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Introduction

In this note, which has little pretence to originality, we clarify the relation between
the geometry of del Pezzo surfaces of degree 4 and their realization as the zero set of
two quadratic forms in five variables. We also review the classical description of the
desingularized Kummer surface K constructed from the Jacobian J of a curve C of
genus 2 as the zero set of three quadratic forms in six variables (Plücker, Kummer,
Klein [7], [6], see [5] or [3] for a modern treatment). If C has a rational Weierstrass
point, a partial diagonalization of this system gives rise to a natural projection onto
a hyperplane, defining a finite morphism π : K → X of degree 2 onto a del Pezzo
surface X of degree 4 (see [9, §6]). We show that X is the blow-up of P2k in the
images of the five other Weierstrass points of C under the embedding of P1k as a
conic in P2k. The morphism π sends the 16 lines on K to the 16 lines on X, and is
equivariant with respect to the action of the subgroup of 2-division points J [2] ⊂ J .
Thus π gives rise to a morphism from the twisted Kummer surface to the twisted
del Pezzo surface. In our presentation it is obvious that all del Pezzo surfaces of
degree 4 can be obtained in this way, an observation made by Victor Flynn in [4].
The fact that any 2-covering of J maps to a del Pezzo surface of degree 4 was first
observed in [2], and used in [2], [1] and [9] to construct and visualize elements of
order 2 in the Tate–Shafarevich group of J over Q using the theory of the Brauer–
Manin obstruction on del Pezzo surfaces of degree 4. It was the author’s desire to
understand the geometry behind these calculations that prompted him to write this
note. I would like to thank Igor Dolgachev for useful discussions.

1 Preliminaries

Let k be a field of characteristic not equal to 2 with separable closure k, and Galois
group Γ = Gal (k/k).

Let L be an étale k-algebra, that is, L = ⊕mj=1kj for some finite separable field
extensions kj/k. The trace map TrL/k : L → k is defined as the sum of traces
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Trkj/k : kj → k. Similarly, the norm map NL/k : L
∗ → k∗ is the product of norms

Nkj/k : k
∗
j → k

∗. Let n = dimk L. For example, if P (x) is a separable polynomial of
degree n, then L = k[x]/(P (x)) is an étale k-algebra of dimension n. Let θ ∈ L be
the image of x. Lagrange interpolation gives rise to the well known relations

TrL/k(P
′(θ)−1θi) = 0, i = 0, 1, . . . , n− 2, (1)

where P ′(x) is the derivative of P (x).

Assume that n is odd.

Consider the finite étale abelian group k-scheme G = RL/k(μ2)/μ2, where RL/k is
the Weil restriction of scalars. The abelian group G(k) ' (Z/2)n−1 is generated by
n elements of order 2 whose product is the identity. These generators are permuted
by Γ in the same way as the components of L⊗k k ' k n. There is an exact sequence
of k-groups

1→ μ2 → RL/k(μ2)→ G→ 1.

Since n is odd, the usual restriction-corestriction argument shows that the map

H2(k, μ2)→ H
2(k,RL/k(μ2)) = H

2(L, μ2)

is injective. Thus we have

H1(k,G) = L∗/k∗L∗2 = Coker [Δ : k∗/k∗2 →
∏

j

k∗j/k
∗2
j ], (2)

where Δ is the diagonal map.

We shall have to deal with 5-tuples of points on the projective line, as well as
with 5-tuples of points and 5-tuples of lines in the projective plane. Recall that
all these data are equivalent up to projective transformation. Indeed, to give five
distinct points in P1k is equivalent to giving five points in P

2
k in general position (this

means that no three points are on the same line). In one direction, use the Veronese
embedding P1k → S

2(P1k) = P
2
k, where S

2 denotes the symmetric square. In the other
direction take the unique conic C ' P1k through five points in the plane. Five lines
in general position in P2k correspond to five points in general position in the dual
projective plane.

