thélène

and Sansuc valid for smooth compactifications of universal torsors over

projective varieties.

PROPOSITION 1.8. - Let k be a field of characteristic 0. Let X be a

smooth and geometrically integral k-variety such that 1~ ~X ~ * = 1~* , Pic X is
a free abelian group of finite type, and (Br = 0. Then for any universal

X-torsor Y we have Br Y = Br k.

The following theorem, in which the torsor is replaced by a relative
smooth compactification, seems to be more useful in applications.

THEOREM 1.9. - We keep the notation and conditions of Theorem
1.7 (a). Let QT be the intersection of the image of (Br X )r - H2 (k, Pic X )
with T* (EL12 (k, T)) in H2 (k, Pic X). Then for any relative smooth compact-
ification Z - X of Y --4 X there is an exact sequence of abelian groups

Proof. The beginning of the proof is similar to the proof of
Theorem 1.7. Let g : Z ~ X be any relative smooth compactification
of f : Y - X. This time we use the functoriality of the Hochschild-Serre

spectral sequence

with respect to the morphism g : Z - X.

The natural map g* : (Br X )r -~ (Br Z)r is an isomorphism. Indeed,
by [G] the map i* : : Br Z - Br Y is injective (since Y C Z is an open
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and dense embedding of regular varieties). The composed map i*g* - f * :
Br X - Br Y is an isomorphism by Theorem 1.6. Thus g* : Br X ~ Br Z
is also an isomorphism. All these maps are homomorphisms of r-modules,
hence g* : (Br Z)r is an isomorphism.

It is clear that H°(Z, Gm ) = 1~* since the same property is true for Y.
In view of our assumption that H3 (1~,1~* ) = 0 the Hochschild-Serre spectral
sequence now gives rise to the following commutative diagram with exact
rows:

The proof is now completed by an easy diagram chase and an application
of Lemma 1.4. D

For a proper variety X we obtain, as a corollary, a result about the
cokernel of the map Br.

COROLLARY 1.10. - In the assumptions of Theorem 1.7 (a) assume
further that X is proper. Then we have an exact sequence

where

The corollary follows from Theorem 1.9 because in this case Z is a
smooth and proper model of Y, hence Br Z = Brnr by [G], 6.2.

Since 0, we have Brk, whence the
following corollary:

COROLLARY l.ll. In the assumptions of Theorem 1.7 (a) as-

sume further that X is proper and Y is a universal X-torsor. Then

Brnr = Br X/Bri X whenever Pic X) - 0.

In the case of a number field k we have a more precise result.

PROPOSITION 1.12. - Let X be a proper, smooth and geometrically
integral variety over a number field k such that Pic X is a free abelian

group of finite type. Let Y be a universal X-torsor. Then the quotient of
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the unramified Brauer group Brnr (k(Y)/k) by the image of Br X is the
intersection

where and v ranges over

the places v of k such that the r-module Pic X is unramified at v (the
inertia group at v acts trivially).

Proof. The functoriality of the Hochschild-Serre spectral sequence
with respect to restriction from k to kv gives rise to a commutative diagram
with injective horizontal arrows:

It follows from the Tchebotarev density theorem that Pic X) is

the intersection of the kernels of the restriction maps H2 ( k, Pic X) ---+
H2(kv,PicXv) for v such that the r-module Pic X is unramified at v.

Now the diagram shows that Qid is given by the displayed formula of the

proposition. On the other hand, for a universal X-torsor Y - X we have

0, whence the following exact sequence:

The proposition follows. D

It would be interesting to give an example of a variety X satisfying
the assumptions of this proposition such that Brnr contains an

element that does not come from Br X.

Remark 1.13. - If Y(I~) ~ 0, then the existence of a section of the
map H3 (1~,1~* ) - H3 (y, Gm) makes the assumption H3(k, k*) == 0 in
Theorem 1.7 superfluous. The same is true for Theorem 1.9 if Z(1~) ~ 0.

2. Arithmetic of vertical torsors.

In this section we cross the fibration method of [H94] and [H97] with
the descent method of ~590~, [S96] and [CSOO].

2.1. Main theorem.

Let 1~ be a field of characteristic 0, and X be a geometrically integral
k-variety equipped with a surjective morphism f to P~ . Let q be the generic
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point of Let be the generic fibre

, and be the generic geometric
fibre.

Recall that a k-scheme V is called split if it contains a non-empty
geometrically integral open k-subscheme (which need not be dense). By a
further restriction such a subscheme can be assumed to be smooth.

The rank of f, denoted by rk f, is defined as the sum of the degrees
of the closed points P E Pl such that the fibre Xp = f -1 (P) is not split
over the residue field k(P) of P.

LEMMA 2.1. Let X be a smooth, projective and geometrically
integral k-variety. Let f : X - be a morphism with geometrically
integral generic fibre which contains a Then there exists a dense

open subset U C X such that

(a) the restriction of f to U is a smooth surjective morphism with
integral closed fibres ;

(b) if for a closed point P E pl the fibre Xp is split, then the fibre
Up is geometrically integral;

(c) the generic fibre UK coincides with XK.
The same conclusion holds under a weaker assumption that f : X -

P~ locally in etale topology has a section at every closed point P G P~.
Equivalently, every closed fibre of f contains an irreducible component of
multiplicity 1.

