
IOP PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND THEORETICAL

J. Phys. A: Math. Theor. 40 (2007) 2287–2297 doi:10.1088/1751-8113/40/10/005

Phase transitions in a lattice population model

Alastair Windus and Henrik J Jensen

Department of Mathematics, Imperial College London, South Kensington Campus,
London SW7 2AZ, UK

E-mail: h.jensen@imperial.ac.uk

Received 16 December 2006, in final form 26 January 2007
Published 21 February 2007
Online at stacks.iop.org/JPhysA/40/2287

Abstract
We introduce a model for a population on a lattice with diffusion and birth/death
according to 2A −→ 3A and A −→ φ for a particle A. We find that the
model displays a phase transition from an active to an absorbing state which
is continuous in 1 + 1 dimensions and of first-order in higher dimensions in
agreement with the mean field equation. For the (1 + 1)-dimensional case, we
examine the critical exponents and a scaling function for the survival probability
and show that it belongs to the universality class of directed percolation. In
higher dimensions, we look at the first-order phase transition by plotting a
histogram of the population density and use the presence of phase coexistence
to find an accurate value for the critical point in 2 + 1 dimensions.

PACS numbers: 64.60.Ht, 05.70.Jk

1. Introduction

Non-equilibrium phase transitions have long been a major area of investigation (see [1] for a
review). Studies are wide-ranging, involving atmospheric precipitation [2], sandpile models
[3], epidemics [4] and many more. One of the great achievements in the field has been the
discovery that a broad range of models belong to one of a few universality classes, whose
members share the same critical exponents and scaling functions (see for example [5]). In
particular, it has been conjectured that all models with a scalar order parameter that exhibit a
continuous phase transition from an active state to a single absorbing state belong to the same
universality class of directed percolation (DP) [6, 7]. Although not proven, the conjecture
is strongly supported by numerical evidence and seems to be even more general since, for
example, a system with multiple absorbing states is known to belong to the class [8].

Here, we introduce a lattice model representing a population in a habitat and include the
processes of birth, death and diffusion. Due to the conflict between growth and decay, with
steady state population density ρ̄ as our order parameter, we expect a phase transition to an
absorbing state to occur under certain conditions. The expected phase transition may be either
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continuous or of first-order. The latter, however, is rarely seen in low spatial dimensions due
to the destabilization of the ordered phase caused by the larger fluctuations that are present in
such systems. Hinrichsen has hypothesized that first-order phase transitions are impossible
in (1 + 1)-dimensional systems provided that there are no additional conservation laws, long-
range interactions, macroscopic currents or special boundary conditions [9]. Since our model
does not fulfil any of these criteria, we expect at least the (1 + 1)-dimensional version of our
model to exhibit a continuous phase transition and thus to belong to DP.

Thanks to series expansions, the critical exponents of DP are now known to a high degree
of accuracy [10]. We therefore proceed in section 2 by describing our model and then, in
sections 3 and 4, examine the critical exponents and a scaling function respectively to compare
them with those of DP. In section 5, we examine the first-order phase transitions and conclude
with some remarks in section 6.

2. The model

We have a d-dimensional square lattice of linear length L where each square is either occupied
by a single particle (1) or is empty (0). A site is chosen at random. With probability pd

the particle on an occupied site dies, leaving the site empty. If the particle does not die,
a nearest-neighbour site is randomly chosen. If the neighbouring site is empty the particle
moves there; otherwise, the particle reproduces with probability pb producing a new particle
on another randomly selected neighbouring site, conditional on that square being empty. A
time step is defined as the number of lattice sites N = Ld and periodic boundary conditions
are used. We have the following reactions for a particle A for proliferation and annihilation
respectively,

A + A −→ 3A and A −→ φ. (1)

Our model is similar to that of Schlögl’s second model [11] with similar cases being previously
studied [6, 12, 13].