Similarly, to give six distinct points on a smooth projective curve of genus 0 is
equivalent to giving six points in P2k lying on a conic. This is also equivalent to
giving six lines in the dual plane P2k which are tangent to a common conic.

2 Del Pezzo surfaces of degree 4

2.1 Equations

We assume that k has at least 5 elements.
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Let X be a del Pezzo surface of degree 4, i.e. a smooth intersection of two
quadrics in P4k. Let Q1 and Q2 be quadratic forms in five variables such that X is
given by Q1 = Q2 = 0. By [10, Prop. 2.1] exactly five quadrics in the pencil of
quadrics containing X are singular. Using the assumption about k we can assume
without loss of generality that detQ1 6= 0. By a linear change of variables and the
multiplication of Q1 by an element of k

∗ we can arrange that detQ1 = 1. Then the
characteristic polynomial P (x) = det(Q1x−Q2) is a separable monic polynomial of
degree 5, so that P (x) =

∏5
i=1(x−θi) for some distinct θi ∈ k. Then L = k[x]/(P (x))

is an étale k-algebra of dimension 5. Let θ be the image of x in L; then (θi) ∈ k 5 is
the image of θ under the map L→ L⊗k k = k 5.

Over k the quadrics of the pencil can be simultaneously diagonalized (ibidem).
More precisely, we can write P4k = P(RL/kA

1
L), and let u =

∑4
i=0 uiθ

i be a variable in
A1L. For an arbitrary del Pezzo surface X of degree 4 with characteristic polynomial
P (x) there exists α ∈ L∗ such that X is given by equations

TrL/k(αu
2) = TrL/k(αθu

2) = 0, or, equivalently,
5∑

i=1

αiz
2
i =

5∑

i=1

αiθiz
2
i = 0, (3)

where (αi) ∈ k 5 is the image of α in L⊗k k = k 5.

Let G = RL/k(μ2)/μ2. The abelian group G(k) ' (Z/2)4 is generated by five
elements of order 2 whose product is the identity. These generators are permuted
by Γ in the same way as the indices of the θi. The k-group G acts on P4k by changing
the signs of the coordinates zi, so G leaves invariant every quadric that contains X,
and thus preserves X. From (3) it is clear that the natural morphism X → X/G
sends u to u2, so that X/G is the subset of P4k = P(RL/kA1L) with L-coordinate
w = u2, given by

TrL/k(αw) = TrL/k(αθw) = 0. (4)

In particular, X/G ' P2k. Set δ = αP
′(θ). By relations (1) the 3-dimensional

subspace of RL/kA1L given by (4) is spanned by δ
−1, δ−1θ, δ−1θ2. Thus we can write

w = δ−1(t0 + t1θ + t2θ
2), where t0, t1, t2 are coordinates over k. Therefore, X is

given by the vanishing of the θ3 and θ4-terms in

t0 + t1θ + t2θ
2 = δu2 = δ(

4∑

i=0

uiθ
i)2. (5)

Thus every del Pezzo surface of degree 4 is isomorphic to the surface given by (5)
for some separable polynomial P (x) of degree 5, and δ ∈ L∗. This was pointed out
by E.V. Flynn [4].

Remark. We note that if δ = 1, then X contains the line P1k with coordinates (r : s),
given by u = r + sθ, t0 = r

2, t1 = 2rs, t2 = s
2.
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2.2 Geometry

To a del Pezzo surface X of degree 4 we associate the reduced closed 5-element
subscheme S = SX ⊂ P1k parameterizing singular quadrics in the pencil of quadrics
through X.

Definition 2.1 A del Pezzo surface X of degree 4 over k is called split if all the
16 lines on X are defined over k. Let us call a del Pezzo surface X of degree 4
quasi-split if it has at least one line defined over k. Equivalently, X is quasi-split
if it is the blow-up of P2k in a Galois-stable set of five k-points in general position.

To see the equivalence of the two definitions note that the five lines on X meeting
a fixed k-line are disjoint, and so can be simultaneously contracted, which gives a
morphism X → P2k. Conversely, the blow-up of P

2
k in a Galois-stable set of five

points in general position contains the k-line which is the strict transform of the
unique conic through these five points.