Proof. For any closed point P of P~ the fibre X p contains an
irreducible component of multiplicity 1. Indeed, XK has a k(71)-point and
is proper, thus f has a k-section. Since X is regular, the intersection point
of this section with X p must be regular on Xp. In particular, this point
belongs to an irreducible component of multiplicity 1.

For every closed point P choose an irreducible component Ep C Xp
of multiplicity 1. Whenever there is a geometrically irreducible component
we choose it as Ep. Let Fp be the union of all the remaining components
of X p , and let G p be the singular locus of Ep. The complement U to the
(finite) union of the Fp and the Gp for all the closed points P E P~ has
the required properties. D

Let
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A r-module M such that M = MU for a dense open subset U C X

satisfying the conditions of Lemma 2.1 will be called a vertical module

associated to f. A U-torsor of type Mu - Pic U is called vertical. It is

easy to see that MU is a torsion-free abelian group ([S96], Prop. 3.2.3).

THEOREM 2.2. - Let X be a smooth, projective and geometrically
integral variety over a number field k, and let f : X - P~ be a

dominant morphism with geometrically integral generic fibre. Suppose that
the following conditions hold:

(2) PicXj( is torsion-free, Br XK is finite, and XK has a 

(3) either Br Xk(,) - 0, or there exists a vertical module M associated
to f such that M) = 0.

If the Manin obstruction is the only obstruction to the Hasse principle
or to weak approximation for the k-fibres of f in a dense open subset of

P’, then the same property holds for X.
This theorem should be compared with Thm. A of [CSOO]. Under

additional cohomological assumptions we replace the arithmetic hypothesis
that the k-fibres of f satisfy the Hasse principle or weak approximation by
a weaker condition. The hypothesis (2) of the theorem is satisfied when XK
is a rationally connected variety. In this case the existence of a 
on XK follows from a recent theorem of Graber, Harris and Starr [GHS].

Let us describe the idea of proof of Theorem 2.2. Recall that 
is the set of adelic points orthogonal to Br U with respect to the Brauer-
Manin pairing. As in [S96] and [CSOO] we can lift an adelic point 
of to an adelic point on some vertical torsor Y - U. The

difficulty pointed out in [H97], 4.5, is that in our situation there is no

reason why Y should satisfy the Hasse principle: the hypothesis that the
Manin obstruction to the Hasse principle is the only one for the k-fibres
of f is too weak for this. However, using Proposition 2.4 below and the
results of Section 1 we show that our condition (3) implies that IPl
lifts to an adelic point E where Z is a relative smooth

compactification of Y. On the other hand, we show that on Z the Manin
obstruction to the Hasse principle is the only one: this is a consequence
of the hypothesis 2 and the results of [H97] (which replace Thm.
2.1 of [S96]). Therefore the assumption 0 implies that Y(k)
is not empty, hence U(k) is non-empty. As is dense in 
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(by [CSOO], Prop. 1.1) the statement regarding the Hasse principle follows.
The argument for weak approximation is similar.

Remark 2.3. - If we only want to treat the case when Br Xae(17) = 0,
then we can do without the results of Section 1. Indeed, this assumption
implies Br X = 0, and now we can apply [H97], 4.5.

The key observation for the proof of Theorem 2.2 is the following
statement.

PROPOSITION 2.4. - Let X be a smooth and geometrically integral
variety over a number field k, such that Gm ) = l~* and Pic X is an
abelian group of finite type. Let T be a k-torus, and T be an injection of r -
modules T --+ Pic X. Suppose that ~ Mv ~ E . Then there exists

a torsor f : Y - X under T of type T, and a point E 

such that Mv = f (Pv ) for all places v.

Proof. Let S be the k-group of multiplicative type dual to the h-
module Pic X, 5’ 2013~ T be the surjective k-homomorphism dual to T, and
S’1 be its kernel. We denote by Id the canonical isomorphism S - Pic X.
Under our assumptions the main theorem of the descent theory ([CS87a],
[SOl], 6.1.2) states that an adelic point on X orthogonal to Br, X with
respect to the Brauer-Manin pairing can be lifted to an adelic point 
on some universal torsor Z ---&#x3E; X of type Id. Then the quotient Y = is

an X-torsor under T of type T (this trivially follows from the functoriality
of type with respect to the structure group).

Let us prove that Z - Y is a universal torsor over Y. Since Z

is a universal X-torsor and = 1~*, we see from (4) that

HO(Z,Gm) = k* and Pic Z = 0. The same exact sequence (4) considered
for the torsor Z - Y now shows that T - Pic Y is an isomorphism, hence
Z is a universal Y-torsor.

Now let be the image of on Y. The inverse main theorem

of the descent theory ([S01], 6.1.2) states that the image of an adelic point
on a universal torsor is orthogonal to Bri Y. This is exactly what we wanted
to prove. D

Note that this statement is non-trivial in the following sense: in

general the natural map Bri X - Bri Y is not surjective.