Assuming the particles are spaced homogeneously, the mean field equation for the density
of active sites ρ(t) is given by

∂ρ(t)

∂t
= pb(1 − pd)ρ(t)2(1 − ρ(t)) − pdρ(t). (2)

This has three stationary states

ρ̄0 = 0, ρ̄± = 1

2

(
1 ±

√
1 − 4pd

pb(1 − pd)

)
. (3)

Clearly, for 4pd > pb(1−pd), ρ̄0 is the only real stationary state, resulting in a phase transition
occurring at the critical death rate pdc = pb/(4 + pb). Simple analysis shows that ρ̄+ and ρ̄0

are stable stationary states, whereas ρ̄− is unstable and therefore represents a critical density
ρc below which extinction will occur in all cases. So, for pd < pdc ,

ρ(t) −→
{

0 for ρ(t) < ρc

ρ̄+ for ρ(t) > ρc
as t −→ ∞. (4)

At pd = pdc , the stationary density jumps from 1/2 to 0, resulting in a first-order phase
transition. We investigate whether the Monte Carlo (MC) simulations agree with the mean
field by plotting, in figure 1, the steady state population density against pd in 1 + 1, 2 + 1
and 3 + 1 dimensions with ρ(0) = 1. From now on, we use a constant value of pb = 0.5.
We note that, although we keep pb constant, the actual birth rate is dependent on pd since
the probability of birth is proportional to pb(1 − pd). To find the steady state, we examine
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Figure 1. Steady state population densities for the mean field (line) and the (1 + 1) (+), (2 + 1)

(×) and (3 + 1) (•) dimensional Monte Carlo simulations. The solid line represents the stable
stationary state and the dashed line the unstable one.

surviving runs only, looking at an increasing number of time steps up to 2×105 and increments
in pd of 5 × 10−5 as the critical point is approached.

We see from the results that we have a strong indication of a first-order phase transition
in 2 + 1 and 3 + 1 dimensions whilst a continuous phase transition in 1 + 1 dimensions. While
these results are compelling, we note that since the simulations were performed on finite
lattices and for finite times, we cannot take them to be conclusive since in such simulations
there is always a non-zero probability of survival for finite t even for pd > pdc . Instead we look
for power-law behaviour in ρ(t) close to the critical point. For a continuous phase transition
we expect asymptotic power-law behaviour of the order parameter at the critical point (see
[14] for a review) of the form

ρ(t) ∼ t−δ. (5)

In log–log plots, positive curvature for large t indicates the system is in the active phase
whereas negative curvature implies that the system is in the absorbing phase. A first-order
phase transition will therefore be marked by non power-law behaviour, rather exponential
decay of the order parameter for pd > pdc . Figure 2 shows the (1 + 1)-dimensional case with
ρ(t) for different values of pd close to the critical point clearly showing power-law behaviour
at the critical point. No power-law behaviour is however observed in 2 + 1 or 3 + 1 dimensions;
instead, with the inclusion of spontaneous particle creation at rate κ = 0.005, hysteresis
occurs in both cases as plotted in figure 3, which is indicative of first-order phase transitions.
However, no hysteresis is observed in the (1+1)-dimensional case. We examine the first-order
phase transitions in more detail in section 5.

Since the model shows a continuous phase transition in 1 + 1 dimensions, we must ask
ourselves to which universality class it belongs. By Grassberger and Janssen’s conjecture
[6, 7], we would expect it to belong to the universality class of DP. We investigate this now by
looking at the critical exponents and a scaling function in turn for 1 + 1 dimensions only.

3. Critical exponents

Finding the critical exponents through steady state simulations is notoriously difficult due
to critical slowing down, finite-size effects, large fluctuations and the difficulties that arise in
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Figure 2. Power-law behaviour for the (1 + 1)-dimensional model. Solid lines represent (from
top to bottom) pd = 0.071 654, 0.071 754 and 0.071 854. The hashed line represents the gradient
−0.159 as a guide for the eye. The inset shows non-power law behaviour for various values of pd
close to the critical point for the (2 + 1)-dimensional model. The (3 + 1)-dimensional case is very
similar. Information on how the critical points were found are detailed later in the paper.
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Figure 3. Hysteresis loop for the (a) 2 + 1 and (b) (3 + 1)-dimensional models with pd increasing
(×) and decreasing (+). The inset in (a) shows no hysteresis occurring in the (1 + 1)-dimensional
model.

finding the critical point. A much more effective method is that of time-dependent simulations,
which has proved to be a very efficient way of determining the critical exponents and the critical
point for models exhibiting absorbing phase transitions [15]. Using this method, the time
evolution of the model is observed up to some time tM, after beginning with a configuration
that is very close to the absorbing state—two adjacent particles in this model. The size of the
lattice is made large enough so that the particles never reach the boundary before tM.