Lemma 2.2 Any quasi-split del Pezzo surface Y of degree 4 is isomorphic to the
blow-up of P2k in the image of SY under the Veronese embedding P

1
k ↪→ S

2(P1k) = P
2
k.

Proof Let Y be a quasi-split del Pezzo surface of degree 4 with a k-line `. The
contraction of the five k-lines of Y that meet ` represents Y as the blow-up of P2k in
a Galois-stable set of five k-points, and identifies ` with the unique conic through
them. It is enough to prove that the resulting 5-element subscheme F ⊂ ` ' P1k is
projectively equivalent to SY . Choose a k-point x0 in ` \ F , which is possible since
|k| ≥ 5. We identify ` with the pencil Π of quadrics through Y as follows. The
tangent spaces Tx0,Q, where Q is a quadric in Π, are precisely the hyperplanes in P

4
k

containing the tangent plane Tx0,Y . If x is a k-point in `\F , then the union of ` and
the inverse image of the line (x0x) ⊂ P2k in Y is the hyperplane section Tx0,Q ∩Y for
a unique non-singular quadric Q in Π. This defines an isomorphism Π ' ` which
identifies F and SY . QED

The scheme S = SX defines the étale k-algebra L = k[S] and hence the k-group
G = RL/k(μ2)/μ2. The singular quadrics containingX are cones over smooth quadric
surfaces. The action of G on X has the following geometric description. The five
generators of G(k) correspond to the five singular quadrics containing X, so that
each generator acts on X as the deck transformation of the double covering given
by the projection of X from the vertex of the corresponding quadratic cone to its
base.

As a projective variety with an action of G, X can be twisted by a 1-cocycle of the
Galois group Γ with coefficients in G(k) (see [11, Ch. 2] for details). The classes in
H1(k,G) bijectively correspond to the isomorphism classes of k-torsors under G. A
k-torsor τ under G is a k-scheme with an action of G such that τ ×k k is isomorphic
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to G with its action on itself by translations. The twist τX of X by τ is the quotient
of τ ×k X by the diagonal action of G. This is a del Pezzo surface of degree 4 over
k which is isomorphic to X over k. The action of G on X comes from its action on
P4k that leaves invariant every quadric through X. Thus the twisting has no effect
on S = SX . If λ ∈ L∗ represents a class in H1(k,G) given by formula (2), and X is
given by (3), then the twisted surface is given by

TrL/k(αλu
2) = TrL/k(αθλu

2) = 0.

It is easy to check that G(k) acts simply transitively on the 16 lines of X. This
action defines a k-torsor τX under G, which we call the torsor of lines of X. A del
Pezzo surface of degree 4 is quasi-split if and only if its torsor of lines is trivial, i.e.
has a k-point.

Theorem 2.3 Let X be a del Pezzo surface of degree 4, and let SX be the attached
reduced 5-element subscheme of P1k. Let X0 be the blow-up of P

2
k in the image of SX

under the Veronese embedding P1k ↪→ S
2(P1k) = P

2
k. Then X0 is

(a) the unique (up to isomorphism) quasi-split twist of X by a k-torsor under G;

(b) the unique (up to isomorphism) quasi-split del Pezzo surface of degree 4 such
that SX and SX0 are projectively equivalent as subschemes of P

1
k.

Proof The surface X0 is clearly quasi-split, moreover, the subschemes SX and SX0
of P1k are projectively equivalent by Lemma 2.2. Let us show that X0 is the unique
quasi-split twist of X. If τ is a k-torsor under G, then the torsor of lines of the
twist τX is τ ×k τX . The class of this torsor is [τX ] − [τ ] ∈ H1(k,G), hence τX is
quasi-split if and only if τ = τX . Thus the twist of X by its torsor of lines is the
unique quasi-split twist of X. Since the twisting does not affect SX we see from
Lemma 2.2 that the twist of X by τX is isomorphic to X0. This proves (a). The
uniqueness in (b) is immediate from Lemma 2.2. QED

If X is given by (3), then, by the remark in the end of the previous section, X0 is
given by

TrL/k(P
′(θ)−1u2) = TrL/k(P

′(θ)−1θu2) = 0,

or, equivalently, by

5∑

i=1

P ′(θi)
−1z2i =

5∑

i=1

P ′(θi)
−1θiz

2
i = 0. (6)

When all the roots θi of P (x) are in k, the last set of equations describes a split del
Pezzo surface of degree 4.