We shall need the following slight refinement of [H97], Thm. 3.2.1.
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PROPOSITION 2.5. - Let F be a closed subset of A’ of codimension
at least 2, L = k(A’). Let V be a quasi-projective k-variety equipped with
a surjective morphism p : V ~ A~ B F with split fibres and geometrically
integral generic fibre VL. Let XL be a smooth and projective model of VL.
Assume the following conditions:

(a) The restriction of p to the generic point of a sufhciently general
line D in A’ has a smooth k(D)-point.

(b) Br XL is finite, and Pic (XL) torsion-free, where L is an algebraic
closure of L, and XL = XL X L L.

(c) There exists a non-empty open subset Q of An such that for each
9 e SZ(1~), the Manin obstruction to the Hasse principle (resp. to weak

approximation) is the only one for smooth and projective models of the
fibre Ve .

Then we have the following statements:

(i) The Manin obstruction to the Hasse principle (resp. to weak
approximation) is the only one for a smooth and projective model V of
V.

(ii) Assume further that 0. Let Q’ be any non-empty open
subset of An. Then there exists a k-point 9 of 0’ such that a smooth and
projective model of the fibre Ve has a k-point.

In particular, if VL is smooth and projective, and 0, then
p(V(k)) is Zariski dense in An

Proof - (i) is precisely [H97], Thm. 3.2.1. We prove (ii) using the
same induction argument. As in the proof of Prop 3.1.1 of [H97] we embed
V into a projective k-variety Vi, and consider the closure V’ of the graph
of p in VI xk (A~ B F). We obtain a projective morphism p’ : V’ -~ A’ B F
whose generic fibre VL is birationally equivalent to VL. In particular, p’
satisfies the assumptions (a), (b) and (c) of the proposition. The fibres of
p’ are split because a k-variety containing a split non-empty open subset
is split. In the case_n - 1 it follows immediately from [H97], proof of
Prop. 3.1.1, that if 0, then any non-empty open subset of A)
contains a k-point such that the corresponding fibre has smooth k-points.
This proves (ii) for n = 1 by Nishimura’s lemma.

Assume that (ii) is proved for any integer less than n. As in [H97],
proof of Thm. 3.2.1, we can find a k-point Mo in An such that the k-
morphism obtained by composing p’ with the
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map , has the property that the restriction of 7r to

7T ~(A~ ~) satisfies the assumptions of Proposition 2.5. If V(Ak)Br =1= ø,
then the induction hypothesis implies that for any non-empty Zariski open
subset U C there exists a k-point m of Ll (corresponding to an affine
line D passing through Mo) such that a smooth and projective model Z of

has a k-point. This implies that

On the other hand, Lemma 3.2.2 of [H97] says that (after shrinking U
if necessary) we can assume that VD is a smooth and geometrically integral
variety satisfying the following properties:

the generic fibre of the restriction pD : is smooth

and has a k(D)-point;
o the geometric generic fibre of pD has finite Brauer group and torsion-

free Picard group.

Since all the fibres of pD are split (because the same property holds for
p’), we can apply the case n = 1 of Proposition 2.5 (ii) to p’n. (Recall that

0.) We obtain that each non-empty open subset of D contains
a k-rational point 0 such that a smooth and projective model of the fibre
p’-1 (B) has a k-point. This proves (ii) for p’, hence for p by Nishimura’s
lemma. 0

Remark 2.6. - Although we are only interested in the conclusion of
Proposition 2.5 when the generic fibre is smooth and projective, we need
a more general statement for the induction to work.

Proof of Theorem 2.2. - The case 1 is known ([H97], Prop.
3.1.1, here condition (3) is not required). We now assume that rk f = 2.

If B = 0, then we take any U satisfying the conditions of
Lemma 2.1. In this case Br U is trivial since it is a subgroup of Br by
Grothendieck’s theorem.

If 0 we choose a vertical module M associated to f with

M) = 0, which is possible by condition (3). In this case we define U
to be the dense open subset of X such that M = Mu.

We observe that k [U] * = k*. Indeed, the generic fibre of

U -~ PI is proper and geometrically integral, hence every regular function
on comes from a rational function on P~. However, if such a function
is regular on U, then it must be constant due to the surjectivity of the
morphism U - Pl.

k 

*
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We now claim that condition (2) implies the finiteness of Br 
Indeed we have Brk(17) = 0 by Tsen’s Theorem; HI(k(17),PicXK) is finite
because Pic XK is torsion-free; and Br XK is finite. The exact sequence
(1) now shows that Br X~(~) - Br is finite. Since Br U injects into
Br we conclude that Br U is also finite.

We also note that Pic U is torsion-free, because Pic Uk(,,) and M =
Ker [Pic U - Pic are torsion-free.

be an adelic point of and E be a finite set of

places of k containing all the places where we want to approximate. By
[CSOO], Prop. 1.1, there exists an adelic point IMl in If we deal

with weak approximation, then the points Mv for v C E can be chosen to
be as close as we wish to the corresponding points Qv.