We measure the survival probability P(t), defined as the probability that the system has
not reached the absorbing state at time t and the average number of occupied sites n(t). At
pd = pdc , we expect the following asymptotic power-law behaviour [16]:

P(t) ∼ t−δ, (6)

n(t) ∼ tη. (7)
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Figure 4. Plots of (a) η(t) and (b) −δ(t) up to t = 106. From top to bottom, pd = 0.071 746,
0.071 754 and 0.071 762.

Away from the critical point, the evolution departs from pure power-law and so by examining
log–log plots of P(t) and n(t) versus t we can find the critical point by finding the value of
pd that gives a straight line. Generally, however, we expect corrections to the pure power-law
behaviour so that P(t) is more accurately given as [16]

P(t) ∼ t−δ(1 + at−1 + bt−δ′
+ · · ·) (8)

and similarly for n(t). Here, δ′ represents the correction-to-scaling exponent for δ. More
precise estimates for the critical exponents are obtained by examining the local slope

−δ(t) = ln[P(t)/P (t/m)]

ln(m)
(9)

and similarly for n(t), where the critical exponent δ is given by limt→∞ δ(t). Here, m is
given as the local range over which the slope is measured and is typically 5 [17, 18] or 8
[16]. Grassberger [16] has shown that for the local slope defined in (9), we have the following
behaviour

δ(t) = δ + at−1 + bδ′t−δ′
+ · · · (10)

and again, similarly for n(t). Thus if we plot δ(t) versus t−1, we have that the critical exponent
δ is given by the intercept with the y-axis and any curvature would indicate a correction-to-
scaling exponent less than 1.

We plot in figure 4, η(t) and δ(t) for up to t = 106 and over 105 runs with m = 5.
We find that the data are in fact very noisy, leading to inaccurate results for the critical
exponents. However, it is clear that the gradient increases for pd = 0.071 746 and decreases for
pd = 0.071 762 for large t whereas we have an approximately straight line for pd = 0.071 754,
especially for η(t). This therefore gives a value of pdc = 0.071 754 ± 0.000 004. We plot in
figure 5, η(t) and δ(t) for pd = 0.071 754 but this time up to t = 104 and over 2.5×106 runs to
improve the accuracy of the results. From this plot we can read off the values η = 0.314±0.002
and δ = 0.160 ± 0.002, which are in agreement with the best currently known DP values of
η = 0.313 686 and δ = 0.159 464 [10].
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Figure 5. Plots of (a) η(t) and (b) −δ(t) up to t = 104 at pd = pdc = 0.071754.

4. Scaling functions

For models to belong to the same universality class, both the critical exponents and the scaling
functions must be the same. Having shown that the critical exponents δ and η for our model
are in agreement with the DP values, we turn our attention now to the scaling function for the
probability of survival, P(�,L, t), where � = pdc − pd. We have the scaling ansatz [5]

P(�,L, t) ∼ λ−βR1(�λ,Lλ−ν⊥ , tλ−ν‖) (11)

for any λ > 0. β (=β ′ in DP) is the critical exponent associated with the survival probability
according to

P ∼ �β (12)

as t −→ ∞ and ν‖ and ν⊥ are the critical exponents associated with the temporal and spatial
correlation lengths respectively. As in the previous section, we begin our simulations from a
single seed with L large enough so that we can ignore the L-dependence in (11) and examine

P(�, t) ∼ λ−βR2(�λ, tλ−ν‖), (13)

only. The functions Ri are non-universal, i.e. they are unique to each model. However, we
may introduce metric factors a� and at ,

P(�, t) ∼ λ−βR̄(a��λ, at tλ
−ν‖) (14)

so that R̄ is a universal scaling function. Now all of non-universal, system-dependent features,
such as the update scheme, boundary conditions, lattice structure, etc. are contained in these
non-universal metric factors.