We obtain the following classification of del Pezzo surfaces of degree 4: their
isomorphism classes are in a natural bijection with pairs (S, [λ]), where S is a reduced
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closed 5-element subscheme of P1k, considered up to projective equivalence, and
[λ] ∈ H1(k,GS). If S is given by P (x) = 0 and λ ∈ L∗, then the twisted surface Xλ
is given by

TrL/k(λP
′(θ)−1u2) = TrL/k(λP

′(θ)−1θu2) = 0. (7)

Quasi-split surfaces are those for which [λ] is trivial, and split surfaces are those for
which [λ] is trivial and S is the disjoint union of five copies of Spec(k).

3 Kummer surfaces attached to curves of genus 2

3.1 Multiplication by 2 on the Kummer surface

Let C be a curve of genus 2, and let W ⊂ C be the closed subscheme of Weierstrass
points of C. We denote by M = k[W ] the corresponding 6-dimensional étale k-
algebra. The canonical map represents C as the double covering κ : C → P1k ramified
at κ(W ). Let ι be the hyperelliptic involution on C (the deck transformation of κ).
Let J be the Jacobian of C, and let S2(C) be the symmetric square of C, i.e.
the smooth projective surface defined as the quotient of C × C by the involution
that swaps the two factors. Consider the curve L ⊂ S2(C) whose points are the
unordered pairs {x, ι(x)}, for all x ∈ C(k). It is clear that L ' P1k. The Abel
map Ab : S2(C) → J sending {A,B} to the class of the divisor A + B − κ−1(∞),
where ∞ is some fixed k-point of P1k, is the contraction of L to the identity in J .
It is well known that J [2] = Ab(S2W ). It is also well known that J [2] is naturally
isomorphic to the k-group scheme R1M/k(μ2)/μ2, defined as the kernel of the norm
map RM/k(μ2)/μ2 → μ2.

The quotient of J by the antipodal involution x 7→ −x is the singular Kummer
surface Ksing. Let J̃ be the blow-up of J in the 16 points of J [2]. The antipodal
involution extends to J̃ , and the quotient of J̃ is the desingularized Kummer surface
K. We also define a partial desingularization K0 as the blowing up of Ksing at the
image of 0 ∈ J(k). Alternatively, K0 is the quotient of S2(C) by the involution that
maps {A,B} to {ι(A), ι(B)}. Finally, K0 also has the involution σ coming from
the involution on C2 that sends the ordered pair (A,B) to (ι(A), B). The quotient
K0/σ is the same as the quotient of C

2 by the action of the dihedral group of order
8 generated by ι acting on each factor, and the involution swapping the factors.
Therefore, K0/σ = S

2(P1k) = P2k. We obtain a commutative diagram where the
horizontal arrows are contractions, and the vertical arrows are finite morphisms of
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degree 2:
C2

↓
J̃ → S2(C) → J
↓ ↓ ↓
K → K0 → Ksing

↓
P2k

It is clear that φ : K0 → P2k is a double covering ramified in the six k-lines, which
are the images of the six curves CP ⊂ S2(C) whose points are {P, x}, where P is
a fixed Weierstrass point from W (k), and x ∈ C(k). Note by the way that these
lines are tangent to a common conic, namely φ(L), where L ' P1k is the set of points
{x, ι(x)}, x ∈ C(k). The six lines are in general position in the sense that no three of
them have a common point. The fifteen singular points of K0 go to the intersection
points of pairs of these six lines.