Let T be the natural injection of h-modules M - Pic U. By Propo-
sition 2.4 there exist a vertical torsor Y - U and an adelic point

is mapped to by the structure map Y - U.
Let g : Z - U be a relative smooth compactification of Y - U. Recall that
Br U injects into thus condition (3) implies that Qr == 0 in the
notation of Theorem 1.9 (with X replaced by U). Therefore by Theorem 1.9
the map Br U --+ Br Z/Bri Z is surjective. Let a be an arbitrary element
of Br Z. Then we can write a - {3 + ~y, where fl C Im [Br U - Br Z]
and q E BrI Z. Since ~Mv~ E the projection formula gives
that 0. On the other hand, 0 since

~Pv~ E and Bri Z C Bri Y. This proves that E 

The assumption rk f = 2 allows us to follow the construction of [S96],
3.3 (also used in [CSOO], p. 391). This yields an open subset WeAk
with codim (A’ B W) &#x3E; 2, equipped with a morphism W - Pl such
that Y is k-birationally equivalent to Y’ .- U Xpl k W. Moreover, the
following properties hold: the projection p : Y’ - W is surjective, its

generic fibre is projective, and all the fibres of p are split (this follows from
[S96], Cor. 1.4). Furthermore, the restriction of p to a general line in A’
has a section because we assumed that the generic fibre of f had a k(17)-
point. Let Y4 be the generic geometric fibre of p over the algebraic closure
L of L = k(Ak)’ Then the assumptions that PicXK is torsion-free and
Br XK is finite imply that Pic Y4 is torsion-free and Br Y4 is finite. Let V
be a smooth and projective compactification of Y. By [H97], Thm. 3.2.1,
on V the Brauer-Manin obstruction to the Hasse principle (or to weak
approximation if we assumed the same property for the k-fibres of f ) is the
only one. Since f P, I E C we can use Proposition 2.5
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(ii). Thus p(Y’(k)) is Zariski dense in W. In particular, Y’(k) # 0, which
implies U(1~) ~ 0. If we deal with weak approximation, then there exists
a k-point P on Y that is arbitrary close to Pv for v E E. Projecting the
point P to U, we obtain a k-point on X, which is as close to Qv for v E ~
in the kv-topology as we wish. D

2.2. Variants and applications.

In the notation and assumptions of Lemma 2.1 we construct a vertical
module M following [Sko96], 3.2. Let A C pl be the union of the closed
points P such that the fibre X p is not split (equivalently, the fibre Up is
not geometrically integral). For each P E A we denote by kp the integral
closure of k(P) in the function field k(Ep) of Ep.

The inclusion Pic p~ ’--* M = MU gives rise to the exact sequence

Here the r-module N is isomorphic to the module of characters of the torus

where is the Weil restriction of scalars from k(P) to k, and
is the kernel of the norm map Gm . For anyfinite extension we write Z[k’/k] for the induced F-module 

where Gal Then the f-module N is the direct sum of the

natural ’diagonal’ quotients of Z[kp/k] by Z[k(P)/k], for P E A.

We now give a sufficient condition for the vanishing of 
in the situation of Theorem 2.2. For any finite field extension we

write for the kernel of the restriction map 

Q/Z). If k’ and k" are subfields of 1~, then k’k" is the smallest

subfield of k containing k’ and k".

PROPOSITION 2.7. - Let X be a smooth, projective, and geometri-
cally integral variety over a number field k, and let f : X - P~ be a
dominant morphism with geometrically integral generic fibre. Assume that
two k-fibres of f, say X p and XQ, are not split, and all the other closed
fibres are split. Assume also that the fibre Xp (resp. XQ) contains a multi-
plicity 1 component Ep (resp. EQ) such that if kp (resp. kQ) is the integral
closure of k in k(Ep) (resp. in k(EQ)), then
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and

(ii) for some k-embeddings kp C k, kQ C k, the following natural
map is surjective:

Then M) = 0 for the vertical module M constructed from Ep
and Moreover, (i) and (ii) hold if kp and kQ are cyclic extensions of
1~.

Proof. From the exact sequence (13) we obtain a commutative
diagram with exact rows

From the description of N given above it is clear that N = Z[kp/k]/Z (B
Z[kQ/k]/Z. Thus 0 by condition (i). Hence any non-zero
a E M) is the image of an element,3 E Q/Z) = Hom(r, Q/Z).
We have

The restriction of the differential ~V) -~ H2(k, Z) = Q/Z) from
(13) to the subgroup Q/Z) C H’ (k, N) is the natural inclusion
of Q/Z) into H’ (k, Q/Z) (and the same for Q). Indeed, the exact
sequence of r-modules

where the second arrow is the diagonal embedding, naturally maps to the
exact sequence (13). The desired fact now follows from the commutative
diagram where the left hand arrow is the natural inclusion:

Because of the assumption (ii) a character of r belongs to the image of
if and only if its restriction to r’ := Gal (klkpkq) = Gal (k/kp)n

is trivial. Since 0 the restriction of 3 to r’ is non-trivial.
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By the Tchebotarev density theorem (cf. [H94], Prop. 2.2.1), there exist
infinitely many places v of k such that the image !3v of !3 in HI (kv, Q/Z)
is not zero, but is a direct summand of 0k For such a place
v we have 0, hence !3v does not come from This

contradicts the fact that av = 0 for almost all v.