If we choose λ = (at t)
1/ν‖ , then, since δ = β/ν‖,

P(�, t) ∼ (at t)
−δR̄(a��(at t)

1/ν‖ , 1) (15)

so we would expect to observe a data collapse by plotting (at t)
δP versus a��(at t)

1/ν‖ for all
models belonging to the same universality class. To find the metric factors at and a�, we use
the normalizations

R̄(1,∞) = R̄(0, 1) = 1. (16)
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Figure 6. Data collapse for both the directed bond percolation model and our own using metric
factors. Inset: data collapse for both the directed bond percolation model (top right) and our own
(bottom left).

Then, choosing � = 0 and λ = (at t)
1/ν‖ we have that at is given by the amplitude of

P ∼ (at t)
−δ. (17)

Similarly, setting λ = (a��)−1 and letting t −→ ∞, a� is given by the amplitude of

P ∼ (a��)β, (18)

where, since λ > 0, we must have � > 0.
We now compare the scaling function for our model with that for directed bond percolation

which belongs to DP. The model begins with an initial number of active sites and proceeds in
time with site i becoming active at time t + 1 if site i + 1 and/or site i − 1 is active at time t
and there exists a bond (with probability p) between this active site and the site i. The best
estimate of the critical value of p is pc = 0.644 700 185(5) [19] where, for p � pc, the active
sites percolate the infinite system.

As was the case in our model, we begin with a single seed—just one active site at the
origin here—and record the probability of survival PDP (t), i.e. the probability that there is
at least one active site at time t. We denote the metric factors with a subscript DP for
the directed bond percolation model and subscript P for our model. Excluding the metric
factors, we plot in the inset in figure 6 the two separate data collapses for P for both the
directed bond percolation model and for our own by plotting P tδ versus t�ν‖ . We use the
best known DP values of δ = 0.159464 and ν‖ = 1.733 847 [10] and see clear data collapses
in both models, especially for large t. Using now the obtained values for the metric factors,
at,DP = 1.57, a�,DP = 7.51, at,P = 3137.30 and a�,P = 0.2, we have a complete data
collapse of all the data from both models as shown in the main plot in figure 6, indicating that
the scaling function for both models is identical.

Having examined both the critical exponents and the scaling functions, we conclude that
our model belongs to DP in 1 + 1 dimensions.
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Figure 7. Normalized histogram, N ′(ρ) for different population densities in the (1+1)-dimensional
(left) and 2 + 1 dimensional (right) cases showing the results for a continuous and first-order phase
transition respectively.

5. First-order phase transitions

Due to DP having a critical dimension, dc = 4 [20], it is surprising that this model belongs to
DP in 1 + 1 dimensions only due to the first-order transition in higher dimensions. This is not
a unique property to this model. A stochastic cellular automaton model developed by Bidaux,
Boccara and Chaté (BBC) [21] is known to belong to DP in 1 + 1 dimensions [22] yet also
displays a first-order transition in higher dimensions.

In order to examine the first-order phase transitions, we borrow a technique developed
by Lee and Kosterlitz [23], which allows one to determine the order of a phase transition in
an equilibrium system. The method detects a temperature-driven first-order phase transition
by MC simulations in a finite system of volume Ld with periodic boundary conditions by
examining the histogram of the energy distribution

N(E;β,L) = NZ−1(β, L)�(E,L) exp(−βE). (19)

N is the number of MC sweeps, Z is the partition function and � is the number of states
with energy E. For the q-state Potts models with q ordered and one disordered state, N has a
characteristic double-peak close to T = Tc for energy values E1(L) and E2(L) corresponding
to the ordered and disordered states. The peaks are separated by a minimum at Em(L). If we
define

A(E;β,L,N ) = − ln N(E;β,L,N ), (20)

then at β = βc(L) defined by A(E1;β,L) = A(E2;β,L),

A(Em;β,L,N ) − A(E1;β,L,N ) = �F (21)

where �F is the bulk free-energy barrier between the states. At a first-order phase transition,
�F ∼ Ld−1 for L � ξ , where ξ is the correlation length, whereas �F is independent of L at
a continuous phase transition.