The multiplication by 2 on J gives rise to a morphism J̃ → S2(C) = J̃/J [2]
which is a torsor under J [2]. It descends to a morphism f : K → K0 = K/J [2],
whose restriction to a certain open subset is a torsor under J [2]. Indeed, J [2] acts
on K, and the set of points with non-trivial stabilizers is (J [4] \ J [2])/ι. This is a
J [2]-invariant set of 120 k-points of K. Let K ′ be its complement in K, and let
K0,sm be the smooth locus of K0. It is clear by construction that f sends K

′ to
K0,sm, and that f : K

′ → K0,sm is a torsor under J [2]. We point out that f sends
each of the 16 lines on K to L. We get a commutative diagram, where the right
arrows are contractions, the left arrows are finite morphisms of degree 2, and the
vertical arrows are finite morphisms of degree 16:

K ′ ⊂ K ← J̃ → J
↓ ↓ ↓ ↓
K0,sm ⊂ K0 ← S2(C) → J

The description of the desingularized Kummer surface as an intersection of three
quadrics in P5k is known since J. Plücker and F. Klein. See [7], [6], [5, Ch. 6] for the
case k = C, and [3, Ch. 16], [8] for the case of the arbitrary field of characteristic
different form 2. We give a new proof of this classical statement using some basic
facts from the theory of torsors due to Colliot-Thélène and Sansuc. Our proof works
over any field of characteristic not equal to 2 that contains more than five elements.
If k is such a field we can choose a coordinate on P1k so that κ(W ) ⊂ A

1
k. Let Q(x) be

the monic polynomial defining W , and let θ be the image of x in M = k[x]/(Q(x)).

Theorem 3.1 The desingularized Kummer surface K is isomorphic to the closed
subvariety of P5k = P(RM/kA

1
M) given by three quadratic equations

TrM/k(Q
′(θ)−1u2) = TrM/k(Q

′(θ)−1θu2) = TrM/k(Q
′(θ)−1θ2u2) = 0, (8)
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where u is a variable in A1M .

ProofWe refer to [11, Def. 2.3.2] for the definition of the type of a torsor. Recall that
J [2] is self-dual because of the Weil pairing J [2] × J [2] → μ2, so that the k-groups
Ĵ [2] and J [2] are canonically isomorphic.

We claim that there is a natural isomorphism J [2](k)−̃→Pic(K0,sm)tors, and that
this isomorphism is the type of the torsor f : K ′ → K0,sm. To prove this we note that
K ′ is the complement of a finite subset in the smooth, projective and geometrically
integral surface K, and hence k[K ′]∗ = k

∗
and Pic(K

′
) = Pic(K). The latter abelian

group is torsion free since K is a K3 surface. Now the exact sequence [11, (2.5)]
takes the form

0→ J [2](k)→ Pic(K0,sm)→ Pic(K
′
).

This gives an isomorphism of Γ-modules J [2](k)−̃→Pic(K0,sm)tors. This map is the
type of the torsor f : K ′ → K0,sm by Lemma 2.3.1 and the remark after Def. 2.3.2
of [11].

Recall that φ : K0 → P2k is a double covering ramified exactly in the images of
the six lines κ(P )× P1

k
, P ∈ W (k), under the morphism (P1

k
)2 → S2(P1

k
) = P2

k
. We

choose coordinates in P2k in such a way that this morphism sends {(a : b), (c : d)} to
(ac : −ad− bc : bd). Then the lines have the form (xθi : −x− yθi : y), and so their
equations are

t0 + t1θi + t2θ
2
i = 0.

Thus K0 is given by
y2 = aNM/k(t0 + t1θ + t2θ

2),

for some a ∈ k∗. (More precisely, K0 is obtained by gluing together three affine
surfaces obtained by putting ti = 1 in this equation, which is possible since dimkM
is even.) The curve φ(L) ⊂ P2k is the image of the diagonal P

1
k ⊂ (P

1
k)
2, and so is the

set of points (r2 : −2rs : s2); in fact, φ(L) is the conic tangent to the six ramification
lines. We see that φ−1(φ(L)) is given by y2 = aNM/k(r − sθ)2, which shows that
a ∈ k∗2, so we can take a = 1. Thus K0 has the equation

y2 = NM/k(t0 + t1θ + t2θ
2).