Now suppose that and are cyclic. Then N ) = 0 by
[CS77], Prop. 2 and Prop. 6, [CS87b], Prop. 9.1. Since r/r’ is a subgroup
of the finite abelian group Gal x Gal (kQ /k) , any character of r /f’
extends to this group. Therefore the condition (ii) is also satisfied. D

Remark 2.8. - Condition (i) holds if the degrees [kp : 1~~ and [kQ : k]
are prime numbers. It also holds if the Galois closures of and kQ/k
are metacyclic ([CS77], Prop. 2 and Prop. 6, [CS87b], Prop. 9.1).

Here is a particular case of Theorem 2.2 with conditions that are easy
to check.

THEOREM 2.9. - Let X be a smooth, projective, and geometrically
integral variety over a number field k, and let f : X - Pl be a

dominant morphism with geometrically integral generic fibre. Suppose that
the following conditions hold:

(1) two k-fibres of f, say Xp and XQ, are not split, and all the other
closed fibres are split;

(2) Pic XK is torsion-free, Br is finite, and XK has a k(r¡)-point;

(3) the fibre Xp (resp. XQ) contains a multiplicity 1 component Ep
(resp. EQ) such that if kp (resp. kQ) is the integral closure of k in k(Ep)
(resp. in then [kp : k] (resp. [kQ : k]) is a prime number.

Then if the Manin obstruction is the only obstruction to the Hasse
principle or to weak approximation for the k-fibres of f in a dense open
subset then the same property holds for X.

Remark 2.10. - Using Proposition 2.6 we can replace in (3) the
condition that [kp : 1~~ and [kQ : k] are prime numbers by the condition
that and are cyclic extensions.

Proof of Theorem 2.9 . - In view of the previous remark we only
need to check condition (ii) of Proposition 2.7. We fix k-embeddings of kp
and 1~~ into k. Let p = [kp : k], q = [kQ : k]. If kp and 1~~ are Galois (hence
cyclic) extensions of k, we can apply Proposition 2.7. If kQ is not Galois
and p # q, then a non-trivial cyclic subextension of is either k p , or
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is linearly disjoint from kp and kQ. The latter case is impossible because
neither p2 nor q2 divides k] = pq. Thus Proposition 2.7 still applies
in this case. From now on we assume that p = q. We need the following
lemma:

LEMMA 2.11. - Let D be a subgroup of the symmetric group Sp not
isomorphic to Z/p. Then Hom(D, Z/p) = 0.

Proof. Let cp : D 2013~ Z/p be a non-zero homomorphism. If o- E D
is not a p-cycle, then the order of cr is prime to p, hence cp( a) == 0. In

particular, D contains a p-cycle c such that p(c) # 0. Suppose that D
contains an element which does not belong to the cyclic group  c &#x3E;.

There exists an integer m, 0  m  p, such that has a fixed point.
Therefore is not a p-cycle, hence is not a p-cycle, then

= 0 and we have a contradiction with p(c) # 0. Thus any non-trivial
element of D is a p-cycle. This leads to a contradiction because if T is a
p-cycle not in  c &#x3E;, then Tc is not a p-cycle. D

We resume the proof of Theorem 2.9. Let I~’ be the Galois closure
of kQ. If kp is Galois and kQ is not Galois, then is a non-

abelian group D C Sp. Since Hom(D, 0 by Lemma 2.11, kp and
1~’ are linearly disjoint, that is, Z/p x D. Thus the only
normal subgroup of Gal of index p is D. This means that the

only cyclic subextension is kp, and we conclude by applying
Proposition 2.7.

Finally, if neither kp nor 1~~ is Galois, the assumption (ii) of Proposi-
tion 2.7 fails only if kp and 1~~ are linearly disjoint, and contains

a cyclic extension of degree p. Then EkQ = and

Define

Then Gal (Ek’ /E) = D, hence Hp f1 HQ C D. The projection Hp ---+ D
is an isomorphism (Hp does not contain Z/p since kp is not contained in
~’). Therefore, 0 by Lemma 2.11, so that the projection
Hp - Z/p is zero. Hence we obtain Hp - D, which is a contradiction
because HP is not normal in Gal (Ek’lk) (recall that is not Galois).
Theorem 2.9 is proved. 0

We have the following variant of Theorem 2.2 applicable in some cases
when rk f = 3.

THEOREM 2.12. - Let X be a smooth, projective and geometrically
integral variety over a number field k, and let X ---+ Pk be a dominant
morphism with geometrically integral generic fibre. Assume that rk f  3
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and every non-split fibre Xp contains a multiplicity 1 component Ep such
that the integral closure kp of k(P) in k(Ep) is a quadratic extension

of k(P). Assume also the hypothesis (2) of Theorem 2.2. Then we have
the same conclusion as in Theorem 2.2 unless rk f = 3 and there exist a
biq uadratic field extension and non-split closed fibres X pl and
Xp2 with k(P2) == kPl == and kP2 = 

Proof. The beginning of the proof is similar to that of Theorem 2.2,
so we only indicate the places where this proof is different. We construct
U C X from the components Ep, then the variety W is the punctured
affine cone over the complement to a closed subset of codimension 2 in
a smooth projective quadric of dimension 4 (see [S90] or [CSOO]). We
have a vertical torsor Y such that 0 and Y is k-birational to
Y’ := U Xp1k W. Thus W(k) # 0 by the Minkowski-Hasse Theorem.
Hence W is k-isomorphic to an open subset of the affine space whose

complementary set is of codimension at least 2.