Due to our model being out of equilibrium, we continue only in the spirit of the above
method and examine the histogram for the population density N(ρ). For a first-order phase
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Figure 8. Plot to obtain an approximation for the critical point in the (2 + 1)-dimensional model
by extrapolation of the points to the intersection with the y-axis.

transition, we expect a double-peaked structure at ρ0 and at ρ+ = ρ− = 0.5 due to the
corresponding phase coexistence. For pd > pdc we expect N(ρ0) > N(ρ+) due to the greater
chance of extinction, and likewise for pd < pdc we expect N(ρ0) < N(ρ+) due to the greater
chance of survival. This in fact gives us an excellent method for determining the critical point
since it will be marked by N(ρ0) and N(ρ+) being equal. At a continuous phase transition,
however, due to the power-law behaviour ρ ∼ t−δ , we expect N(ρ0) = 0 at the critical point.
Both expectations are confirmed in figure 7, where we plot the histogram at the critical points
for both the (1 + 1)- and (2 + 1)-dimensional cases.

As has been mentioned, the phase-coexistence enables the critical value pdc to be
estimated. Iteratively finding the critical value for large enough t and different values of
L and then plotting pdc(L) versus 1/L in figure 8, we are able to obtain, by an extrapolation
to the intercept with the y-axis, the value of the critical point in 2 + 1 dimensions to be
0.0973 ± 0.0001. Unfortunately, no conclusive numerical evidence has yet been obtained in
3 + 1 dimensions to give an accurate value for pdc .

6. Concluding remarks

By examining the critical exponents δ and η and the scaling function for the survival probability,
we have shown that the (1 + 1)-dimensional version of our model belongs to the class of DP.
Higher dimensions however do not, surprisingly, belong to this class due to the observed first-
order phase transitions. In order to examine these transitions we used a technique inspired by
equilibrium systems to find the value of the critical point in 2 + 1 dimensions.

In order to answer the question about why our model does not belong to DP in all
dimensions, we must look at how our model differs from others in the class. One difference
to other models such as the contact process [24] or the Domany–Kinzel [25, 26] model is that,
here, population growth requires two particles meeting, whereas death involves one particle
only. This requirement results in the mean field exhibiting a first-order phase transition and
also the existence of the critical population density, meaning that extinction can occur either
because the death rate is too large and/or because the population density is too small. The
previously mentioned BBC model shares this feature since they too observed a critical value of
the initial concentration of ‘alive’ sites below which the system decayed to a zero concentration
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state. With this inclusion, it is remarkable that the (1 + 1)-dimensional version of our model
belongs to DP at all and only goes to highlight the robust nature of the universality class.

It seems likely that the unusual behaviour of both our model and that of BBC displaying DP
behaviour in 1 + 1 dimensions, whilst first-order transitions in higher dimensions, is due to the
critical population density/concentration present in both models. In our model, with the given
rules for growth and decay, it is clear that the population will become more dependent on the
density as the dimensionality of the system increases since particles will find it progressively
harder to meet one another before they die. Time-dependent simulations carried out in higher
dimensions, for example, needed increasingly large populations at t = 0 for initial population
growth as pd was increased, whereas two particles were sufficient in 1 + 1 dimensions even
for 0 < pd − pdc � 1.

To examine whether the first-order transitions are a result of the critical population density,
we changed our model to include single-particle reproduction, A −→ 2A, at rate c. From
mean field analysis, this inclusion eradicates the critical population density for c > pb and
initial numerical analysis appears to show that this changes the transition to continuous in at
least the (2 + 1)-dimensional case. Similar observations were made if the particle diffusion
mechanism was removed, i.e. if we turned the model into a simple growth process.

In the (1 + 1)-dimensional case, not only is it easier for particles to meet, but the larger
fluctuations in the population are likely to be enough to induce the observed continuous phase
transition as has been known to happen [27]. This was tested by introducing two separate
types of particles into the system, L and R particles, where the L particles could only move
left and R particles to the right. All other rules remained the same except that both an L and
a R particle were required for reproduction. This modification to our model reduced the size
of the fluctuations in the overall population and, again, early numerical simulations appear to
show that this results in the transition changing to first-order.

Clearly, more work will however have to be carried out to confirm the above observations
and to find out exactly what is happening at the phase transition.
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