Let Z ⊂ P5k be the closed subvariety defined by (8), or, equivalently, by

6∑

i=1

Q′(θi)
−1z2i =

6∑

i=1

Q′(θi)
−1θiz

2
i =

6∑

i=1

Q′(θi)
−1θ2i z

2
i = 0. (9)

An easy calculation shows that Z is smooth, and hence is a K3 surface. The k-
group RM/k(μ2)/μ2 acts on P5k = P(RM/kA1M) by changing the signs of the coor-
dinates zi. The natural morphism Z → Z/(RM/k(μ2)/μ2) sends u to u2, so that
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Z/(RM/k(μ2)/μ2) is the subset of P5k = P(RM/kA1L) with M -coordinate w = u
2,

given by

TrM/k(Q
′(θ)−1w) = TrM/k(Q

′(θ)−1θw) = TrM/k(Q
′(θ)−1θ2w) = 0.

In particular, Z/(RM/k(μ2)/μ2) ' P2k is the projectivization of the 3-dimensional
subspace of RL/kA1L defined by these equations. This space is spanned by 1, θ, θ

2,
i.e. we can write w = t0 + t1θ + t2θ

2, where t0, t1, t2 are coordinates over k. The
quotient of Z by the action of the subgroup R1M/k(μ2)/μ2 of elements of norm 1 is
identified with K0 by the morphism g : Z → K0 given by y = NM/k(u). It is obvious
that R1M/k(μ2)/μ2 acts freely on the open subset of P

5
k consisting of the points with

at most one zero coordinate. Let Z ′ be the intersection of this open subset with
Z. The image g(Z ′) is precisely K0,sm, hence g : Z

′ → K0,sm is a torsor under
R1M/k(μ2)/μ2 = J [2]. The set Z \ Z

′ is finite, and the same arguments as in the
beginning of the proof show that the types of g : Z ′ → K0,sm and f : K ′ → K0,sm
are the same.

By the exact sequence of Colliot-Thélène and Sansuc (see [11], (2.22)) to prove
that these two torsors are isomorphic it is enough to find a k-point N on K0,sm with
k-points in f−1(N) and in g−1(N). Note that f−1(L) is the union of the 16 lines on
K; moreover, one of them, namely, the line corresponding to the identity in J , is
defined over k. On the other hand, g−1(L) is given by the equations u2 = (r− sθ)2,
NM/k(u) = y. The line u = r−sθ lies in Z and projects isomorphically onto L. This
proves that Z ′ and K ′ are isomorphic as torsors over K0,sm. QED

We finish this section with some geometric remarks. Let C ′P be the image of CP in
J . The Riemann–Roch theorem on C implies that C ′P ∩C

′
R = {0, (P−R)}, so that 0

is the only common point of these six curves on J . Let DP ⊂ J be the inverse image
of C ′P under the multiplication by 2 map. Since each C

′
P contains 0, each curve DP

contains J [2] ⊂ J . Since the curves C ′P are translations of one of them by points
of order 2, the curves DP are linearly equivalent. More precisely, DP ∈ |4Θ|, where
Θ ∈ Pic(J) is the class of the theta-divisor C ′P for some P ∈ W (k). The curves DP
are invariant under the antipodal involution. The linear system |4Θ− J [2]| defines
a morphism from J̃ to P5k whose image is K embedded in P

5
k as an intersection of

three quadrics (see [5], p. 786). The images D′P of the DP in K define a basis of
H1(K,O(1)). These curves can also be viewed as the inverse images of the six lines
in K0, where φ : K0 → P2k is ramified. Thus the D