To conclude the proof it is sufficient to check that 0

for the vertical module M - Mu. Set n = rk f and denote by l2, li,
1 ~ i ~ n, the two conjugate components corresponding to the Ep’s. The
Weyl group W (Bn ) of the root system Bn is the semi-direct product of

(Z/2)n (permutations interchanging li with li) and Sn (permutations of
the indices of the li and l’). This action gives M and N the structure of
a W(Bn)-module. In [KST], Def. 1.2, the W(R)-modules Q(R) and M(R)
are defined for root systems R = Bn and Cn. Using the exact sequence
(13) we see that N = Q(Bn) and M = M(Cn) as W-modules (see [KST],
p. 29).

The action of h on the set of the li and l’ defines a homomorphism r -
W (Bn). Let G be its image. Thm. 1.22 of FKST] describes EL12 (k, M(Cn)) _

M(Cn)) in terms of the subgroup G C W(Bn). (Note that by
[KST], Prop. 1.19, we have It fol-

lows from Cor. 4.14 of [KST] that the assumption n  3 implies that
EL12 (k, M(Cn)) # 0 only in the exceptional case described in the statement
of the theorem. D

2.3. Examples: conic bundles over the plane.

Let V be the conic bundle over A~ defined in p2 x A2 by the equation
(14)
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where the t) are non-zero polynomials in x and t. By an easy change of
variables one can arrange that the t) are pairwise coprime; we assume
this from now on. Then for any given value of t at most one ai (x, to)
vanishes. Let us now introduce some notation.

For i = 0, 1, 2 let di : - degt ai (x, t), and let bi (x) be the leading
coefficient of ai (x, t) as a polynomial in t. Then we can write

Let Al be the union of closed points P E A’ k such that

and

where ~l, m, f 0, 1, 21 (the latter condition means that P)an(x, P)
is a constant polynomial which is not a square in k(P)*). Let A =
Ao U Al U A2, and let N be the cardinality of A(k) .

PROPOSITION 2.13. - Let V be the subvariety of P2k x Ak2 defined by
equation (14). In the above notation assume the following conditions:

(i) degx ao (x, t) + degx a, (x, t) + degx a2 (X, t) -- 4;

(ii) N = 1 ; or N = 2 and we are not in the exceptional case E2; or
N = 3, do = dI - d2 (mod 2), and we are not in the exceptional case E3.

Then the Manin obstruction to the Hasse principle and weak approx-
imation is the only one for any smooth and projective model of V.

The exceptional cases are defined as follows:

E2 : dl 0 - dn (mod 2), where ~l, m, nj = f 0, 1, 2}, and there exist a
biquadratic extension v$) and a closed point PEAl with residue
field = such that we have

, and

where

E3 : there exist a biquadratic extension v$) and closed points
Pl , P2 E Al with residue fields k(P2) = such that

we have

were

f 0, 1, 2}, and
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where

Proof. - Consider the morphism V - Al given by the projection to
the coordinate t. This morphism naturally extends to a surjective morphism
V’ ---+ P’, where the fibre at oo is given in P~ x A’ by the equation

if the di have the same parity. In the opposite case we can assume that

dp 1= dq - 6~ (mod 2) for some {p, q, r~ _ f 0, 1, 21. Then the fibre at oc is
given by

Let P E A, say P E Ao. Then (14) shows that the fibre Vp contains an
irreducible component of multiplicity 1 defined over the quadratic extension
of given by the square root of ai (z, P)a2(x, P). The closed fibres VQ
at the closed points Q ¢ A are geometrically integral.

The restricted morphism g’ - still surjective. It extends
to a morphism f : X - P’, where X is a smooth and projective model of
V (by Hironaka’s theorem). Split fibres of Vl’ --+ P~ give rise to split fibres
of X , P1

The generic fibre Xk(t) of f : X - P ~ is a conic bundle surface over
Pk(t). In particular, Xk(t) is a rational surface, defined over K = k(t), hence
its geometric Brauer group Br XK is zero and its geometric Picard group
Pic Xx is torsion-free. Moreover, Xk(t) has a k(t)-point since any smooth
conic over k(t) has a k(t)-point by Tsen’s theorem. In view of condition
(i) each smooth k-fibre X, of f is a conic bundle over P~ with at most 5
degenerate fibres. Then by the results of [CSS87], [CT] and [SS] the Manin
obstruction to the Hasse principle and weak approximation is the only one
for 

To apply Theorem 2.12 it remains to check that for N = 2 or N = 3
we are not in the exceptional case of that theorem. This follows from the
description of the fibres at the points of A U fool given in the beginning of
this proof. D

Remark 2.14. - One can give a variant of the previous proposition,
where ao (x, t) and are in k[t], and is a product of two
irreducible polynomials of degrees 2 and 4 in x. The arithmetic condition



2015

on the k-fibres is ensured by a theorem of Swinnerton-Dyer [SD], see [SO1],
Thm. 7.4.1. However, to satisfy the irreducibility condition one would need
a slightly stronger version of Theorem 2.2, namely, a version only requiring
that the k-fibres in a Hilbertian subset of have the property that
the Manin obstruction is the only one. Such a version can be easily proved
along the same lines as Theorem 2.2 (cf. [H97], p. 158). This is not included
in the paper to avoid notationally difficult statements.