′
P are the coordinate hyperplane

sections. As a smooth intersection of three quadrics, each of these curves is a
canonical curve of genus 5.
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3.2 The case of a rational Weierstrass point: from Kummer
to del Pezzo

Now suppose that C has aWeierstrass k-point R. Write κ(W ) as the disjoint union of
κ(R) and a reduced 5-element subscheme S = SC ⊂ P1k. This gives a decomposition
of the algebra of functionsM = k[W ] into the direct sumM = L⊕k, where L = k[S].
We continue to assume that |k| > 5, so we can choose a coordinate on P1k in such a
way that κ(W ) ⊂ A1k. Let θ6 be the coordinate of κ(R). Then Q(x) = P (x)(x− θ6),
where P (x) =

∏5
i=1(x − θi) = NL/k(x − θ). Then S is the closed subscheme of A

1
k

defined by P (x) = 0, and L = k[x]/(P (x)).

The map (id,NL/k) identifies RL/k(μ2)/μ2 with R
1
M/k(μ2)/μ2, thus J [2] is the k-

group G = RL/k(μ2)/μ2 of Section 2. The projective space

P5k = P(RM/kA
1
M) = P(RL/kA

1
L × A

1
k)

contains P4k = P(RL/kA
1
L) as a hyperplane. The projection

π : P5k \ {(0 : 0 : 0 : 0 : 0 : 1)} → P4k = P(RL/kA
1
L)

is a J [2]-equivariant morphism.

Proposition 3.2 Let X be the quasi-split del Pezzo surface of degree 4 defined by
the polynomial P (x). If X is embedded into P4k as the zero set of equations (6), then
the restriction of π to K is a J [2]-equivariant finite morphism K → X of degree 2.
This double covering is ramified in the hyperplane section K ∩ P(RL/kA1L) given by
z6 = 0, which is a canonical curve of genus 5.

Proof The elimination of z6 from (9) gives (6). The ramification divisor of π is the
curve D′R described at the end of the previous section. QED

In particular, any quasi-split del Pezzo surface of degree 4 is the quotient of K by
the involution whose fixed point set is the curve D′R.

The k-group RM/k(μ2)/μ2 is the direct product of J [2] = G and the subgroup
μ2 ⊂ RM/k(μ2)/μ2 which changes the sign of the coordinate z6 corresponding to
the rational Weierstrass point R. The morphism π : K → X can be viewed as
passing to the quotient by the action of this subgroup μ2. Thus the morphism
K → K/(RM/k(μ2)/μ2) ' P2k can be written either as the composition of π : K → X
and X → X/G ' P2k, or as the composition of K → K/G = K0 and φ : K0 → P2k.

The k-group J [2] = G acts on the projective surfaces J , K and X, thus for
any λ ∈ L∗ representing the cohomology class [λ] ∈ H1(k,G) = L∗/k∗L∗2 we can
consider the twisted surfaces Jλ, Kλ and Xλ. Here Jλ is a 2-covering of J , whereas
Xλ is the same as in the end of Section 2 and is given by (7). Since π : K → X
is J [2]-equivariant we obtain a natural morphism Kλ → Xλ (cf. [9, §6]). Thus in
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the case of a rational Weierstrass point for every λ ∈ L∗ we obtain the following
commutative diagram:

Xλ ← Kλ ← J̃λ → Jλ
↓ ↓ ↓ ↓
P2k ← K0 ← S2(C) → J

Here the morphisms in the upper row are J [2]-equivariant, and the vertical arrows
are the factorization morphisms by the action of J [2]. We note that the 16 lines on
Xλ are the images of the 16 lines on the Kummer surface Kλ.

Corollary 3.3 For any del Pezzo surface X of degree 4 there exists a curve C of
genus 2, and a 2-covering Jλ of the Jacobian J of C that has a dominant rational
map to X.

The above construction produces such a curve C with equation y2 = aP (x)(x− θ6);
this curve is uniquely determined by X up to the quadratic twist by a and the choice
of the sixth Weierstrass point x = θ6 in P1k \ SX .
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