2.4. Examples: equations of norm type.

Let C be a geometrically integral, smooth and proper curve, and let
7r : C -~ Pl be a finite morphism of degree n. Write ~r-1 (A~ ) - Spec A,
then A is a finitely generated k[t]-module. Since 7r is flat, A is projective,
and hence is free because k[t] is principal. Thus we can choose a basis
c,~l, ... , wn of the k [t] -module A. Let L = 1~(C); it is also the field of fractions
of A. Let Nt (z1, ... , zn ) be the norm of ZIWI + ... + ZnWn for the finite field
extension It is clear that is

homogeneous of degree n in variables ZI, ... , zn .

Let g(t) E be a polynomial with leading coefficient c ~ 0. Consider
the affine k-variety V defined by the equation in variables zi , ... , zn, t:

Set formally g(oo) = 0 if n does not divide deg g, and g(oo) = c otherwise.
For a closed point P E pl we denote by mp the highest common factor
of the ramification indices of 7r at closed geometric points in the fibre Cp
(for example, rra p = 1 if 7r is unramified at some point over P). Define A
as the union of closed points P E such that g(P) = 0, and there is no
k(P)-point Q E Cp such that 7r is unramified at Q.

PROPOSITION 2.15. - Let V be an affine variety defined by equation
(15). In the above notation assume that

(i) 0 consists of at most two k-points 

(ii) for any P E 0 there is a closed point Q E Cp such that 7r is
unramified at Q, and the residue field has prime degree over k(P) - k ;

(iii) for any closed point P E P~ we have mp = 1.
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Then the Manin obstruction to the Hasse principle and weak approx-
imation is the only one for a smooth and projective model of V.

Proof. - The morphism Vsm,,oth -* Al given by the coordinate t

extends to a morphism f : X --~ P~, where X is a smooth and projective
model of V. Let K - k(t). The generic fibre XK of f is a smooth

compactification of a principal homogeneous space VK of the K-torus
TK = R1/KGm. In particular, XK is a rational variety (over K), and VK
has a k(t)-point because = 0 by Steinberg’s Theorem (recall
that k(t) is a Cl-field). Thus condition (2) of Theorem 2.9 is satisfied.

Let P be a closed point of pl such that 0. Condition (iii)
implies that the fibre Vp is geometrically integral. Indeed, Vp k(P)
is the product of an affine space and an affine variety given by

where a ~ 0. By condition (iii) the highest common factor of the multi-
plicities mi is 1. Hence the given by the displayed equation is
integral.

If P is a closed point of Pl not in A but such that g(P) = 0, then
the fibre Vp is split. Indeed, it follows from the definition of A that in this
case the k(P)-variety Vp contains a geometrically irreducible component
of multiplicity 1. Now (i) shows that condition (1) of Theorem 2.9 holds.

By (ii) the fibre Xp for P E A contains an irreducible component
Ep of multiplicity 1 such that the integral closure kp of k in k(Ep) is

of prime degree over k. We use these components to construct a vertical
module M. It is a theorem of Colliot-Th6l6ne and Sansuc that (smooth
compactifications of) the principal homogeneous spaces of k-tori have the
property that the Manin obstruction to the Hasse principle and weak
approximation is the only one (see, e.g. [S01], Thm. 6.3.1). For m E k
such that g (m) =1= 0 and Jr : C - P~ is not ramified at m, the fibre V m
is a principal homogeneous space of a k-torus. We can now conclude by
applying Theorem 2.9. D

Remark 2.16. The assumption (iii) of Proposition 2.15 can be
satisfied only if the degree n of 7r is at least 3.

Explicit example. - Let C be the smooth and proper model of the
curve given + p(t)x + a = 0, where the degree of the non-constant
polynomial p(t) is divisible by 3, and a E k*. Then 7r : C -~ P~ is



2017

unramified at a k-point over oo. We apply Proposition 2.15 to study weak
approximation on the variety V given by

where c E k*. (V has a smooth k-point t = zi = 0.) One checks easily that
conditions (i) and (iii) of Proposition 2.15 are satisfied. Condition (ii) is

satisfied as long as we assume that none of the polynomials x 4+ p(O)x + a
and is irreducible. (The weirdness of these conditions is partly
due to the fact that we need an example not covered by the previously
known results. For example, if we replace 4 by 3, and require the degree of

p(x) to be even, then the smooth k-fibres satisfy the Hasse principle and
weak approximation, and we conclude by [CSOO].)

Other explicit examples 1. - Let be a norm form

defined by an extension K of k of degree n. Consider the affine variety
X C Ai given by

where P(t) is a polynomial of degree 2, and a E l~* . The non-split fibres
of the projection X - Al to the coordinate t correspond to the roots of
P(t) = 0 (one easily constructs a model with the smooth fibre at infinity).
Any of our Theorems 2.9 or 2.12 implies that the Manin obstruction to
the Hasse principle and weak approximation is the only one on any smooth
and proper model of X. It is quite likely, however, that this statement can
be deduced from the results of [CS00].

2. Let X C Ak be given by

where a, b, c E k*, and the polynomial has degree 4. The k-morphism
X ---+ Al given by H t extends naturally to a morphism
p : Y - where X is the complement in Y to the fibre at infinity Y 00’ It is
immediate to check that p has at most two non-split fibres, and the smooth
k-fibres are (affine) Chhtelet surfaces. Because of the results of [CSS87] our
Theorem 2.12 can be applied. Thus the Brauer-Manin obstruction to the
Hasse principle and weak approximation is the only one for smooth and
projective models of X.



2018

Acknowledgements. The second named author thanks the University
of Strasbourg and the Max-Planck-Institut fur Mathematik in Bonn for
hospitality. Both authors are grateful to the organizers of the conference
"Higher dimensional varieties and rational points" held at the Alfred R6nyi
Institute in Budapest. We thank J.-L. Colliot-Thelene and the referee for
helpful comments.

BIBLIOGRAPHY

[CF] J.W.S. CASSELS, A. FRÖHLICH (ed.), Algebraic number theory, Academic Press,
London and New-York, 1967.

[CT] J.-L. COLLIOT- THÉLÈNE, Surfaces rationnelles fibrées en coniques de degré 4.
In: Séminaire de Théorie des Nombres, Paris 1988-1989, Progr. Math. 91,
Birkhäuser, Boston, 1990, 43-55.

[CS77] J.-L. COLLIOT- THÉLÈNE, J.-J. SANSUC, La R-équivalence sur les tores. Ann. Sci.
École Norm. Sup., 10 (1977), 175-230.

[CS87a] J.-L. COLLIOT-THÉLÈNE, J.-J. SANSUC, La descente sur les variétés rationnelles,
II, Duke Math. J., 54, (1987), 375-492.

[CS87b] J.-L. COLLIOT-THÉLÈNE, J.-J. SANSUC, Principal homogeneous spaces under
flasque tori; applications, J. Algebra, 106 (1987), 148-205.

[CSS87] J.-L. COLLIOT- THÉLÈNE, J.-J. SANSUC, Sir Peter SWINNERTON-DYER, Intersec-
tions of two quadrics and Châtelet surfaces, J. reine angew. Math., 373 (1987),
37-107; 374 (1987), 72-168.

[CS00] J.-L. COLLIOT-THÉLÈNE, A. N. SKOROBOGATOV, Descent on fibrations over P1k
revisited, Math. Proc. Camb. Phil. Soc., 128 (2000), 383-393.

[GHS] T. GRABER, J. HARRIS, J. STARR, Families of rationally connected varieties, J.
Amer. Math. Soc., 16 (2003), 57-67.

[EGA4] A. GROTHENDIECK, Elements de géométrie algébrique. Étude locale des schémas
et des morphismes de schémas (EGA IV). Publ. Math. IHES, 1964-1967.

[G] A. GROTHENDIECK, Le groupe de Brauer, III : exemples et compléments. In: Dix
exposés sur la cohomologie des schémas, Masson-North-Holland, Amsterdam
1968.

[H94] D. HARARI, Méthode des fibrations et obstruction de Manin, Duke Math. J., 75
(1994) 221-260.

[H97] D. HARARI, Flèches de spécialisation en cohomologie étale et applications
arithmétiques, Bull. Soc. Math. France, 125 (1997), 143-166.

[KST] B. KUNYAVSKI~, A.N. SKOROBOGATOV, M.A. TSFASMAN. Del Pezzo surfaces of
degree four, Mém. Soc. Math. France, 37 (1989).

[M] J.-S. MILNE, Étale Cohomology, Princeton Univ. Press, 33 Princeton, 1980.

[SS] P. SALBERGER, A.N. SKOROBOGATOV, Weak approximation for surfaces defined
by two quadratic forms, Duke Math. J., 63 (1991), 517-536.

[S90] A.N. SKOROBOGATOV, Arithmetic on certain quadric bundles of relative dimen-
sion 2, I, J. reine angew. Math., 407 (1990), 57-74.



2019

[S96] A.N. SKOROBOGATOV, Descent on fibrations over the projective line, Amer. J.
Math., 118 (1996), 905-923.

[S01] A.N. SKOROBOGATOV, Torsors and rational points, Cambridge Univ. Press,
Cambridge, 2001.

[SD] Sir Peter SWINNERTON-DYER, Rational points on some pencils of conics with 6
singular fibres, Ann. Fac. Sci. Toulouse, 8 (1999), 331-341.

[V] V. E. VOSKRESENSKI~, Algebraic groups and their birational invariants, Trans-
lations of Mathematical Monographs, 179, Amer. Math. Soc., Providence, 1998.

Manuscrit reCu le 22 juillet 2002,
accept6 le 24 mars 2003.

David HARARI,
Ecole Normale Sup6rieure
DMA
45 rue d’Ulm
75005 Paris (France).
harari@dma.ens.fr

and

Alexei N. SKOROBOGATOV,
Imperial College
Department of Mathematics
180 Queen’s Gate
London SW7 2BZ (U.K).

a.skorobogatov@ic.ac.uk


